JPS6032486A - Charge transfer type solid state image pickup element - Google Patents
Charge transfer type solid state image pickup elementInfo
- Publication number
- JPS6032486A JPS6032486A JP58141039A JP14103983A JPS6032486A JP S6032486 A JPS6032486 A JP S6032486A JP 58141039 A JP58141039 A JP 58141039A JP 14103983 A JP14103983 A JP 14103983A JP S6032486 A JPS6032486 A JP S6032486A
- Authority
- JP
- Japan
- Prior art keywords
- vertical
- register
- charge
- smear
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012546 transfer Methods 0.000 title claims abstract description 25
- 239000007787 solid Substances 0.000 title abstract 2
- 239000000758 substrate Substances 0.000 claims abstract description 9
- 239000004065 semiconductor Substances 0.000 claims abstract description 4
- 230000003287 optical effect Effects 0.000 claims description 12
- 238000003384 imaging method Methods 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 239000012535 impurity Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 230000010354 integration Effects 0.000 description 5
- 238000009413 insulation Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/148—Charge coupled imagers
- H01L27/14887—Blooming suppression
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、半導体基板上に光電変換素子および各素子の
光学情報を取出す電荷移送素子(ChargeCoup
led Device、以下CCDと略称スル。)固体
撮像素子に関するものである。Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to a photoelectric conversion element on a semiconductor substrate and a charge transfer element (ChargeCoup) for extracting optical information of each element.
LED Device, hereinafter abbreviated as CCD. ) This relates to solid-state imaging devices.
固体撮像素子は現行のテレビジョン放送で使用されてい
る撮像用電子管並みの解像力を備えた撮像板を必要とし
、このため垂直方向に500個、水平方向に800〜1
000個を配列した絵素(光電変換素子)マトリックス
とそれに相当する走査素子が必要となる。したがって、
上記固体撮像素子は高集積化が必要なMO8大規模回路
技術を用いて作られ、構成素子として一般にCODある
いはMOS)ランジスタ等が使用されている。Solid-state imaging devices require an imaging plate with a resolution comparable to that of the imaging electron tube used in current television broadcasting, and for this reason, 500 pieces in the vertical direction and 800 to 1 piece in the horizontal direction are required.
A matrix of 000 picture elements (photoelectric conversion elements) and a corresponding scanning element are required. therefore,
The above-mentioned solid-state image sensor is manufactured using MO8 large-scale circuit technology that requires high integration, and generally uses COD (MOS) transistors or the like as a component.
第1図(a)に低雑音を特徴とするCCD型固体撮像素
子の基本構成を示す。1は例えば光ダイオードから成る
光電変換素子、2および3は光電変換素子群に蓄積され
た光信号を信号検出回路の出力端4に取り出すだめの垂
直CODシフトレジスタ、および水平シフトレジスタで
ある。5.6は各々垂直シフトレジスタ、水平シフトレ
ジスタを駆動するクロックパルス製作するりIコツクツ
くルス発生器である。ここでは2相のクロックツ々ルス
発生器を図示したが、4相あるいは3相いずれのクロッ
ク形態を採用してもよい。甘だ、7 il、 尤ダイオ
ードに蓄積された電荷を垂直シフトレジスタ2に送り込
む転送デートを示している。本素子はこのままの形態で
は白黒撮像素子となり、」二部にカラーフィルタを積層
すると各光ダイ、4−−ドは色情報を備えることになり
カラー撮像素−Pとなる。FIG. 1(a) shows the basic configuration of a CCD type solid-state image sensor, which is characterized by low noise. Reference numeral 1 denotes a photoelectric conversion element composed of, for example, a photodiode, and 2 and 3 denote a vertical COD shift register and a horizontal shift register for outputting optical signals accumulated in the photoelectric conversion element group to an output terminal 4 of a signal detection circuit. 5 and 6 are clock pulse generators for producing clock pulses for driving the vertical shift register and the horizontal shift register, respectively. Although a two-phase clock pulse generator is illustrated here, either a four-phase or three-phase clock format may be adopted. It's sweet, 7 il, but it shows the transfer date to send the charge accumulated in the diode to the vertical shift register 2. In its current form, this element becomes a monochrome image sensor, but if a color filter is laminated on the two parts, each photodiode, 4-D, is provided with color information and becomes a color image sensor-P.
