JP2007216276A - Method for welding iron based material and aluminum based material, and welded joint - Google Patents
Method for welding iron based material and aluminum based material, and welded joint Download PDFInfo
- Publication number
- JP2007216276A JP2007216276A JP2006041135A JP2006041135A JP2007216276A JP 2007216276 A JP2007216276 A JP 2007216276A JP 2006041135 A JP2006041135 A JP 2006041135A JP 2006041135 A JP2006041135 A JP 2006041135A JP 2007216276 A JP2007216276 A JP 2007216276A
- Authority
- JP
- Japan
- Prior art keywords
- based material
- aluminum
- fluoride
- welding
- iron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Nonmetallic Welding Materials (AREA)
- Arc Welding In General (AREA)
Abstract
Description
本発明は、自動車用構造物などの組立工程の際に必要となる鉄系材料とアルミニウム系材料との接合方法に関する。 The present invention relates to a method for joining an iron-based material and an aluminum-based material, which is necessary in an assembly process of an automobile structure or the like.
鉄系材料とアルミニウム系材料(アルミニウムおよびアルミニウム合金を総称したもの)とを接合する場合、接合部に脆い金属間化合物が生成しやすいために信頼性のある高強度を有する接合部を得ることは非常に困難であった。 When joining iron-based materials and aluminum-based materials (a collective term for aluminum and aluminum alloys), it is easy to form brittle intermetallic compounds at the joints, so that it is possible to obtain a reliable joint with high strength It was very difficult.
この対策として以下のような多数の従来技術が開示されている。 As countermeasures against this, a number of conventional techniques have been disclosed as follows.
例えば、真空圧延接合する方法(特許文献1参照)、予め用意した鉄系材料層およびアルミニウム合金層からなる2層のクラッド材を介在させてシーム溶接する方法(特許文献2参照)、高温加圧接合する方法(特許文献3参照)、接合面にTi合金を予め介在させHIP処理により接合する方法(特許文献4および5参照)、摩擦圧接する方法(特許文献6参照)、アルミニウムと接する鉄系材料表面にアルミニウム合金をめっきして、あるいは予め用意した鉄系材料層およびアルミニウム合金層からなる2層のクラッド材を介在させて抵抗溶接する方法(特許文献7および8参照)などである。 For example, a method of vacuum rolling joining (see Patent Document 1), a method of performing seam welding by interposing a two-layer clad material made of an iron-based material layer and an aluminum alloy layer (see Patent Document 2), high-temperature pressurization A method of joining (see Patent Document 3), a method of joining a Ti alloy in advance on the joint surface by HIP treatment (see Patent Documents 4 and 5), a method of friction welding (see Patent Document 6), an iron system in contact with aluminum For example, an aluminum alloy is plated on the surface of the material, or resistance welding is performed by interposing a two-layer clad material made of an iron-based material layer and an aluminum alloy layer (see Patent Documents 7 and 8).
しかしながら、上記従来技術には以下のような問題がある。 However, the above prior art has the following problems.
鉄系材料とアルミニウム系材料とを真空圧延、高温加圧、HIP処理により接合して鉄系材料とアルミニウム系材料との接合部材を得る方法は、このような複合部材を製造することを目的とするものである。したがって、この方法は、平板など比較的単純な形状の部材同士の接合には利用可能であるが、部材の形状が複雑な場合には適用できないため、適用範囲が狭く汎用性が劣っている。 The method of obtaining a joined member of an iron-based material and an aluminum-based material by joining an iron-based material and an aluminum-based material by vacuum rolling, high-temperature pressurization, and HIP treatment is intended to produce such a composite member. To do. Therefore, this method can be used for joining members having a relatively simple shape such as a flat plate, but cannot be applied when the shape of the member is complicated, so that the applicable range is narrow and the versatility is poor.
鉄系材料とアルミニウム系材料とを摩擦圧接により接合する方法は、部材形状の制約を受けるため汎用性に劣るとともに、接合部がスポット的なものとなるため連続的な接合部を得ることができない。 The method of joining an iron-based material and an aluminum-based material by friction welding is inferior in versatility due to the restriction of the member shape, and the joint becomes spot-like so that a continuous joint cannot be obtained. .
アルミニウムと接する鉄系材料表面にアルミニウム合金をめっきして抵抗溶接する方法は、めっき工程を必要とし工程が複雑となるため、品質の安定性が確保できない問題がある。 The method of plating an aluminum alloy on the surface of an iron-based material in contact with aluminum and performing resistance welding requires a plating process, and the process is complicated, so that there is a problem that quality stability cannot be ensured.
