JPS58175372A - Solid-state image pickup element - Google Patents

Solid-state image pickup element

Info

Publication number
JPS58175372A
JPS58175372A JP57056607A JP5660782A JPS58175372A JP S58175372 A JPS58175372 A JP S58175372A JP 57056607 A JP57056607 A JP 57056607A JP 5660782 A JP5660782 A JP 5660782A JP S58175372 A JPS58175372 A JP S58175372A
Authority
JP
Japan
Prior art keywords
shift register
register
vertical
ccd
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57056607A
Other languages
Japanese (ja)
Inventor
Norio Koike
小池 紀雄
Kayao Takemoto
一八男 竹本
Shinya Oba
大場 信弥
Toshiaki Masuhara
増原 利明
Seiji Kubo
征治 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57056607A priority Critical patent/JPS58175372A/en
Priority to CA000424057A priority patent/CA1199400A/en
Priority to EP83103316A priority patent/EP0091120A3/en
Priority to KR1019830001407A priority patent/KR890005237B1/en
Priority to US06/482,791 priority patent/US4514766A/en
Publication of JPS58175372A publication Critical patent/JPS58175372A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14831Area CCD imagers
    • H01L27/14856Time-delay and integration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/73Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors using interline transfer [IT]

Abstract

PURPOSE:To improve the image resolution for a charge coupled (CCD) solid-state image pickup device which extracts the optical information of a photoelectric transducer on a semiconductor substrate, by shifting the optical diodes by 1/2 picture element size for each train and selecting and reading simultaneously two trains of signals of each diode. CONSTITUTION:The signal charges of left and right optical diodes D1-1 and D1-2 are collected to a CCD vertical shift register 2-1 via transfer gates 4-1 and 4-2 and turned into signals having no distinction from each other. Thus the diodes D1-1 and D1-2 form the same optical diode D. The register 2-1 is drien by a clock pulse generator 5, and a horizontal shift register 3' is driven by a clock pulse generator 6' respectively. A burying channel 11 is formed on a semiconductor substrate 10 for a diode D1 and the register 2-1, and a CCD electrode 8 which forms a vertical shift register doubling a transfer gate is formed via a gate oxide film 9. The electric charge of the D is sent to the channel 11 via transfer gate region 4-1 and 4-2 when the voltage of a high level is applied to the electrode 8.

Description

【発明の詳細な説明】 (1)  発明の利用分野 本発明は、半導体基板上にit変換素子、および各素子
の光学情報を取出す電荷移送素子(Charge  C
oupled  1)evice 、以下CCDと略称
する。)固体撮像素子に関するものである。
Detailed Description of the Invention (1) Field of Application of the Invention The present invention relates to an IT conversion element on a semiconductor substrate and a charge transfer element (Charge C) for extracting optical information from each element.
1) device, hereinafter abbreviated as CCD. ) This relates to solid-state imaging devices.

(2)従来技術 固体[!素子は現行のテレビジョン放送で使用されてい
る撮像用電子管並みの解像力を備えた撮儂板を必要とし
、このため垂直方向に500個。
(2) Prior art solid [! The elements required an imaging board with a resolution comparable to that of the imaging electron tubes used in current television broadcasting, and for this reason, 500 elements were installed in the vertical direction.

水平方向に800〜1000個を配列した絵素(光電変
換素子)マトリックスとそれに和尚する走査素子が必要
となる。したがって、上記固体撮像素子は高集積化が必
要なMO8大規模回路技術を用いて作られ、構成素子と
して一般にCODあるいはMOS )ランジスタ等が使
用さnている。
A matrix of 800 to 1000 picture elements (photoelectric conversion elements) arranged in the horizontal direction and a scanning element to accommodate the matrix are required. Therefore, the solid-state image sensing device is manufactured using MO8 large-scale circuit technology that requires high integration, and generally uses COD or MOS transistors as constituent elements.