第1図(b)は上記CCD撮像素子の心臓部となる画素
の構造を示したものである。8′は垂直レジスタを構成
する電極(通常第1層、第2層の多結晶シリコンで作ら
れる)、9は′〆I元極と基板12を絶縁する酸化膜(
一般にゲート酸化膜と称されている)、11は各画素の
絶にじJ1事m、’ir、行う酸化膜(通常ゲート酸化
膜のlO〜201t″Ilび〕膜厚に選ばれる)である
。また、10tよtr t: +3 ?、・埋め込み型
にするための不純物層(表面)ζl! (:(′、J)
(D場合は木屑は不要)、1は光ダイオード用不純物
層であり、いずれの層も基板とは逆導電型の不純物原子
により作られる。FIG. 1(b) shows the structure of a pixel which is the heart of the CCD image sensor. 8' is an electrode (usually made of first and second layers of polycrystalline silicon) constituting a vertical register, and 9 is an oxide film (which insulates the I source electrode and the substrate 12).
(generally called the gate oxide film), and 11 is an oxide film (usually selected to have a thickness of 10 to 201t''Il) of the gate oxide film that is always applied to each pixel. .Also, 10t tr t: +3 ?, ・Impurity layer (surface) for making it a buried type ζl! (:(', J)
(In case D, wood chips are not required). 1 is an impurity layer for a photodiode, and both layers are made of impurity atoms having a conductivity type opposite to that of the substrate.
固体撮像素子は衆知のように小型、軽量、メインテナン
スフリー、低消費′成力など電子管に較べて固体化に伴
なう多くの利点を有しており次期撮像デバイスとして将
来が期待されているものである。しかし乍ら、現行素子
を用いて撮像しモニタ上に再生像を出すと輝度の高い光
学情報パターン(すなわち、明るいパターン)の上下に
も縦縞状のパターンが現れ画質を著しく低下させている
。As is well known, solid-state imaging devices have many advantages over electron tubes, such as being small, lightweight, maintenance-free, and have low power consumption, and are expected to have a promising future as the next imaging device. It is. However, when an image is captured using the current device and a reproduced image is displayed on a monitor, vertical striped patterns appear above and below the optical information pattern with high brightness (that is, a bright pattern), significantly degrading the image quality.
これは固体素子に特有の現象でありスメアと呼ばれてい
る。一方、とのスメアは電子管の場合には発生しない。This phenomenon is unique to solid-state devices and is called smear. On the other hand, smear with and does not occur in the case of an electron tube.
したがって、電子管なみの画質を備えた固体撮像素子を
実現するために、さらには用途を拡大するためにも現在
スメアの低減が固体素子開発上の大きな課題となってい
る。Therefore, in order to realize a solid-state image pickup device with image quality comparable to that of an electron tube, and furthermore to expand the range of applications, reducing smear is currently a major issue in the development of solid-state devices.
本発明の目的は上記の問題を解決すること、すなわちC
CD型固体撮像素子のスメアを除去し画質の改善を図る
ことにある。The purpose of the present invention is to solve the above problem, namely C.
The object of the present invention is to improve the image quality by removing smear from a CD-type solid-state image sensor.
本発明は上記目的を達成するため信号電荷を転送する垂
直CODシフトレジスタとは別にスメア電荷を転送する
垂直CODシフトレジスタを信号転送用垂直CODシフ
トレジスタの近辺に設け、両レジスタの送り出す出力(
信号電荷、スメア電荷)の差を取ることにより信号成分
中に含まれたスメア成分を除去するようにし真の信号電
荷を得るようにしたものである。In order to achieve the above object, the present invention provides a vertical COD shift register for transferring smear charges in addition to a vertical COD shift register for transferring signal charges near the vertical COD shift register for signal transfer, and outputs (
By taking the difference between signal charge and smear charge, the smear component contained in the signal component is removed to obtain the true signal charge.
以下、本発明を実施例を用いて詳細に説明する。 Hereinafter, the present invention will be explained in detail using examples.