鉄系材料層およびアルミニウム合金層からなる2層のクラッド材を予め用意してシーム溶接あるいは抵抗溶接する方法では、鉄系材料とアルミニウム系材料との間にクラッド材がインサートされるため、2枚の板の接合が3枚の板の接合となる。このため、実際の施工時にインサート材(クラッド材)の挿入工程や固定工程が必要となり、上記と同様に工程が複雑となるため品質の安定性が確保できない。 In the method of preparing seam welding or resistance welding by preparing two clad materials consisting of an iron-based material layer and an aluminum alloy layer in advance, the clad material is inserted between the iron-based material and the aluminum-based material. The joining of the three plates becomes the joining of the three plates. For this reason, an insert material (cladding material) insertion process and a fixing process are required at the time of actual construction, and the process becomes complicated in the same manner as described above, so that quality stability cannot be ensured.
上記いずれの方法とも、上記問題以外に、現状の溶接ラインに新たな設備を組み入れなければならないため設備コストが高くなる問題があった。さらに、クラッド材を用いる方法では、クラッド材自体も鉄系材料とアルミニウム系材料とを接合して製造する必要があることからその製造条件が厳しく制約され、安価でかつ性能の安定したクラッド材を入手することが困難であった。 In any of the above methods, in addition to the above problems, there is a problem that equipment costs increase because new equipment must be incorporated into the current welding line. Furthermore, in the method using a clad material, the clad material itself must be manufactured by joining an iron-based material and an aluminum-based material. Therefore, the production conditions are severely restricted, and an inexpensive and stable performance clad material is required. It was difficult to obtain.
鉄系材料とアルミニウム系材料との接合に上記のような種々の方法が提案されている背景の1つとして、鉄系材料とアルミニウム系材料とを直接溶融接合すると接合部に脆弱な金属間化合物が生成し、割れを生じ易くなることが挙げられる。そのため、溶接ワイヤを用いて接合する場合を含めて鉄系材料とアルミニウム系材料とを直接接合する際には、鉄系材料中の鉄とアルミニウム系材料中のアルミニウムとを如何にして極力溶融混合させないで、溶融金属部の延性を確保するか、また、鉄系材料とアルミニウム系材料との界面近傍に脆弱な金属間化合物層を如何にして生成させないようにするか、が極めて重要となる。 As one of the backgrounds in which various methods as described above have been proposed for joining an iron-based material and an aluminum-based material, an intermetallic compound that is brittle at the joint when the iron-based material and the aluminum-based material are directly melt-bonded. May be generated and cracking is likely to occur. Therefore, when directly joining an iron-based material and an aluminum-based material, including the case of joining using a welding wire, how to mix the iron in the iron-based material and the aluminum in the aluminum-based material as much as possible. It is extremely important to ensure the ductility of the molten metal part without making it, and how to prevent the formation of a brittle intermetallic compound layer in the vicinity of the interface between the iron-based material and the aluminum-based material.
このような観点から、フッ化セシウム及びフッ化アルミニウム及びフッ化カリウム及び酸化アルミニウムを少なくとも成分として含むフラックスを芯材としアルミニウム又はアルミニウム合金で被覆して形成されるフラックス入りワイヤ1を溶加材とし、アルミニウム又はアルミニウム合金部材と鉄鋼部材とをアーク溶接によって接合し、上記アルミニウム又はアルミニウム合金部材側の接合部は溶融させて接合し、上記鉄鋼部材側の接合部は溶融させないで薄い金属間化合物層を形成して接合するアルミニウムと鉄鋼の接合方法が開示されている(特許文献9参照)。 From such a viewpoint, the flux-cored wire 1 formed by coating a flux containing at least cesium fluoride, aluminum fluoride, potassium fluoride and aluminum oxide as a core material with aluminum or an aluminum alloy is used as a filler material. The aluminum or aluminum alloy member and the steel member are joined by arc welding, the joining portion on the aluminum or aluminum alloy member side is melted and joined, and the joining portion on the steel member side is not melted and is a thin intermetallic compound layer A method of joining aluminum and steel that forms and joins is disclosed (see Patent Document 9).