第1図に低雑fを特徴とするCCD型固体撮像素子の基
本構成を示す。1は例えば光ダイオードから成る光電変
換素子、2および3は光電変換素子群に蓄積された元信
号を出力端4に取り出すための垂直CCDシフトレジス
タ、および水平シフトレジスタである。5.6は各々垂
直シフトレジスタ、水平シフトレジスタを駆動するタロ
ツクパルス製作するクロックパルス発生器である。ここ
では2相のタロツクパルス発生器を図示したが、4相あ
るいは3相いずれのクロック形態を採用してもよい。ま
た、7は光ダイオードに蓄積された電荷を垂直シフトレ
ジスタ2に送り込む転送ゲートを示している。本素子は
このままの形態では白黒撮像素子となり、上部にカラー
フィルタを積層すると各党ダイオードは色情報を備える
ことになりカラー撮像素子となる。
FIG. 1 shows the basic configuration of a CCD type solid-state image sensor characterized by a low noise f. 1 is a photoelectric conversion element made of, for example, a photodiode; 2 and 3 are a vertical CCD shift register and a horizontal shift register for taking out original signals accumulated in the photoelectric conversion element group to an output terminal 4; 5 and 6 are clock pulse generators that generate tarock pulses to drive the vertical shift register and horizontal shift register, respectively. Although a two-phase clock pulse generator is shown here, either a four-phase or three-phase clock format may be adopted. Further, numeral 7 indicates a transfer gate that sends the charges accumulated in the photodiode to the vertical shift register 2. In its current form, this device becomes a monochrome image sensor, but if a color filter is stacked on top, each party diode is provided with color information, and it becomes a color image sensor.

固体撮像素子は衆知のように小型、軽量、メインテナン
スフリー、低消費電力など電子管に較べて固体化に伴な
う多くの利点を有しており次期撮像デバイスとして将来
が期待されているものである。しかしながら、固体電子
は未だ絵素数が少なく解像度が低いという問題を抱えて
いる(現行素子は前述のようにMO8集積回路技術を用
いて作られるが、そ扛でも絵素は500(垂直方向)×
400(水平方向)程度である)。筐た、インタレース
は垂直シフトレジスタの構成上の制約から第1フイール
ドでは奇数列(実線矢印7−1)を読出し、第2フイー
ルドでは偶数列(点数矢印7−2)を読出す方式を採用
せざるを得ないため前フィールドに蓄積された電荷が5
0%残る(残漬、カラー解(Ifが低いなど、インタレ
ース方式に原因する問題点を抱えている。したがって、
用途本家庭用VTRにカメラ等ごく一部に限られており
、今後固体素子の利点を生かした広汎な用途を開拓する
ためには解*[を始めとする上記の問題点の改善を図る
ことが急務の課題となっている。
As is well known, solid-state imaging devices have many advantages over electron tubes, such as being small, lightweight, maintenance-free, and low power consumption, and are expected to have a promising future as the next imaging device. . However, solid-state electrons still have the problem of a small number of picture elements and low resolution (as mentioned above, current devices are made using MO8 integrated circuit technology, but even with that, the number of picture elements is 500 (vertical direction) ×
400 (horizontal direction)). Due to the configuration constraints of the vertical shift register, interlacing uses a method in which odd columns (solid arrow 7-1) are read out in the first field and even columns (pointed arrow 7-2) are read out in the second field. Because the charge accumulated in the front field is 5
There are problems caused by the interlacing method, such as 0% remaining (remaining) and color solution (low If). Therefore,
Applications: This is limited to a small number of home VTRs, cameras, etc., and in order to develop a wide range of applications that take advantage of the advantages of solid-state devices in the future, it is necessary to improve the above problems, including the following. has become an urgent issue.

(3)  本発明の目的 本発明の目的は上記の問題を解決すること、すなわちC
CD型固体撮像素子の解儂fをMO8集積回路技術に頼
ることなく素子構成の工夫により向上することにある。
(3) Purpose of the present invention The purpose of the present invention is to solve the above problems, namely
The object of the present invention is to improve the resolution f of a CD-type solid-state image pickup device by improving the device configuration without relying on MO8 integrated circuit technology.

(4)発明の詳細説明 ードの中心に垂直CCDシフトレジスタを設置し、すな
わち垂直CCDシフトレジスタをはさんで左右対象に[
1lI]一の元ダイオードを配置することにより実効的
に解像の向上を図るようにしたものである。
(4) Detailed Description of the Invention A vertical CCD shift register is installed in the center of the card, that is, the vertical CCD shift register is sandwiched between the left and right sides.
1lI] By arranging a single diode, resolution can be effectively improved.

(5)  実施例 以下、本発明を実施例を用いて詳細に説明する。(5) Example Hereinafter, the present invention will be explained in detail using Examples.