本発明の骨子となるCCDm撮像素子の構成お工び構造
を第3図に示す。同図(a)において2は光夕。FIG. 3 shows the construction and construction of a CCDm image sensor, which is the gist of the present invention. In the same figure (a), 2 is Koyu.
イオードlに蓄積された光信号電荷を転送する信号転送
用垂直CODシフトレジスタ、13は絶縁分離帯14を
狭んで垂直CCDシフトレジスタ2の横に設けた垂直C
ODシフトレジスタ、また15はこれら2つの垂直レジ
スタの送ってきた電荷を転送するCCDシフトV・ジス
タである。一方、同図(b)は同図(a)に示した光ダ
イオード部(垂直レジスタを含む)の構造を示したもの
で、10は垂直レジスタ2を形成する埋め込みチャンネ
ル用不純物層、16は垂直レジスタ13を形成する埋め
込みチャンネル用不純物層であり、これら埋め込み層の
上部にはゲート酸化膜9を介して共通の電極8−1.8
−2が設けられる。また、14′は同図(a)に示した
絶縁分離帯14に相当するが、これは画素の分離を行う
酸化膜11と同じ酸化膜を用いて形成すればよい(した
がって、14′は酸化膜11と同じ工程で製作される)
。また、絶縁性を向上するため必要に応じて酸化膜11
.14’の下には基板と同型の不純物層17(例えば基
板がP型の場合ポロン原子を形成してもよい。Vertical COD shift register 13 for signal transfer that transfers the optical signal charge accumulated in the diode 1 is a vertical COD shift register 13 provided next to the vertical CCD shift register 2 by narrowing the insulation separation band 14.
OD shift register, and 15 is a CCD shift V register that transfers charges sent from these two vertical registers. On the other hand, figure (b) shows the structure of the photodiode section (including the vertical resistor) shown in figure (a), where 10 is an impurity layer for a buried channel forming the vertical resistor 2, and 16 is a vertical resistor. This is an impurity layer for a buried channel forming a resistor 13, and a common electrode 8-1.8 is formed on the top of these buried layers via a gate oxide film 9.
-2 is provided. Further, 14' corresponds to the insulating isolation band 14 shown in FIG. (Produced in the same process as membrane 11)
. In addition, in order to improve insulation, an oxide film 11 may be added as necessary.
.. Under the impurity layer 14', an impurity layer 17 of the same type as the substrate (for example, if the substrate is P type, poron atoms may be formed).
次に、本発明の素子のスメア除去動作を第4図を用いて
説明する。素子に光が入射すると光ダイオード下に入っ
た光は半導体基板中で光電荷18を発生1−4 この電
荷は光ダイオードの形成する接合容量に蓄積される。一
方、垂直レジスタおよび転送ゲート領域には光が入射し
ては困るため、通常電極8の上部にはしや光膜などが設
けられる。Next, the smear removal operation of the device of the present invention will be explained with reference to FIG. When light enters the device, the light that enters under the photodiode generates a photocharge 18 in the semiconductor substrate 1-4. This charge is accumulated in the junction capacitance formed by the photodiode. On the other hand, since it is a problem if light enters the vertical register and transfer gate regions, a shield, a light film, etc. are usually provided above the electrodes 8.
しかし乍ら、しや光をしてもこの領域へ漏洩する光が存
在し、この漏洩光によってやはり光電荷19を発生する
。電荷19は垂直レジスタ内に拡散しスメアを発生する
(これが、従来素子におけるスメア発生メカニズムであ
る。本発明の素子においては、このスメア′屯荷は(i
’を弓転送用垂直レジスタ10F2)の中にも入るが(
このTb;荷を19−Aで示す)、垂直レジスタ10(
21に隣接して設けた垂直レジスタ160.31にも入
る(この電荷を19−Bで示す)。この結果、信号転送
用レジスタはスメア電荷S′を含んだ信号1に荷Q(イ
梵l’Q+s’)を運び、スメア転送用垂直レジスタJ
6はスメア′屯荷Sを運ぶことになる。両11(直し・
ジスタを介して送られた電荷((1)、+S’)J、・
、Lび:(11:水平レジスタ15の隣接ビット内に送
り込−まれ(矢印20’−x、20−2で示す)、その
後水平レジスタを二重転送駆動させることにより出力4
にスメア電荷S1信号Q+Sを時間順次に(9,互に)
得ることができる。However, even if the light is dimmed, there is still light leaking into this region, and this leakage light also generates photocharges 19. Charge 19 diffuses into the vertical register and generates smear (this is the smear generation mechanism in the conventional device. In the device of the present invention, this smear load is (i
' is also included in the bow transfer vertical register 10F2), but (
This Tb; load is shown as 19-A), vertical register 10 (
21 (this charge is shown as 19-B). As a result, the signal transfer register carries the load Q (I'Q+s') to the signal 1 containing the smear charge S', and the smear transfer vertical register J
6 will carry the smear load S. Ryo 11 (repair/
The charge sent through the register ((1), +S') J,
, L: (11: is sent into the adjacent bit of the horizontal register 15 (indicated by arrows 20'-x, 20-2), and then output 4 by driving the horizontal register with double transfer.