しかしながら、もともとアルミニウムよりも融点の低い、フッ化アルミニウムおよびフッ化カリウムを含む混合物に、低融点のフッ化セシウムをさらに添加してなる上記フラックスは、その融点がさらに低くなるため、溶接時にフラックスが多量に蒸発し、ヒュームやスパッタが発生するなど作業性が劣化するうえ、アルミニウムからなる溶接金属が拡がり過ぎて、健全なビードが形成されず、高い接合強度が得られないという問題がある。
そこで、本発明は、アルミニウム系材料と鉄系材料とを接合する際に、適用条件などの制約が少なくて汎用性に優れるとともに、形状的制約も少なく、また作業性に優れるとともに連続接合が可能であり、健全なビードを形成しつつ、接合部における脆弱な金属間化合物の生成を防止することによって高い接合強度が得られる接合方法およびそれにより得られる接合継手を提供することを目的とする。 Therefore, the present invention has few restrictions such as application conditions when joining an aluminum-based material and an iron-based material, and is excellent in versatility, has few shape restrictions, is excellent in workability, and can be continuously joined. An object of the present invention is to provide a joining method in which a high joining strength is obtained by preventing formation of a brittle intermetallic compound in a joint while forming a sound bead and a joint joint obtained thereby.
請求項1に係る発明は、フッ化アルミニウムおよびフッ化カリウムを含み、さらにフッ化マグネシウム、フッ化カルシウム、フッ化ストロンチウムおよびフッ化バリウムよりなる群から選択される1種以上のフッ化物を含有するフラックスをアルミニウムまたはアルミニウム合金で被覆して形成したフラックス入りワイヤを溶加材として用い、アルミニウム系材料と鉄系材料とを交流MIG溶接により直接接合することを特徴とする鉄系材料とアルミニウム系材料との接合方法である。 The invention according to claim 1 contains aluminum fluoride and potassium fluoride, and further contains one or more fluorides selected from the group consisting of magnesium fluoride, calcium fluoride, strontium fluoride and barium fluoride. An iron-based material and an aluminum-based material characterized in that a flux-cored wire formed by coating a flux with aluminum or an aluminum alloy is used as a filler material, and an aluminum-based material and an iron-based material are directly joined by AC MIG welding. It is a joining method.
請求項2に係る発明は、前記鉄系材料が、亜鉛めっき鋼板である請求項1に記載の鉄系材料とアルミニウム系材料との接合方法である。 The invention according to claim 2 is the method for joining the iron-based material and the aluminum-based material according to claim 1, wherein the iron-based material is a galvanized steel sheet.
請求項3に係る発明は、請求項1または2に記載の接合方法により得られた、鉄系材料とアルミニウム系材料との接合継手である。 The invention according to claim 3 is a joint joint of an iron-based material and an aluminum-based material obtained by the joining method according to claim 1 or 2.
本発明は以上のように構成されており、フッ化アルミニウムおよびフッ化カリウムに、高融点のフッ化物を含有させたフラックスを溶加材として用いることで、溶接時におけるフラックスの蒸発を抑制して作業性を改善するとともに、アルミニウムからなる溶接金属の拡がり過ぎを抑制して健全なビードを形成しつつ、接合部における脆弱な金属間化合物の生成を防止することによって高い接合強度が得られる。 The present invention is configured as described above, and by using a flux containing a high melting point fluoride in aluminum fluoride and potassium fluoride as a filler material, the evaporation of the flux during welding is suppressed. High workability can be obtained by improving the workability and preventing the formation of fragile intermetallic compounds at the joints while suppressing the excessive expansion of the weld metal made of aluminum and forming a sound bead.
さらに、溶接手段として交流MIG溶接を用いることで、適用条件などの制約が少なくて汎用性に優れるとともに、形状的制約も少なく、連続接合が可能であり、効率的にアルミニウム系材料と鉄系材料との接合を行うことが実現できる。 Furthermore, by using AC MIG welding as a welding means, there are few restrictions such as application conditions and excellent versatility, and there are few geometric restrictions, and continuous joining is possible, and aluminum-based materials and iron-based materials are efficiently used. Can be realized.