第2図は本発明のCCD型固体撮像素子の基本的構成を
示す図である。1−1および1−2t′i垂直CCDシ
フトレジスタ2−1−flさんで左右に配bit.さ扛
た光ダイオード群、1′−1および1′−2は1−1.
1−2とは水平方向に172絵素分(D/2)だけずれ
て配置された光ダイオード群であり、やはり垂直CCD
シフトレジスタ2−2をはさんで置か扛ている。4−1
.4−2.4’−1.4’−2は各光ダイオードに蓄積
された信号電荷を各垂直シフトレジスタに送り込むため
の転送ゲートである。ここで、左右に分れた元ダイオー
ド1−1.1−2(あるいは1’−1.1’−2)の信
号電荷は転送ゲート4−1.4−2(あるいに4’−1
.4’−2)を介して垂直シフトレジスタ2−1(ある
いは2−2)に集められ区別(1−1と1−2の区別)
のない信号となるので、1−1と1−2(あるいは1′
−1と1’−2)は同一とみなすべき光ダイオードとな
る(すなわち、本発明においては従来例(第1図におけ
る1個のダイオードが半分つつに分けられ垂直シフトレ
ジスタの左右に配置されたものと考えてもよい)。1九
、5は垂直シフトレジスタ駆動用のクロックパルス発生
器、6′は水平シ7)レジスタ3′を駆動するためのク
ロックパルス発生器である。ここで、垂直シフトレジス
タは本発明の素子構成上従来素子(第1図)の場合に較
べて絵素の水平ビツテ当り1本多く配列されるため、水
平シフトレジスタの構成電極は2倍となる(言い換えれ
ば水平レジスタのピッチ寸法は第1図の水平レジスタの
半分に縮少される)。
FIG. 2 is a diagram showing the basic configuration of the CCD type solid-state image sensing device of the present invention. 1-1 and 1-2t'i vertical CCD shift registers 2-1-fl allocate bit. The exposed photodiode groups 1'-1 and 1'-2 are 1-1.
1-2 is a group of photodiodes arranged horizontally shifted by 172 pixels (D/2), and is also a vertical CCD.
It is placed across the shift register 2-2. 4-1
.. 4-2.4'-1.4'-2 are transfer gates for sending signal charges accumulated in each photodiode to each vertical shift register. Here, the signal charge of the original diode 1-1.1-2 (or 1'-1.1'-2) divided into left and right is transferred to the transfer gate 4-1.4-2 (or 4'-1
.. 4'-2) to the vertical shift register 2-1 (or 2-2) for distinction (distinction between 1-1 and 1-2).
1-1 and 1-2 (or 1'
-1 and 1'-2) are photodiodes that should be considered the same (that is, in the present invention, in the conventional example (one diode in Fig. 1 is divided into halves and placed on the left and right sides of the vertical shift register). 19, 5 is a clock pulse generator for driving the vertical shift register, and 6' is a clock pulse generator for driving the horizontal shift register 3'. Here, due to the element configuration of the present invention, one more vertical shift register is arranged per horizontal bit of a picture element than in the case of the conventional element (Fig. 1), so the number of constituent electrodes of the horizontal shift register is doubled. (In other words, the pitch dimension of the horizontal register is reduced to half that of the horizontal register of FIG. 1).

第3図は第2図に示した本発明の撮像素子の構造および
平面レイアクトの一例を示す図である。
FIG. 3 is a diagram showing an example of the structure and planar layout of the image sensor of the present invention shown in FIG. 2.

同図(a)は1絵素のx−x’断面を表わした素子構造
であり、8は転送ゲート4を兼ね次垂直シフトレジスタ
を構成するCCD電極(通常、多結晶シリコンが使用さ
れる)、9は電極8と半導体基板10を電気的に絶縁す
るゲート酸化膜(通常sio,が用いられる)、1−1
.1−2は光ダイオード、11は垂直シフトレジスタの
埋込みチャンネルを作る不純物層(基板と異なる導1!
型、かつ比較的低濃度の不紳物原子によって作られる)
である。元ダイオードの電荷は電極8に高電圧が加わる
と転送ゲート領域4−1.4−2を介して垂直シフトレ
ジスタ内(すなわちチャ/ネル11内)に送り込1れる
(矢印12−1.12−2)。
Figure (a) shows the element structure showing the x-x' cross section of one pixel, and 8 is a CCD electrode (usually polycrystalline silicon is used) that also serves as the transfer gate 4 and constitutes a vertical shift register. , 9 is a gate oxide film (usually SIO is used) that electrically insulates the electrode 8 and the semiconductor substrate 10, 1-1
.. 1-2 is a photodiode, and 11 is an impurity layer (a conductive layer different from the substrate 1!) that forms the buried channel of the vertical shift register.
type and relatively low concentration of unholy atoms)
It is. When a high voltage is applied to the electrode 8, the charge of the original diode is transferred into the vertical shift register (i.e., into the channel 11) via the transfer gate region 4-1.4-2 (arrow 12-1.12). -2).