The smear charge S1 signal Q+S is time-sequentially (9, mutually)
Obtainable.
出力4に得られる信号波形を第3図(a)に示す。The signal waveform obtained at output 4 is shown in FIG. 3(a).
各光ダイオードの信号を区別して1〜11という記号で
表yと(Sl、Qi+St′)、(82,Q2+Q”)
。The signals of each photodiode are distinguished and expressed with symbols 1 to 11 as y, (Sl, Qi+St'), (82, Q2+Q'')
.
・・・・・・、 (8II、 Qn+Sn勺がl1li
N次得られている。この信号からスメア成分を除去する
手段として、例えば第3図(C)に示すような信号処理
回路を考えることができる。ここで、21は信号とスメ
ア信号を振り分けるサンプリング回路、サンプリング回
路により選別されたスメア信号は遅延回路22を通して
差動回路23に入力される。一方、サンプリング回路に
より選別された信号は直接差動回路に入力される。ここ
で、遅延回路22の遅延時間をtd(同図(a)に示す
)に設定すればスメア信号Sの位相は時間tdだけずれ
て信号Q−1−8’の位相と一致するので、回路23で
両信号の差を取ることにより、出力24にはスメア成分
のみが除去された真の光信号Q(第3図(b)に示す)
を得ることができる。上記のスメア成分除去動作におい
ては暗黙のうちに両垂直レジスタに拡散するスメア電荷
量が等しい(S=8’ )と仮定している。一方、2つ
の垂直レジスタの面積等が極端に異ったり、両レジスタ
領域の間で素子構造上の差異があったりすると両垂直レ
ジスタに拡散するスメア電荷量は等しくなくなる(SO
8’ )。この場合は22と23の間(または21と2
30間)に増幅回路あるいは減衰回路を挿入しs=s’
となるよう調節すればよい。......, (8II, Qn+Sn is l1li
The Nth order has been obtained. As a means for removing the smear component from this signal, a signal processing circuit as shown in FIG. 3(C) can be considered, for example. Here, 21 is a sampling circuit that distributes the signal and the smear signal, and the smear signal selected by the sampling circuit is inputted to the differential circuit 23 through the delay circuit 22. On the other hand, the signals selected by the sampling circuit are directly input to the differential circuit. Here, if the delay time of the delay circuit 22 is set to td (shown in (a) of the same figure), the phase of the smear signal S will be shifted by the time td and match the phase of the signal Q-1-8', so the circuit By taking the difference between the two signals at 23, the output 24 is the true optical signal Q from which only the smear component has been removed (shown in Figure 3(b)).
can be obtained. In the above smear component removal operation, it is implicitly assumed that the amount of smear charge diffused into both vertical registers is equal (S=8'). On the other hand, if the areas, etc. of the two vertical registers are extremely different, or if there is a difference in device structure between the two register areas, the amount of smear charge diffused into both vertical registers will not be equal (SO
8'). In this case, between 22 and 23 (or 21 and 2)
Insert an amplifier circuit or attenuation circuit between s=s'
You can adjust it so that
第4図は第2図(a)の素子構成を実現する第2図(b
)とは異なる実施例を示した図である。ここでは、垂直
レジスタ2(10)と13α6)を電気的に絶縁するた
めに第2図(b)で設けた厚い酸化膜14′は使用せず
ゲート領域と同じ薄い酸化膜が使われている。FIG. 4 shows the device structure shown in FIG. 2(b) which realizes the element configuration of FIG.