本発明では、溶接手段として交流MIG溶接を採用するが、交流MIG溶接には汎用の交流MIG溶接装置を使用すればよい。交流MIG溶接装置は、被接合材への入熱を精密に制御できるため、アルミニウム系材料中のアルミニウムと鉄系材料中の鉄との溶融混合とそれらの反応を抑えるべく、入熱量をコントロールできる。その結果として、接合部における脆弱な金属間化合物の生成が抑えられ、ひいては接合部の強度欠陥(特に割れの発生)を防止できる。入熱量の精密制御が可能な溶接手段として、交流MIG溶接の他に、レーザ溶接も適用可能である。 In the present invention, AC MIG welding is adopted as the welding means, but a general-purpose AC MIG welding apparatus may be used for AC MIG welding. Since AC MIG welding equipment can precisely control the heat input to the material to be joined, the heat input can be controlled to suppress the melting and mixing of aluminum in the aluminum-based material and iron in the iron-based material and their reaction. . As a result, the generation of fragile intermetallic compounds at the joint is suppressed, and as a result, strength defects (particularly the occurrence of cracks) at the joint can be prevented. Laser welding can be applied in addition to AC MIG welding as a welding means capable of precise control of the heat input.
溶接ワイヤ(溶加材)としては、フラックスをアルミニウムまたはアルミニウム合金で被覆して形成されたフラックス入りワイヤを用いる。使用するワイヤ径については、できるだけ入熱量を少なくすべく、低電流条件で安定したアークを発生させる必要があるため、1.6mm以下のものを使用することが好ましい。ワイヤ径が1.6mmを超えると、安定したアークを得るための電流が過大となって母材の溶融が過剰気味となり、脆弱な金属間化合物(Fe−Al系化合物)の生成につながるおそれがある。 As the welding wire (filler material), a flux-cored wire formed by coating flux with aluminum or an aluminum alloy is used. The wire diameter to be used is preferably 1.6 mm or less because it is necessary to generate a stable arc under low current conditions in order to minimize the amount of heat input. If the wire diameter exceeds 1.6 mm, the current for obtaining a stable arc becomes excessive, and the melting of the base metal becomes excessive, which may lead to the formation of fragile intermetallic compounds (Fe-Al compounds). is there.
溶接ワイヤのフラックスとしては、フッ化アルミニウムおよびフッ化カリウムを含み、さらにフッ化マグネシウム、フッ化カルシウム、フッ化ストロンチウムおよびフッ化バリウムよりなる群から選択される1種以上のフッ化物を含有するフラックスを用いる。 The welding wire flux includes aluminum fluoride and potassium fluoride, and further contains one or more fluorides selected from the group consisting of magnesium fluoride, calcium fluoride, strontium fluoride, and barium fluoride. Is used.
従来は、アルミニウム系材料表面の強固な酸化物を溶解・除去する作用を有する、フッ化アルミニウムとフッ化カリウムを混合したフラックスが用いられていた。しかしながら、フッ化アルミニウムとフッ化カリウムの混合フラックスはその融点がアルミニウムの融点(660℃)以下と非常に低いため、フラックスが多量に蒸発し、ヒュームやスパッタが発生するなど作業性が劣化する。また、アルミニウムからなる溶接金属が拡がり過ぎて、健全なビードが形成されず、高い接合強度が得られない。したがって、本発明に使用する溶接ワイヤのフラックスとしては、フッ化アルミニウムとフッ化カリウムの混合フラックスに、IIA族元素のフッ化物のうち高融点化合物であるフッ化マグネシウム(融点1248℃)、フッ化カルシウム(同1403℃)、フッ化ストロンチウム(同約1400℃)およびフッ化バリウム(同1353℃)のうちいずれか1種または2種以上を添加したフラックスを含有するフラックスを使用する。これら高融点フッ化物の添加によりフラックスの融点を700〜1000℃程度の温度域まで上昇させることができるため、溶接初期におけるアルミニウムからなる溶接金属の広がりすぎが抑制されて健全なビードが形成されるとともに、溶接時におけるフラックスの蒸発・飛散が抑制され、ヒュームやスパッタの発生が低減できる。上記高融点フッ化物の合計含有量は、多すぎるとフラックスが溶融しにくくなり濡れ性改善効果が十分に発揮されなくなる一方、少なすぎるとフラックス融点の上昇効果が十分でなくなるため、フラックス全質量に対して10〜50%とすることが望ましい。 Conventionally, a flux in which aluminum fluoride and potassium fluoride are mixed has an action of dissolving and removing a strong oxide on the surface of an aluminum-based material. However, since the mixed flux of aluminum fluoride and potassium fluoride has a very low melting point of not more than the melting point of aluminum (660 ° C.), the workability is deteriorated such that a large amount of the flux evaporates and fumes and spatter are generated. Moreover, the weld metal which consists of aluminum spreads too much, a sound bead is not formed, and high joint strength is not obtained. Therefore, the welding wire flux used in the present invention includes a mixed flux of aluminum fluoride and potassium fluoride, magnesium fluoride (melting point 1248 ° C.), which is a high melting point compound among fluorides of group IIA elements, and fluoride. A flux containing one or more of calcium (1403 ° C.), strontium fluoride (about 1400 ° C.) and barium fluoride (1353 ° C.) is used. Since the melting point of the flux can be raised to a temperature range of about 700 to 1000 ° C. by adding these high melting point fluorides, the spread of the weld metal made of aluminum in the initial stage of welding is suppressed, and a healthy bead is formed. At the same time, evaporation and scattering of the flux during welding are suppressed, and generation of fume and spatter can be reduced. If the total content of the high melting point fluoride is too large, the flux is difficult to melt and the effect of improving the wettability is not sufficiently exhibited. On the other hand, if the amount is too small, the effect of increasing the melting point of the flux is insufficient. It is desirable that the content be 10 to 50%.