筐た、13#−を各絵素を分離する厚い絶縁酸化膜(通
常StO,が用いられる)である。
The casing is a thick insulating oxide film (usually StO is used) that separates each picture element from 13#.

同図(b)は上記絵素の平面レイアウトの一例を示した
図であり、8はCcD11極(実線で示す)4−1.4
−2は電極8の一部金光ダイオード側1で広げて形成し
た転送ゲート領域、14は垂直シフトレジスタ2−1’
1)i14成するもう1つのCCD電極(点線で示す。
FIG. 4(b) is a diagram showing an example of the planar layout of the picture element, in which 8 is a CcD11 pole (shown by a solid line) 4-1.4
-2 is a transfer gate region formed by expanding a part of the electrode 8 on the photodiode side 1, and 14 is a vertical shift register 2-1'.
1) Another CCD electrode consisting of i14 (shown as a dotted line).

8を第2層目の多結晶シリコンで作るとすれば、本電極
は第1#目の多結晶シリコンで作らnる)、また15は
電荷が運ばれるチャンネル領域を示している。
If 8 is made of the second layer of polycrystalline silicon, this electrode is made of the first layer of polycrystalline silicon), and 15 indicates a channel region where charges are carried.

第4図は第2図の本発明の撮g/l素子における垂直シ
フトレジスタを駆動するクロックパルスおよびそのタイ
ミングを示している。本パルスは11”、″”M”11
o”の3つのレベルかう成っており、−″″1#1#レ
ベル′電圧)は転送ゲート8を開く状態(′″/l/l
ダイオードが垂直シフトレジスタに送り込める状態)ヲ
示している。“M#レベル(中間電圧)は垂直シフトレ
ジスタを駆動する電圧であり、垂直シフトレジスタを構
成するCCD電極に″1”、−o”(例えばアース電圧
)が交互に加わることにより信号電荷は垂直レジスタ内
を水平レジスタの方向(下方)に向って順次転送甥れる
。ここで、′1#レベルおよびそれに続く“Mルベルは
いずれのパルスにおいても垂直帰線期間(TIL)内に
納められるが第1フイールドではクロックパルスφ、の
11#レベルがφ、の″1”レベルに較べて所だの時間
(t−′−t−)早く出力され、第2フイールドでは逆
にφ、の11”レベルがφ1の11”レベルよす早く出
力さ扛る。このように、各フィールド内においてφ1 
、φ、ともに″1”レベルが存在し、がっ、その出力時
間がフィールド毎に反転したパルスを本発明の撮像素子
に加えることにより、フィールド毎に1列すれた2列の
元ダイオードの信号電荷を読出すことが可能になる。す
なわち、第1フイールドでは例えばパルスφ、によりn
 −1列目(1−1,1−2)、φ、によりn列目の元
ダイオード(1’−1,1’−2)か選択され、垂直レ
ジスタ内に送り込1れた各列の信号電荷はいすnも垂直
レジスタ(2−1,2−2)を構成する1列目のCCD
[極の下に、第2フイールドではφ、によりn夕1]目
(1’−1,1’−2)、φ、によりn + lダ1」
目(1−1,1−2)の光ダイオードが選択さn1垂直
レジスタ(2−1,1−1)を構成するn + 1列目
のCCD電極の下に転送される。こうして同一列に並ん
だ隣接列の信号は同一時刻に各々の垂直レジスタ内を転
送され、最後に水平シフトレジスタに転送さnる。各列
の信号電荷の水平シフトレジスタへの転送時刻は同じで
あるが、例えばn −1列目(またはn列目)の信号電
荷はn列目(筐たはn + 1列目)の電荷に対して1
段割(より出力4に近い段)に転送さ扛るので、出力4
には第1フイールドではn−1゜n列の順に第2フイー
ルドではn列、n+1列の順に)信号電荷を取出すこと
ができる。このように、隣接する列の信号が垂直レジス
タ内では同一時刻に、水平レジスタ内では所足の時間(
水平レジスタ1段あたりの駆動周波数できまる)だけ時
間的にずれて転送さnることは信号処理(隣接列の信号
の分離)を極めて簡単にしている(言い換えれば、2列
を同時に読出す本発明の撮像素子においても、信号処理
は第1図に示す1列読出し型の従来の素子と全く同一の
形態で行うことができるわけである)。
FIG. 4 shows the clock pulse and its timing for driving the vertical shift register in the g/l element of the present invention shown in FIG. This pulse is 11",""M"11
o'' consists of three levels, -''''1#1# level' voltage) is the state in which the transfer gate 8 is opened ('''/l/l
The state in which the diode can be fed into the vertical shift register) is shown. "M# level (intermediate voltage) is the voltage that drives the vertical shift register, and by alternately applying "1" and -o" (for example, ground voltage) to the CCD electrodes that make up the vertical shift register, the signal charge is vertically Data is sequentially transferred within the register in the horizontal register direction (downward). Here, the '1# level and the following "M level" are contained within the vertical retrace period (TIL) in any pulse, but in the first field, the 11# level of the clock pulse φ is "1" of the clock pulse φ, In the second field, the 11" level of φ is outputted earlier than the 11" level of φ1. In this way, φ1 within each field
, φ both have a "1" level, and by applying pulses whose output times are inverted for each field to the image sensor of the present invention, the signals of the original diodes of two rows one row apart for each field can be obtained. It becomes possible to read out the charges. That is, in the first field, for example, the pulse φ causes n
The original diode (1'-1, 1'-2) of the nth column is selected by the -1st column (1-1, 1-2) and φ, and the source diode (1'-1, 1'-2) of each column is sent into the vertical register. The signal charge is also applied to the first column of CCDs that constitute the vertical register (2-1, 2-2).
[Below the pole, in the second field, φ is n + 1]th (1'-1, 1'-2), φ is n + 1.
The (1-1, 1-2)th photodiode is selected and transferred under the CCD electrode of the (n+1)th column constituting the n1 vertical register (2-1, 1-1). In this way, the signals of adjacent columns arranged in the same column are transferred within each vertical register at the same time, and finally transferred to the horizontal shift register. The transfer time of the signal charge in each column to the horizontal shift register is the same, but for example, the signal charge in the n - 1st column (or the nth column) is the same as the charge in the nth column (the case or the n + 1st column). 1 for
Since it is transferred to the stage division (stage closer to output 4), output 4
In the first field, signal charges can be extracted in the order of n-1°n columns, and in the second field, in the order of n and n+1 columns). In this way, the signals in adjacent columns are displayed at the same time in the vertical register, and at the required time (
Transferring signals with a time difference determined by the driving frequency per horizontal register stage makes signal processing (separation of signals in adjacent columns) extremely simple (in other words, it is possible to read two columns at the same time). In the image pickup device of the invention, signal processing can be performed in exactly the same manner as in the conventional one-column readout type device shown in FIG.