) is a diagram showing an example different from the above. Here, in order to electrically insulate the vertical resistors 2 (10) and 13α6), the thick oxide film 14' provided in FIG. 2(b) is not used, but the same thin oxide film as the gate region is used. .
この様に薄い酸化膜を用いると一般的にはしきい値電圧
は低くなり両レジスタ間の絶縁性は低下するので、これ
を防止するため(すなわち、しきい値電圧を上げるため
)、不純物層10と16の間の領域に第2図(b)に示
した17−1 (17−21よりも濃度の高い不純物層
25を形成すればよい。ここで、不純物の型は17−1
(17−21と同じであり基板がP型の場合はボロン
原子をイオン打ち込みすればよい。If such a thin oxide film is used, the threshold voltage will generally be lower and the insulation between both resistors will be reduced, so in order to prevent this (in other words, to increase the threshold voltage), an impurity layer is added. It is sufficient to form an impurity layer 25 having a higher concentration than 17-1 (17-21) shown in FIG. 2(b) in the region between 10 and 16.
(Same as 17-21, if the substrate is P type, boron atoms may be ion-implanted.
第5図は本発明のCCD型撮像素子の第2図とは別の実
施例を示す図である。ここでは、水平レジスタが2列設
けられており、3−1は信号転送用レジスタ2の運んで
きた信号(Q、+8Mを出力4−1に向けて転送する水
平レジスタ、3−2はスメア転送用レジスタ13の運ん
できたスメアSを出力4−2に向けて転送する水平レジ
スタである。ここで、水平レジスタは2相、3相、ある
いは4相いずれのクロックツくルスにより駆動してもよ
い。本構成の素子においては出力4−1および4−2に
同時に2種類の信号Q−+−8’、Sが得られるので、
第2図の構成素子のスメア除去のために設けた第3図の
遅延回路は不要となり、出力4−1.4−2に得られた
両信号を直接差動回路23に入力することによりその出
力24にスメア。FIG. 5 is a diagram showing a different embodiment from FIG. 2 of the CCD type image pickup device of the present invention. Here, two rows of horizontal registers are provided, 3-1 is a horizontal register that transfers the signal (Q, +8M) carried by signal transfer register 2 toward output 4-1, and 3-2 is a smear transfer register. This is a horizontal register that transfers the smear S carried by the register 13 to the output 4-2.The horizontal register may be driven by a 2-phase, 3-phase, or 4-phase clock pulse. In the device with this configuration, two types of signals Q-+-8' and S can be obtained at the same time at the outputs 4-1 and 4-2.
The delay circuit shown in FIG. 3, which was provided to remove smear from the component shown in FIG. Smear on output 24.
成分の除去された真の光信号を得ることができる。A true optical signal with components removed can be obtained.
以下、2つの構成素子について説明したが、第2図、第
5図いずれの実施例においてもスメア用垂直レジスタの
幅(DS)は信号用垂直レジスタの幅(DQ )より小
さい場合(ns<Dq)を示した。The two components have been described below, but in both the embodiments of FIGS. 2 and 5, if the width (DS) of the smear vertical register is smaller than the width (DQ) of the signal vertical register (ns<Dq )showed that.
これはスメア電荷量は通常信号電荷量の1/100程度
もしくはそれ以下と小さい、という現実に基づいている
。必要な画素集積度f:満せば勿論1)s=DQに設計
してもよい。ただし、将来集積度を向上するためには転
送電θI量の小さいスメア用垂直レジスタの幅1)sは
極力小さく設計するのが望ましい。また、第5図に示し
た水・I/、 (、−、>スタの幅についても、スメア
用水ゝドレジー又” :l−2の幅を信号用水平レジス
タの幅より小さく設計することが可能である。This is based on the reality that the amount of smear charge is usually small, about 1/100 of the amount of signal charge or less. Of course, if the required pixel integration degree f is satisfied, 1) s=DQ may be designed. However, in order to improve the degree of integration in the future, it is desirable to design the width 1) s of the smear vertical register with a small amount of transferred current θI to be as small as possible. Also, regarding the width of the water register shown in Figure 5, it is possible to design the width of the smear water register to be smaller than the width of the signal horizontal register. It is.