本発明の接合方法を適用する鉄系材料は、鋼材、鉄基合金など鉄を主成分とする材料であれば特に限定されないが、鋼材を用いる場合は耐食性確保の観点から、亜鉛めっき鋼板を使用するのが好ましい。なお、鋼板の強度は特に限定されない。従来、亜鉛めっき鋼板の溶接では、発生する亜鉛蒸気によりアークが不安定になり、スパッタの発生やピット、ブローホール等の気孔欠陥の発生が問題となっていたが、本発明の接合方法によれば、フラックスの効果により鋼板表面の清浄作用が効果的に発揮され、溶融金属が濡れ性良く鋼板表面を覆うため、亜鉛蒸気の発生も少なく、アークの安定性にも優れる。したがって、亜鉛めっき鋼板を溶接してもブローホールなどの欠陥発生も少なく、疲労強度などの動的特性も期待できる。 The iron-based material to which the joining method of the present invention is applied is not particularly limited as long as it is a material mainly composed of iron, such as a steel material or an iron-based alloy. It is preferable to do this. In addition, the intensity | strength of a steel plate is not specifically limited. Conventionally, in the welding of galvanized steel sheets, the arc has become unstable due to the generated zinc vapor, and the occurrence of spatter and pore defects such as pits and blowholes have become problems. For example, the cleaning effect of the steel plate surface is effectively exhibited by the effect of the flux, and the molten metal covers the steel plate surface with good wettability, so that the generation of zinc vapor is small and the arc stability is also excellent. Therefore, even if the galvanized steel sheet is welded, the occurrence of defects such as blow holes is small, and dynamic characteristics such as fatigue strength can be expected.
本発明を実施する際の交流MIG溶接の溶接条件としては、溶接電流が20A以上、より好ましくは30A以上で、100A以下、より好ましくは80A以下である。溶接電圧は、5V以上、より好ましくは7V以上で、20V以下、より好ましくは18V以下である。 As welding conditions for AC MIG welding in carrying out the present invention, the welding current is 20 A or more, more preferably 30 A or more, 100 A or less, more preferably 80 A or less. The welding voltage is 5 V or more, more preferably 7 V or more, 20 V or less, more preferably 18 V or less.
溶接速度は、上記溶接電流および溶接電圧に応じて母材中のFeおよびAlを過剰溶融させない範囲で適当に決めればよいが、溶接能率なども考慮して好ましいのは15cm/min以上、より好ましくは20cm/min以上で、60cm/min以下、より好ましくは50cm/min以下である。 The welding speed may be appropriately determined in accordance with the welding current and the welding voltage as long as Fe and Al in the base metal are not excessively melted. In consideration of welding efficiency and the like, it is preferably 15 cm / min or more, more preferably. Is 20 cm / min or more and 60 cm / min or less, more preferably 50 cm / min or less.
本発明では、交流MIG溶接によって鉄系材料とアルミニウム系材料とを直接接合できるので、適正な溶接電流・電圧条件・接合形状等を採用する限り特に制約を受けることがなく、適用可能範囲が拡大され汎用性が高められるとともに、また連続的な接合も可能となる。そして、鉄系材料およびアルミニウム系材料とも必要最小限の溶融量で健全な結合状態を得ることができ、鉄系材料とアルミニウム系材料との界面に脆い金属間化合物が生成し難く、高い接合強度が得られる。 In the present invention, an iron-based material and an aluminum-based material can be directly joined by AC MIG welding, so as long as an appropriate welding current, voltage condition, joining shape, etc. are adopted, there is no particular limitation, and the applicable range is expanded. Therefore, versatility is improved and continuous joining is also possible. In addition, both iron-based and aluminum-based materials can obtain a sound bonded state with the minimum necessary melting amount, and it is difficult for brittle intermetallic compounds to form at the interface between iron-based and aluminum-based materials, resulting in high bonding strength. Is obtained.