この結果、本発明の撮像素子においては各列毎に水平方
向に172絵素たけ空間的にずらして配列された元ダイ
オードの信号が、上下の2列を1組にして読出さn1水
平、垂直(上下)両方向ともに解像度の向上を図ること
ができる。発明者は本発明の如き構成の撮像素子につい
て解僧fを計算したところ、従来の如き構成の素子に較
べて1.8倍程度高い解像度が得られることが判った゛
As a result, in the image sensor of the present invention, the signals of the original diodes arranged spatially shifted by 172 pixels in the horizontal direction for each column are read out as a set of two columns, n1 horizontal and vertical. Resolution can be improved in both directions (up and down). When the inventor calculated the resolution f for an image sensor having the structure of the present invention, it was found that a resolution approximately 1.8 times higher than that of an element having a conventional structure could be obtained.

絵素数は従来素子と同一のままで、絵素の配列を上記の
ように改めることにより解像度の向上が実現できること
は、素子製作技術という制約にまり絵素集積度に上限の
加わる現在の固体撮像素子にとって実用上極めて大きな
価値がある。
The ability to improve resolution by changing the pixel arrangement as described above while keeping the number of picture elements the same as in conventional elements is difficult to achieve with current solid-state image sensors, which have an upper limit on pixel integration due to the constraints of device manufacturing technology. It has extremely great practical value.

上記の実施例でに垂直、水平レジスタともに最も一般的
な2相クロツクパルスで駆動することを考えたが、垂直
、水平とも3相クロツクパルスあるいは4相クロツクパ
ルスで駆動してもよい。第5図に示す垂直レジスタは第
2図と同じ2相のタロツクパルスにより駆動し、水平レ
ジスタを3相のクロックパルスで駆動する場合を示して
いる。
In the above embodiment, it has been considered that both the vertical and horizontal registers are driven by the most common two-phase clock pulse, but both the vertical and horizontal registers may be driven by three-phase clock pulses or four-phase clock pulses. The vertical register shown in FIG. 5 is driven by the same two-phase clock pulses as in FIG. 2, and the horizontal register is driven by three-phase clock pulses.

ここでは、3相クロツクパルスでlLA@することによ
り、水平レジスタの構成11極の数が第2の場合に較べ
2/3に減らすことができ素子の設計および製作が易し
くなるという利点がある。さらに、2相クロツク型水平
レジスタを第6図に示すように2列設置することにより
、垂直レジスタ2−1からの信号電荷は水平レジスタ3
−1(矢印16−1)垂直レジスタ2−2力)らの信号
電荷は水平レジスタ3−2(矢印16−2)により転送
させることもで性る。この場合、水平レジスタのCCD
電極のピッチ寸法は第1図の従来の素子の場合と同一の
寸法でよく、素子製作はさらに容易となる。
Here, by using three-phase clock pulses, the number of 11 poles in the horizontal register can be reduced to 2/3 compared to the second case, and there is an advantage that the design and manufacture of the device can be facilitated. Furthermore, by installing two rows of two-phase clock type horizontal registers as shown in FIG. 6, the signal charge from vertical register 2-1 is transferred to horizontal register 3.
The signal charges from the vertical register 2-1 (arrow 16-1) can also be transferred by the horizontal register 3-2 (arrow 16-2). In this case, the horizontal register CCD
The pitch dimension of the electrodes may be the same as that of the conventional element shown in FIG. 1, making the element fabrication easier.

また、上記の説明は一般性金損わないよう白黒撮像素子
を対象にして行ってきたが、カラー素子の場合でも構成
、動作は前述の撮像素子の場合と全く−じである。−例
として補色フィルタを採用した場合の素子構成を色の対
応を第7図に示す。
In addition, although the above description has been made with reference to a monochrome image pickup device to avoid loss of generality, the configuration and operation of a color device are exactly the same as those of the above-mentioned image pickup device. - As an example, FIG. 7 shows the element configuration and color correspondence when a complementary color filter is adopted.

1−1と1−2あるいは1′−1と1′−2は半分ずつ
に分れてはいるが前述のように同一の光ダイオードであ
るから、例えば(1−1,1−2)系列には左から右へ
順にシアンフィルタ、ホワイトフィルタ、イエローフィ
ルタが、(1′−1゜1’ −2)系列には前列を1/
2絵素ずらしたイエロフィルタ、シアンフィルタ、ホワ
イトフィルタが割当てらnることになる〇 以上、実施例を用いて酸明したように、本発明において
に元ダイオードを列毎に1/2絵素寸法ずらし、各ダイ
オードの信号をかつ2列同時選択のインタレース方式に
エリ読出すことにより解像&を約2倍に向上することか
できる。さらに、従来型CCD素子において行われてい
友1列選択のインタレース全2列選択に改めたことによ
り残イ象発生の防止、混色発生の防止、信号処理回路の
簡素化など?行うことができ、本発明の実用価値に極め
て高いものである。
Although 1-1 and 1-2 or 1'-1 and 1'-2 are divided into halves, they are the same photodiode as mentioned above, so for example, the (1-1, 1-2) series For the (1'-1°1'-2) series, the front row is 1/
A yellow filter, a cyan filter, and a white filter shifted by two pixels will be assigned. As explained above using the embodiment, in the present invention, the original diode is shifted by 1/2 pixel for each column. By shifting the dimensions and reading out the signals of each diode in an interlaced manner with simultaneous selection of two columns, it is possible to improve the resolution by approximately twice. Furthermore, by changing the selection of one column to the interlace selection of all two columns, which was done in conventional CCD elements, it is possible to prevent residual images, prevent color mixture, and simplify the signal processing circuit. The practical value of the present invention is extremely high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のCCD型固体撮1象素子の基本構成を示
す図、第2図は本発明のCCD型ml蒙素子の構成を示
す図、第3図は第2図に記載し九本発明の轡像素子の構
造および平面レイアウトを示す図、第4図は第2図に記
載した本発明の撮像素子を、駆動するだめのパルスeタ
イムチャートを示す図、第5図および第6図は水平CC
Dシフトレジスタの構成か第2図とは異なる場合の実施
例を示す図、第7図はカラーフィルり全積層した本発明
のカラーCCD型撮像素子の構成を示す図である。 1・・・元ダイオード、1−1.1−2・・・光ダイオ
ード、1’−1,1’−2・・・元ダイオード、2.2
−1.2−2・・・垂直CCDシフトレジスタ、4−1
.4−2.4’−1,4’ −2・・・転送ゲート、3
.3′・τ・水平CCDシフトレジスタ、5.6′・・
・クロックパルス発生器、8・・・C0Dt極、9・・
・第 1 図 第 2 図 YJ3  図 1卒      ζ Y 4 図 トーーーー¥JIフイールドーーーー伽トー% z 7
4−ルド%  5  ’7
FIG. 1 is a diagram showing the basic configuration of a conventional CCD type solid-state sensor, FIG. 2 is a diagram showing the configuration of a CCD type ML element of the present invention, and FIG. 4 is a diagram showing the structure and planar layout of the image sensor of the invention; FIG. 4 is a diagram showing a pulse e time chart for driving the image sensor of the invention shown in FIG. 2; FIGS. 5 and 6 is horizontal CC
A diagram showing an embodiment in which the configuration of the D shift register is different from that in FIG. 2, and FIG. 7 is a diagram showing the configuration of a color CCD type image sensor of the present invention in which color fill is fully laminated. 1... Original diode, 1-1.1-2... Photodiode, 1'-1, 1'-2... Original diode, 2.2
-1.2-2...Vertical CCD shift register, 4-1
.. 4-2.4'-1, 4'-2...transfer gate, 3
.. 3'・τ・Horizontal CCD shift register, 5.6'...
・Clock pulse generator, 8...C0Dt pole, 9...
・Figure 1 Figure 2 Figure YJ3 Figure 1 Graduation ζ Y 4 Figure To---¥JI Field---Kato% z 7
4-old% 5'7

Claims (1)

【特許請求の範囲】 1、半導体基板上に設けられ光学情報を電気信号に変換
して取出す光電変換素子群と、前記電気信号を垂直およ
び水平方向に順次転送する垂直CCDシフトレジスタお
よび水平CCDシフトレジスタとを具備した固体撮像素
子において。 前記垂直CODシフトレジスタは各列の前記光電変換素
子群の間に自己列し、各列の前記光電変換素子群の各光
電変換素子の電気信号は各素子毎に左又は右に分離して
前記垂直CCDシフトレジスタに取出すことを特徴とす
る固体撮像素子。
[Claims] 1. A group of photoelectric conversion elements provided on a semiconductor substrate to convert optical information into electrical signals and extract them, and a vertical CCD shift register and horizontal CCD shift register to sequentially transfer the electrical signals in the vertical and horizontal directions. In a solid-state image sensor equipped with a resistor. The vertical COD shift register is self-aligned between the photoelectric conversion element groups in each column, and the electric signal of each photoelectric conversion element in the photoelectric conversion element group in each column is separated to the left or right for each element. A solid-state image sensor characterized by being taken out to a vertical CCD shift register.
JP57056607A 1982-04-07 1982-04-07 Solid-state image pickup element Pending JPS58175372A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP57056607A JPS58175372A (en) 1982-04-07 1982-04-07 Solid-state image pickup element
CA000424057A CA1199400A (en) 1982-04-07 1983-03-21 Solid-state imaging device
EP83103316A EP0091120A3 (en) 1982-04-07 1983-04-05 Solid-state imaging device
KR1019830001407A KR890005237B1 (en) 1982-04-07 1983-04-06 Solide - state imaging device / jp
US06/482,791 US4514766A (en) 1982-04-07 1983-04-07 Solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57056607A JPS58175372A (en) 1982-04-07 1982-04-07 Solid-state image pickup element

Publications (1)

Publication Number Publication Date
JPS58175372A true JPS58175372A (en) 1983-10-14

Family

ID=13031918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57056607A Pending JPS58175372A (en) 1982-04-07 1982-04-07 Solid-state image pickup element

Country Status (1)

Country Link
JP (1) JPS58175372A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010007345A (en) * 1999-06-14 2001-01-26 가네꼬 히사시 Solid state image sensor and driving method thereof
JP2008263623A (en) * 2008-05-14 2008-10-30 Sony Corp Solid-state image pickup element, driving method thereof and camera system
US8446498B2 (en) 2009-07-24 2013-05-21 Sony Corporation Solid-state imaging device, manufacturing method thereof, and camera with alternately arranged pixel combinations

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010007345A (en) * 1999-06-14 2001-01-26 가네꼬 히사시 Solid state image sensor and driving method thereof
JP2008263623A (en) * 2008-05-14 2008-10-30 Sony Corp Solid-state image pickup element, driving method thereof and camera system
US8446498B2 (en) 2009-07-24 2013-05-21 Sony Corporation Solid-state imaging device, manufacturing method thereof, and camera with alternately arranged pixel combinations
US8704921B2 (en) 2009-07-24 2014-04-22 Sony Corporation Solid-state imaging device, manufacturing method thereof, and camera with grouped on-chip lens formation
US8976283B2 (en) 2009-07-24 2015-03-10 Sony Corporation Solid-state imaging device, manufacturing method thereof, and camera with alternately arranged pixel combinations having differing on-chip lenses
US9245918B2 (en) 2009-07-24 2016-01-26 Sony Corporation Solid-state imaging device, manufacturing method thereof, and camera with alternately arranged pixel combinations and shared floating diffusion
US9793313B2 (en) 2009-07-24 2017-10-17 Sony Semiconductor Solutions Corporation Solid-state imaging device, manufacturing method thereof, and camera with arranged pixel combinations alternatively
US10062719B2 (en) 2009-07-24 2018-08-28 Sony Semiconductor Solutions Corporation Solid-state imaging device, manufacturing method thereof, and camera with arranged pixel combinations alternatively
US10068939B2 (en) 2009-07-24 2018-09-04 Sony Semiconductor Solutions Corporation Solid-state imaging device, manufacturing method thereof, and camera with arranged pixel combinations alternatively
US10249663B2 (en) 2009-07-24 2019-04-02 Sony Semiconductor Solutions Corporation Solid-state imaging device, manufacturing method thereof, and camera with arranged pixel combinations alternatively
US10692909B2 (en) 2009-07-24 2020-06-23 Sony Semiconductor Solutions Corporation Solid-state imaging device, manufacturing method thereof, and camera with alternatively arranged pixel combinations
US10770495B1 (en) 2009-07-24 2020-09-08 Sony Semiconductor Solutions Corporation Solid-state imaging device, manufacturing method thereof, and camera with alternatively arranged pixel combinations
US10896924B2 (en) 2009-07-24 2021-01-19 Sony Semiconductor Solutions Corporation Solid-state imaging device, manufacturing method thereof, and camera with alternatively arranged pixel combinations
US11233083B2 (en) 2009-07-24 2022-01-25 Sony Semiconductor Solutions Corporation Solid-state imaging device, manufacturing method thereof, and camera with alternatively arranged pixel combinations
US11605660B2 (en) 2009-07-24 2023-03-14 Sony Semiconductor Solutions Corporation Solid-state imaging device, manufacturing method thereof, and camera with alternatively arranged pixel combinations
US11888005B2 (en) 2009-07-24 2024-01-30 Sony Semiconductor Solutions Corporation Solid-state imaging device, manufacturing method thereof, and camera with alternatively arranged pixel combinations

Similar Documents

Publication Publication Date Title
US4816916A (en) CCD area image sensor operable in both of line-sequential and interlace scannings and a method for operating the same
US5051832A (en) Selective operation in interlaced and non-interlaced modes of interline transfer CCD image sensing device
US4559550A (en) CCD Type solid-state imaging device
US4500915A (en) Color solid-state imager
KR890005237B1 (en) Solide - state imaging device / jp
JPS6153766A (en) Interline-type electric charge transferring image pick-up sensor
JPH05505920A (en) image sensor
US5280186A (en) CCD image sensor with four phase clocking mechanism
US5757427A (en) Image pick-up apparatus having a charge coupled device with multiple electrodes, a buffer layer located below some of the electrodes
EP0193977B1 (en) Charge-coupled image sensor arrangement
JPS58175372A (en) Solid-state image pickup element
US4723168A (en) Charge-coupled device and camera comprising such a charge-coupled device
JPS62208668A (en) Charge transfer type solid-state image sensing element
JPH0433143B2 (en)
JPH01264379A (en) Solid state image pickup element
JPS6032486A (en) Charge transfer type solid state image pickup element
JPS61184076A (en) Color solid-state image pickup device
JPS59165452A (en) Charge transfer type solid image sensor
JPH0574992B2 (en)
JPS5934658A (en) Solid-state image pickup device
JPS63234677A (en) Drive method of charge coupling element
JPS6318664A (en) Charge transfer type solid-state image sensing element
JPS61127163A (en) Solid image recognition element
JPH07235656A (en) Ccd solid-state image sensor and manufacture thereof
JPH0560303B2 (en)