以下、実施例を用いて詳卸1に説明したように、本発明
のように信号転送用車丙、CCDシフトレジスタの他に
もう一つにせ信号を東める垂直CCDシフトレジスタを
設は両レジスタの送り出す信号の差を取ることにより光
信号中に含まれたスメア成分を除去することができ画質
を著しく改善することができる。本発明は従来と同じプ
ロセス技術によって製作できる。また余分の垂直COD
シフトレジスタが増えるため一見画素の集積度を落とす
ようにみえるが、スメア成分は光信号より十分小さいの
で本レジスタに与える面積は十分小さくて済むので集積
度の低下は殆んど問題ない程度に抑えることができる、
等本発明の実用価呟は極めて高いものである。As explained in detail 1 below using an embodiment, in addition to the signal transfer CCD and CCD shift registers, it is possible to install a vertical CCD shift register for transmitting false signals. By taking the difference between the signals sent out by the registers, the smear component contained in the optical signal can be removed and the image quality can be significantly improved. The present invention can be manufactured using conventional process techniques. Also extra vertical COD
At first glance, the increase in the number of shift registers seems to reduce the pixel integration, but since the smear component is sufficiently smaller than the optical signal, the area given to this register is sufficiently small, so the reduction in the integration is kept to a level that is hardly a problem. be able to,
The practical value of the present invention is extremely high.
なお、上記の実施例はCOD素子の中で最も一般的に採
用されているインターライン型CCD撮像素子を例にと
って説明したが、本発明はもう1つの方式であるフレー
ムトランスファ型のCCD撮像素子にも全く同様に適用
できることは自明である。The above embodiments have been explained using an interline CCD image sensor, which is the most commonly used COD device, but the present invention applies to a frame transfer type CCD image sensor, which is another type. It is obvious that it can be applied in exactly the same way.
第1図は従来のCCD型撮像素子の構成および構造を示
す図、第2図は本発明のCCI)型撮汀素子の骨子とな
る構成および構造を示す図、第3図。
は第2図のCCD型撮像素子のスメア除去動作を示す図
、第4図は第2図のCCDCC型撮像素子現する別の構
造を示す図、第5図は第2図とは別の構成を持つ本発明
のCCD型撮像素子の実施例■ 1 図
(0−)
(b)
葛 Z 図
(bン
第 3 図
<C>
■ 4 図
1乙
第 5 図FIG. 1 is a diagram showing the configuration and structure of a conventional CCD type image pickup device, FIG. 2 is a diagram showing the basic configuration and structure of a CCI) type image pickup device of the present invention, and FIG. 2 is a diagram showing the smear removal operation of the CCD type image sensor shown in FIG. 2, FIG. 4 is a diagram showing another structure of the CCDCC type image sensor shown in FIG. 2, and FIG. 5 is a diagram different from the configuration shown in FIG. 2. Embodiment of the CCD type image pickup device of the present invention having ■ 1 Figure (0-) (b) Figure Z (Figure 3 <C> ■ 4 Figure 1 Figure 5
Claims (1)
子、該素子の蓄積した光信号電荷を転送する垂直COD
シフトレジスタおよび水平CODシフトレジスタを集積
化したCCD型固体撮像素子において、信号電荷を転送
する該垂直CODシフトレジスタの近辺に光信号以外の
にせ信号電荷を運ぶ垂直CODシフトレジスタを設け、
2つの該垂直CODシフトレジスタの出力する信号電荷
の差を取ることにより真の光信号成分のみが得られるよ
うにしたことを特徴とする型取 荷積透型固体撮像素子。 2、にせ信号電荷を転送する前記垂直CODシフトレジ
スタの電荷蓄積容量を光信号電荷を転送する前記垂直C
ODシフトレジスタの電荷蓄積容量より小さくしたこと
を特徴とする特許請求の範囲第1項記載の電荷転送型固
体撮像素子。[Claims] 1. Photoelectric conversion elements arranged two-dimensionally on the same semiconductor substrate, and a vertical COD that transfers optical signal charges accumulated in the elements.
In a CCD type solid-state imaging device that integrates a shift register and a horizontal COD shift register, a vertical COD shift register that carries false signal charges other than optical signals is provided near the vertical COD shift register that transfers signal charges,
1. A transmissive solid-state image pickup device that carries a mold and is characterized in that only a true optical signal component is obtained by taking the difference between the signal charges output from the two vertical COD shift registers. 2. The charge storage capacity of the vertical COD shift register that transfers false signal charges is replaced by the vertical C that transfers optical signal charges.
The charge transfer type solid-state image pickup device according to claim 1, characterized in that the charge storage capacity is smaller than that of an OD shift register.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58141039A JPS6032486A (en) | 1983-08-03 | 1983-08-03 | Charge transfer type solid state image pickup element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58141039A JPS6032486A (en) | 1983-08-03 | 1983-08-03 | Charge transfer type solid state image pickup element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6032486A true JPS6032486A (en) | 1985-02-19 |
Family
ID=15282811
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58141039A Pending JPS6032486A (en) | 1983-08-03 | 1983-08-03 | Charge transfer type solid state image pickup element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6032486A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0275217A2 (en) * | 1987-01-16 | 1988-07-20 | Canon Kabushiki Kaisha | Photoelectric converting apparatus |
US4962412A (en) * | 1987-01-29 | 1990-10-09 | Canon Kabushiki Kaisha | Photoelectric conversion apparatus without isolation regions |
US5126815A (en) * | 1988-03-07 | 1992-06-30 | Kanegafuchi Chemical Industry Co., Ltd. | Position sensor and picture image input device |
US5432551A (en) * | 1991-11-15 | 1995-07-11 | Kabushiki Kaisha Toshiba | Interline transfer image sensor |
-
1983
- 1983-08-03 JP JP58141039A patent/JPS6032486A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0275217A2 (en) * | 1987-01-16 | 1988-07-20 | Canon Kabushiki Kaisha | Photoelectric converting apparatus |
US4962412A (en) * | 1987-01-29 | 1990-10-09 | Canon Kabushiki Kaisha | Photoelectric conversion apparatus without isolation regions |
US5126815A (en) * | 1988-03-07 | 1992-06-30 | Kanegafuchi Chemical Industry Co., Ltd. | Position sensor and picture image input device |
US5432551A (en) * | 1991-11-15 | 1995-07-11 | Kabushiki Kaisha Toshiba | Interline transfer image sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5410349A (en) | Solid-state image pick-up device of the charge-coupled device type synchronizing drive signals for a full-frame read-out | |
JPS6153766A (en) | Interline-type electric charge transferring image pick-up sensor | |
US4689687A (en) | Charge transfer type solid-state imaging device | |
JPS5984575A (en) | Solid-state image-pickup element | |
JPH04262679A (en) | Driving method for solid-state image pickup device | |
US5757427A (en) | Image pick-up apparatus having a charge coupled device with multiple electrodes, a buffer layer located below some of the electrodes | |
JPS6032486A (en) | Charge transfer type solid state image pickup element | |
Sequin et al. | All-solid-state camera for the 525-line television format | |
JP2003347539A (en) | Solid-state image pickup device and its array | |
JPH01147972A (en) | Charge transfer type solid-state image pickup element | |
JPS58209269A (en) | Solid-state image pickup device | |
Weimer et al. | Self-scanned image sensors based on charge transfer by the bucket-brigade method | |
US4837629A (en) | Image pickup method using a CCD-type solid state image pickup device with charge dissipation | |
JPH0150156B2 (en) | ||
JPH0130306B2 (en) | ||
JPS604381A (en) | Solid-state image pickup device | |
JPS58175372A (en) | Solid-state image pickup element | |
Harada et al. | A high-resolution staggered-configuration CCD imager overlaid with an a-Si: H photoconductive layer | |
JPS6298876A (en) | Drive method for solid-state image pickup device | |
Barbe | State of the art in visible spectrum solid-state imagers | |
JPH0433143B2 (en) | ||
JPH06311434A (en) | Ccd solid-state image pickup device | |
JPH09214837A (en) | Drive method for solid-state image pickup device | |
JPH09181292A (en) | Solid state image pickup element and its drive method | |
JPS60160658A (en) | Solid-state image pickup element |