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to carry out and they are all included in the technical scope of the present invention.
〔実施例〕
本発明の接合方法を採用してアルミニウム合金板と合金溶融化亜鉛めっき(GA)鋼板との重ねすみ肉溶接試験を行った。
1140139601343_0
に示すように厚さ1.6mmのアルミニウム合金板を、厚さ1.2mmのGA鋼板に重ね合わせて重ねすみ肉継手を形成し、種々のフラックス入りワイヤを用いてアルミニウム合金板とGA鋼板との交流MIG溶接を行った。なお、シールドガスにはArを用いた。試験片の平面サイズは、アルミニウム合金板、GA鋼板とも100mm×300mmとし、直径1.2mmのフラックス入りワイヤを使用した。
〔Example〕
The joining method of the present invention was employed to conduct a lap fillet welding test between an aluminum alloy plate and an alloy hot-dip galvanized (GA) steel plate.
1140139601343_0
As shown in Fig. 1, a 1.6 mm thick aluminum alloy plate is superimposed on a 1.2 mm thick GA steel plate to form a fillet joint, and various flux-cored wires are used to form an aluminum alloy plate and a GA steel plate. AC MIG welding was performed. Ar was used as the shielding gas. The plane size of the test piece was 100 mm × 300 mm for both the aluminum alloy plate and the GA steel plate, and a flux-cored wire having a diameter of 1.2 mm was used.
フラックス入りワイヤのフラックスとしては、比較例として、フッ化アルミニウム(AlF3)とフッ化カリウム(KF)の混合フラックスであるノコロック(登録商標)フラックスを用い、発明例として、このノコロック(登録商標)フラックスにフッ化マグネシウム(MgF2)、フッ化カルシウム(CaF2)、フッ化ストロンチウム(SrF2)およびフッ化バリウム(BaF2)のうちいずれか1種または2種を合計量でフラックス全質量に対して10〜50%の割合となるように添加したものを用いた。 As a flux of the flux-cored wire, as a comparative example, a Nocolok (registered trademark) flux which is a mixed flux of aluminum fluoride (AlF 3 ) and potassium fluoride (KF) is used, and as an example of the invention, this Nocolok (registered trademark). In the flux, the total amount of any one or two of magnesium fluoride (MgF 2 ), calcium fluoride (CaF 2 ), strontium fluoride (SrF 2 ) and barium fluoride (BaF 2 ) What was added so that it might become a ratio of 10 to 50% with respect to was used.
溶接条件は、上記最良の形態で推奨した交流MIG溶接の溶接条件である、溶接電流:30〜80A、溶接電圧:7〜18V、溶接速度:15〜60cm/minの範囲内とした。 The welding conditions were within the ranges of welding current: 30 to 80 A, welding voltage: 7 to 18 V, and welding speed: 15 to 60 cm / min, which are welding conditions for AC MIG welding recommended in the above-described best mode.
そして、得られた接合継手を調査することによりビード安定性および継手強度の評価を行った。ビード安定性の評価は、得られた接合継手のビード形状を観察することで行い、ビードが断続する場合を不良(×)、ビードの幅がほぼ一定し連続する場合を良(○)とした(図2参照)。また、継手強度の評価は、接合継手から板幅30mmの継手強度評価用試験片を採取し、25mm/minの速度で引張試験を行い、下記式(1)にて算出したせん断引張強度を用いて行った。 And the bead stability and joint strength were evaluated by investigating the obtained joint. The bead stability was evaluated by observing the bead shape of the resulting joint joint. The case where the bead was intermittent was judged as bad (X), and the case where the bead width was almost constant and continuous was judged as good (O). (See FIG. 2). The joint strength was evaluated by taking a joint strength evaluation test piece having a plate width of 30 mm from the joint joint, performing a tensile test at a speed of 25 mm / min, and using the shear tensile strength calculated by the following formula (1). I went.
式(1) (継手強度)=(最大荷重点荷重)/(継手断面積)
ここに、継手断面積はアルミニウム合金板の板厚方向断面積とした。
Formula (1) (Fitting strength) = (Maximum load point load) / (Fitting cross-sectional area)
Here, the joint sectional area was the sectional area in the thickness direction of the aluminum alloy plate.
評価試験の結果を表1に示す。フッ化カリウムとフッ化アルミニウムに加えて、IIA族元素のフッ化物のうち高融点化合物を含むフラックスを用いたフラックス入りワイヤを使用した場合(発明例)は、これらの高融点フッ化物を含まない従来品を用いた場合(比較例)に比べて、ヒューム、スパッタの発生が少なく溶接作業性が良好で、かつビード安定性に優れるとともに、ブローホールも少ない健全なビードが得られ、高い接合強度が得られた。
Claims (3)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006041135A JP4256879B2 (en) | 2006-02-17 | 2006-02-17 | Method of joining iron-based material and aluminum-based material and joint |
PCT/JP2007/052041 WO2007094203A1 (en) | 2006-02-17 | 2007-02-06 | Flux-cored wire for different-material bonding and method of bonding different materials |
EP07713870.9A EP1997579B1 (en) | 2006-02-17 | 2007-02-06 | Flux-cored wire for different-material bonding and method of bonding different materials |
KR1020087019924A KR101021397B1 (en) | 2006-02-17 | 2007-02-06 | Flux-cored wire for different-material bonding, method of bonding different materials and joint structure between aluminum material or aluminum alloy material, and steel material using the bonding method |
CN2007800044898A CN101378873B (en) | 2006-02-17 | 2007-02-06 | Flux-cored wire for different-material bonding and method of bonding different materials |
US12/279,470 US9682446B2 (en) | 2006-02-17 | 2007-02-06 | Flux-cored wire for different-material bonding and method of bonding different materials |
US15/582,078 US20170274479A1 (en) | 2006-02-17 | 2017-04-28 | Flux-cored wire for different-material bonding and method of bonding different materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006041135A JP4256879B2 (en) | 2006-02-17 | 2006-02-17 | Method of joining iron-based material and aluminum-based material and joint |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007216276A true JP2007216276A (en) | 2007-08-30 |
JP4256879B2 JP4256879B2 (en) | 2009-04-22 |
Family
ID=38494076
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006041135A Expired - Fee Related JP4256879B2 (en) | 2006-02-17 | 2006-02-17 | Method of joining iron-based material and aluminum-based material and joint |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4256879B2 (en) |
CN (1) | CN101378873B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011161466A (en) * | 2010-02-08 | 2011-08-25 | Kobe Steel Ltd | Method for manufacturing composite reinforcement member and the composite reinforcement member |
EP2921252A1 (en) * | 2014-03-18 | 2015-09-23 | Solvay SA | Welding flux and welding method |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5520152B2 (en) | 2009-07-31 | 2014-06-11 | 株式会社神戸製鋼所 | Flux-cored wire for dissimilar material welding, dissimilar material laser welding method and dissimilar material MIG welding method |
CN101941121B (en) * | 2010-03-12 | 2013-07-17 | 江苏大学 | Flux cored wire for particle reinforced aluminum-based composite material fusion welding |
JP5291067B2 (en) | 2010-09-29 | 2013-09-18 | 株式会社神戸製鋼所 | Flux-cored wire for dissimilar material welding, dissimilar material laser welding method and dissimilar material MIG welding method |
CN102626815A (en) * | 2012-04-18 | 2012-08-08 | 上海交通大学 | Alternating-current double-pulse MIG (Metal-Inert Gas) welding method for dissimilar metal welding of iron and aluminium |
FR2996479B1 (en) * | 2012-10-09 | 2015-11-13 | Peugeot Citroen Automobiles Sa | METHOD FOR ASSEMBLING SHEETS IN DIFFERENT MATERIALS |
JP5689492B2 (en) * | 2013-03-19 | 2015-03-25 | 株式会社神戸製鋼所 | Dissimilar material joining filler metal and dissimilar material welding structure |
CN103600180A (en) * | 2013-11-14 | 2014-02-26 | 北京航空航天大学 | Surface stripping agent capable of realizing aluminum-magnesium alloy flawless direct-current positive polarity welding |
JP5847209B2 (en) * | 2014-01-21 | 2016-01-20 | 株式会社神戸製鋼所 | Dissimilar metal joined body and manufacturing method of dissimilar metal joined body |
CN105081621A (en) * | 2014-05-06 | 2015-11-25 | 烟台市固光焊接材料有限责任公司 | Dry method fluoride non-corrosion aluminium brazing flux production method and prepared non-corrosion aluminium brazing flux |
CN105081616A (en) * | 2014-05-06 | 2015-11-25 | 烟台市固光焊接材料有限责任公司 | High activity non-corrosion aluminium brazing flux |
CN106346135A (en) * | 2016-11-04 | 2017-01-25 | 广东国玉科技有限公司 | Different material laser welding method |
JP7010675B2 (en) * | 2017-11-24 | 2022-01-26 | 株式会社神戸製鋼所 | Flux-filled wire for gas shielded arc welding and welding method |
CN110253145A (en) * | 2019-05-17 | 2019-09-20 | 东莞材料基因高等理工研究院 | The method for welding dissimilar metal of mild steel and cast iron |
CN114367759B (en) * | 2022-01-11 | 2024-04-05 | 西安理工大学 | Welding wire capable of effectively controlling Fe-Al brittle phase and preparation and welding methods |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1005544B (en) * | 1987-04-22 | 1989-10-25 | 轻工业上海焊接技术研究所 | Flux of fluoride type and thermit of alumino-silicon type |
JP2003048077A (en) * | 2001-07-31 | 2003-02-18 | Kobe Steel Ltd | METHOD FOR JOINING Al OR Al ALLOY MEMBER |
JP4037109B2 (en) * | 2002-01-18 | 2008-01-23 | 株式会社ダイヘン | Method of joining aluminum and steel |
-
2006
- 2006-02-17 JP JP2006041135A patent/JP4256879B2/en not_active Expired - Fee Related
-
2007
- 2007-02-06 CN CN2007800044898A patent/CN101378873B/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011161466A (en) * | 2010-02-08 | 2011-08-25 | Kobe Steel Ltd | Method for manufacturing composite reinforcement member and the composite reinforcement member |
EP2921252A1 (en) * | 2014-03-18 | 2015-09-23 | Solvay SA | Welding flux and welding method |
WO2015140101A1 (en) * | 2014-03-18 | 2015-09-24 | Solvay Sa | Welding flux and welding method |
Also Published As
Publication number | Publication date |
---|---|
CN101378873B (en) | 2011-08-03 |
JP4256879B2 (en) | 2009-04-22 |
CN101378873A (en) | 2009-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4256879B2 (en) | Method of joining iron-based material and aluminum-based material and joint | |
KR101780881B1 (en) | Welding filler material for bonding different kind materials, and method for producing different kind material welded structure | |
KR101021397B1 (en) | Flux-cored wire for different-material bonding, method of bonding different materials and joint structure between aluminum material or aluminum alloy material, and steel material using the bonding method | |
KR100997607B1 (en) | Method for joining members of different kinds | |
JP2008207245A (en) | Joined product of dissimilar materials of steel and aluminum material | |
JP2011036918A (en) | Method for joining different materials and filler metal therefor | |
JP2011131243A (en) | Arc welding method and arc weld joint of galvanized steel plate | |
WO2018155492A1 (en) | Laser brazing method and production method for lap joint member | |
JP3529359B2 (en) | Flux-cored wire for welding galvanized steel sheet with excellent pit and blow hole resistance | |
KR102061470B1 (en) | MIG brazing method, manufacturing method of overlap joint member, and overlap joint member | |
JP6119948B1 (en) | Vertical narrow groove gas shielded arc welding method | |
JP3992592B2 (en) | Method for producing welded joint made of dissimilar metals | |
JP4256892B2 (en) | Dissimilar material joining method | |
JP7048355B2 (en) | Dissimilar material joining joint and dissimilar material joining method | |
JP2006088174A (en) | Method for joining dissimilar materials | |
JP3210609U (en) | Consumable electrode for special coated metal | |
JP4514098B2 (en) | Method of joining iron-based material and aluminum-based material and joint | |
JPH09206945A (en) | Multi-electrode gas shielded one-side welding method | |
US20200164472A1 (en) | Wire for welding different types of materials and method of manufacturing the same | |
JP7327667B2 (en) | Gas-shielded arc welding method, welded joint, and method for manufacturing the welded joint | |
JP5600652B2 (en) | Dissimilar metal joining method | |
WO2013191160A1 (en) | Aluminum and steel mig weld-joint structure | |
JP2023049932A (en) | Single-sided butt welding method and manufacturing method of weld joint | |
JP2012045582A (en) | Method for joining dissimilar materials | |
JP2004344898A (en) | Joint for joining ferrous base material and aluminum base material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070518 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090127 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090130 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120206 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4256879 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130206 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140206 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |