JPS603181A - Semiconductor laser device - Google Patents
Semiconductor laser deviceInfo
- Publication number
- JPS603181A JPS603181A JP11137683A JP11137683A JPS603181A JP S603181 A JPS603181 A JP S603181A JP 11137683 A JP11137683 A JP 11137683A JP 11137683 A JP11137683 A JP 11137683A JP S603181 A JPS603181 A JP S603181A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- refractive index
- type
- laser
- light absorption
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/2205—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
- H01S5/2218—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special optical properties
- H01S5/2219—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special optical properties absorbing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/2205—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
- H01S5/2222—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties
- H01S5/2227—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties special thin layer sequence
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/223—Buried stripe structure
- H01S5/2231—Buried stripe structure with inner confining structure only between the active layer and the upper electrode
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は、利得導波路構造及び屈折率ぞ≠波路構造の双
方を備えた半導体レーザ装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor laser device having both a gain waveguide structure and a refractive index≠wavepath structure.
近年、G a A l、 A s系等のm−v族化合物
半導体材料を用いた半1体レーザは、DAI)、(ディ
ジタル・オーディオ・ディスク)を始めとして光ディス
ク・ファイル等の情報処理3:4器への応用が進められ
ている。光デイスク用の半導体レーザにおいては、レー
ザ光のビームを小さく絞り込む必要があり、光学系を1
■単にすると云う点から硫本横モード発振で非点収差が
小さいことが要求される。また、光ディスクに応用する
点から次のような問題点のあることが明らかになってい
る。すなわち、光ディスク・ファイル等においては、デ
ィスクに当てた光の反射光・の強度を検出して情報を読
み出すと云う機構上。In recent years, semi-unit lasers using m-v group compound semiconductor materials such as GaAl and As-based semiconductor materials have been used for information processing of optical disk files such as DAI) and (digital audio disks). Application to four devices is currently underway. In semiconductor lasers for optical disks, it is necessary to narrow down the laser beam to a small size, so the optical system is
(2) From the point of view of simplicity, it is required that the astigmatism be small in the transverse mode oscillation. Furthermore, the following problems have been found when applied to optical discs. That is, in optical disc files, etc., information is read out by detecting the intensity of the reflected light that hits the disc.
反射光の一部が半導体レーザに戻っていくのは避けられ
ない。このため、上記半導体レーザは該レーザの両端面
が作る共振器の他に、レーザ端面とディスク面とで形成
される共振器も存在することになり、2重共振器を持っ
レーザとなる。そして、ディスク面が回転中に振動する
と。It is inevitable that some of the reflected light will return to the semiconductor laser. Therefore, in addition to the resonator formed by both end faces of the laser, the semiconductor laser also has a resonator formed by the laser end face and the disk surface, making it a laser having a double resonator. And when the disk surface vibrates while rotating.
後者の共振器長が変化することになり、スペクトルや光
出力等に変動が生じ、所謂戻り光ノイズが発生する。The latter resonator length changes, causing fluctuations in the spectrum, optical output, etc., and causing so-called return light noise.
ここで、戻り光ノイズを抑制すると云う観点から半導体
レーザの導波路構造を見直してみる。Here, we will review the waveguide structure of a semiconductor laser from the perspective of suppressing return light noise.
半導体レーザの導波路構造は、一般に利得導波路構造と
屈折率導波路構造との2つに大別される。これらの構造
において、非点収差を小さくすることと尖り光ノイズを
少なくすることとシよトレード・オフの関係にある、す
なわち、屈折率導波路構造においては、非点収差は5〔
μm〕以下と小さく横モードが安定しているために縦モ
ードも単一モードで発振するが、スもクトル線幅が狭い
ために戻り光ノイズによる出力変動μはlOC%〕以七
と大きい。一方、利得導波路構造においては、K((モ
ードが多モード化しスペクトル線幅が広いために戻り光
ノイズによる出力変動駄はl[%]以下となるが、非点
収差は20〔μm〕以」−と大きくなる。したがって、
非点収差と戻り光ノイズの特性を同時に高定させるため
には、屈折率導波路(^Y造と利得導波路構造との双方
の性aを兼ね(iiiiえたものでなければならない。Waveguide structures of semiconductor lasers are generally classified into two types: gain waveguide structures and refractive index waveguide structures. In these structures, there is a trade-off between reducing astigmatism and reducing sharpness noise. In other words, in the refractive index waveguide structure, astigmatism is 5 [
The longitudinal mode also oscillates in a single mode because the transverse mode is small (less than 1 µm) and stable, but the output fluctuation µ due to return light noise is larger than 7 % (1OC%) because the horizontal mode is narrow. On the other hand, in the gain waveguide structure, K ”- becomes larger. Therefore,
In order to simultaneously improve the characteristics of astigmatism and return light noise, the refractive index waveguide (^Y structure) and the gain waveguide structure must have the characteristics (a) of both structures.
ところで、利得分布に関係する電流狭Y描造と作り付は
屈折率導波路構造とが自動的に形成されるような構造の
レーザを自己整合型レーザと云うが、特に市1流狭°q
溝造が結晶表面に出ていないものは内部ストライブ自己
整合型レーザと云う。この型のレーザは、製造プロセス
が容易で商歩留り及び高生産性が期待されると同時に、
活性層を結晶内部に持ってくることができるため、電極
表面からの欠陥の影響を受けにくいこと、マウントに起
因する劣化の影い9を少なくできること、全百電極とし
て接触抵抗を減少させることによって亜鉛拡散等のプロ
セスを省けること、さらに表面を平坦にできるためマウ
ントに有利である等の利点を有する。By the way, a laser with a structure in which a current narrow Y drawing related to gain distribution and a refractive index waveguide structure are automatically formed is called a self-aligned laser.
A laser in which the groove structure does not appear on the crystal surface is called an internal stripe self-aligning laser. This type of laser is expected to have an easy manufacturing process and high commercial yield and productivity.
Because the active layer can be brought inside the crystal, it is less susceptible to defects from the electrode surface, the shadow of deterioration caused by the mount can be reduced9, and the contact resistance is reduced as a total electrode. It has the advantage that processes such as zinc diffusion can be omitted and that the surface can be made flat, which is advantageous for mounting.
従来の内部ストライブ自己整合型レーザとしては、電流
阻止1蛸にV溝を設けたVSIS(V −cl+ann
eled 8ubstrate InnerStrip
e)レーザが知られており、このレーザはモード制イ囲
されており戻り光特性も良いことが判っている。しかし
、V8I8レーザには、L P E法に化して大面積で
均一性の良い結晶成長が11能なM O−CV ])法
では製造できないと云う間j(111がある、この問題
は、光ディスク川レーザとしで犬■生産時代を迎えた半
導体レーザ製造において数台的な欠点となる。As a conventional internal stripe self-aligned laser, VSIS (V -cl+ann
eled 8ubstrate InnerStrip
e) A laser is known, and it is known that this laser is mode-limited and has good return light characteristics. However, the V8I8 laser has a problem that it cannot be manufactured using the MO-CV method, which can be converted into the LPE method to grow crystals with good uniformity over a large area. Optical Disc Laser - This is a drawback for several semiconductor laser manufacturers, which have entered the era of production.
そこで最aj1Mu−CVI)法で弾iす−できる同伸
の内fり1ストライブ自己整合型レーザとして、第11
゛<1に示す如く活性層」二部に内部ストラ・イブ構造
をnする半う!7.休レーザが提案された。なお、図中
IはN −Ga A s基板、2はN −Ga A、/
、Asクラッド層、3はG a A Z A 8活性層
、4はP −G a A sクラッド層、5はN U
a A s ’rfT、流阻止層、6はストライブ状の
溝部、7はP −(J a A A A ”被覆層、8
はP−(jaAs コyタクト層、9,1θは金属′電
極を示している。この構造では、ストライプ状の溝部6
が形成された電流阻止層5によって、活性層3への′川
流注入がストライプ状に限定されると共に、活性層3に
導波された光がクラッド層4反び電流阻止層5にまでし
み出し、その結果ストライブ直下部分に導波されたモー
ドが形成されることになる。Therefore, we developed the 11th one-stripe self-aligned laser, which can be achieved by using the maximum aj1Mu-CVI) method.
゛As shown in <1, the active layer'' has an internal strave structure in the second part! 7. A closed laser was proposed. In the figure, I is an N-GaAs substrate, 2 is an N-GaAs substrate, /
, As clad layer, 3 is Ga AZ A 8 active layer, 4 is P-Ga As clad layer, 5 is N U
aA s'rfT, flow prevention layer, 6 is a striped groove, 7 is P-(J a AA A '' coating layer, 8
is a P-(jaAs coytact layer, and 9 and 1θ are metal electrodes. In this structure, the striped groove 6
The current blocking layer 5 in which the current blocking layer 5 is formed limits the current injection into the active layer 3 into a stripe pattern, and also causes the light guided in the active layer 3 to penetrate into the cladding layer 4 and the current blocking layer 5. As a result, a guided mode is formed directly below the stripe.
このため、利得導波路構造及び屈折率導波路構造が同時
に実現される。Therefore, a gain waveguide structure and a refractive index waveguide structure are simultaneously realized.
しかしながら、この神のレーザにあっては次のような問
題があった。すなわち、電流阻止層5のストライブ状溝
部6の幅で利得分布及び屈折率分布の幅が一為的に決ま
ってしまい、各分布の幅は等しいものとなる、この場合
、屈折率差が十分大きくついてしまい、利得導波路の特
徴はでてこない。したがって、光デイスク用レーザとし
ては、モード制御効果は十分であるが。However, this divine laser had the following problems. That is, the widths of the gain distribution and the refractive index distribution are temporarily determined by the width of the striped grooves 6 of the current blocking layer 5, and the widths of each distribution are equal. In this case, the refractive index difference is sufficient. It becomes large and the characteristics of the gain waveguide cannot be seen. Therefore, the mode control effect is sufficient as a laser for optical disks.
戻り光特性に関しては十分子f’ii足できる結果を得
ることはできなかった。Regarding the return light characteristics, it was not possible to obtain satisfactory results.
本発明の目的は、基本横モード発振で非点収差が小さい
と云う特長を失うことなく、戻り光ノイズによる悪影響
を十分小さくすることができ、光デイスク用光源として
極めて有用な半導体1ノ−ザ装置を1111−供するこ
とにある。An object of the present invention is to provide a semiconductor single-node laser which is extremely useful as a light source for optical disks and which can sufficiently reduce the adverse effects of return light noise without losing the characteristics of fundamental transverse mode oscillation and small astigmatism. The purpose is to provide 1111- equipment.
本発明の彊子は、前記、第1図に示す構造における「:
(流β1111一層に改良を加え、実効屈折率分布の幅
を利得分布の幅よりも広く[ることにある。The structure of the present invention is as follows: in the structure shown in FIG.
(The aim is to further improve β1111 and make the width of the effective refractive index distribution wider than the width of the gain distribution.
すなわち本発明は、化合物半導体1A料からなりダブル
・ヘテロ接合構造を有する半導体レーザ装置において、
活性層に対し基板と反対側に位置するクララFIMhに
該クラッド層とは逆導電型でt記活性層よりバンドギャ
ップの広い電流1([J、 +h層を設け、かつこの電
流阻止層に上記クラッド層まで至るストライブ状の溝部
を設け、この七に1記りラッド層及び電流阻止1−より
屈折率の大きい光吸収に’tを設け、かつこのうし吸収
層の上記溝部」二にME(7:・’f j’31Δより
幅の広いストライプ状の溝部を設け、さらにこの上に−
に記りラツドバ4と同導濱型で上fl[2活性層より屈
折率の小さい被覆11チを設けるようにしたものである
、〔発明の効果〕
本発明によれは、光吸収;!・1による毘吸++Vによ
って、ストライブ部とそれ以夕1のBIS 3)との実
効的な屈折率差がつき、屈折率導波路構造によるモード
制御が行われる。また、電流限tt−+v”qによる″
屯流狭°Y(=よって、活性層への75流注入がストラ
イプ状に限定される、そしてこの場合、電流阻止層によ
る電流ストライプ幅より)゛a吸収層による光吸収スト
ライブ幅の方が広いので、利得分布の幅が実効屈折率分
布の幅よりも狭くなる。したがって、利得専波路借造及
び屈折率分布導波路構造の特長が同時に迂成されること
になり、非点収差が小さいと云う特長を失うことなく戻
り光ノイズによる悪影響を十分小さくすることができる
。That is, the present invention provides a semiconductor laser device made of compound semiconductor 1A material and having a double heterojunction structure,
A current 1 ([J, A stripe-shaped groove extending to the cladding layer is provided, and a groove is provided for light absorption having a higher refractive index than the cladding layer and the current blocking layer, and the above-mentioned groove of the absorption layer is provided with ME. (7: Provide a striped groove wider than 'f j'31Δ, and furthermore -
This is the same conductive type as Radova 4, and is provided with a coating 11 having a lower refractive index than the upper fl[2 active layer. - Due to the absorption ++V caused by 1, there is an effective refractive index difference between the stripe section and the BIS 3) of 1, and mode control is performed by the refractive index waveguide structure. In addition, the current limit tt-+v" due to q"
Current narrowing °Y (=Therefore, the injection of 75 current into the active layer is limited to a stripe shape, and in this case, the width of the light absorption stripe due to the absorption layer is larger than the current stripe width due to the current blocking layer) Since it is wide, the width of the gain distribution becomes narrower than the width of the effective refractive index distribution. Therefore, the features of the gain dedicated waveguide structure and the graded index waveguide structure are simultaneously achieved, and the adverse effects of return light noise can be sufficiently reduced without losing the feature of small astigmatism. .
本発明者等の実験によれば、本発明構造のレーザは、非
点収110(μtn 1以下で基本横モード発振と云う
屈折率導波路構造的特性を示す一方、縦モードは多モー
ド発振となり戻り光ノイズによる出力変動計は1〔チ〕
以下で利得導波路構造的特性をも示した。このように横
モード制御と戻り光特性とに優れると云う効果は。According to experiments conducted by the present inventors, the laser with the structure of the present invention exhibits a refractive index waveguide structural characteristic of fundamental transverse mode oscillation at astigmatism of 110 (μtn 1 or less), while multimode oscillation occurs in the longitudinal mode. Output fluctuation meter due to return light noise is 1 [chi]
The gain waveguide structural characteristics are also shown below. The effect of this is that it has excellent transverse mode control and return light characteristics.
光デイスク用レーザ等への応用を考えた場合極めて大き
いものとなる。When considering the application to lasers for optical disks, etc., it becomes extremely large.
第2図(a)〜(山は本発明の一実施例に係わる半導体
レーザ装置の製造1稈を示す…j面図である。FIGS. 2(a) to 2(a) (the crests are j-plane views showing one culm of manufacturing a semiconductor laser device according to an embodiment of the present invention).
まず、第2図(a)に示す如<N−GaAR基板IJ(
Si ドープ、 n = 1〜2 X l (1” c
m−3)(n = l x l U cm、+厚み1.
5 ttm ) 、 7y F−プGa AA As活
性層13(1%1み0.080 、85 0.14I
Itm)、P−Ga Ae Asクラッド層14(P
= l [)”〜l O”cm、−’ 、 )jiみU
、 2 μm ) 。First, as shown in FIG. 2(a), <N-GaAR substrate IJ (
Si doped, n = 1~2 X l (1” c
m-3) (n = l x l U cm, + thickness 1.
5 ttm), 7y F-Ga AA As active layer 13 (1% 1 0.080, 85 0.14 I Itm), P-Ga Ae As cladding layer 14 (P
= l[)"~l O"cm, -', )jimiU
, 2 μm).
N −(−+ n A A A ” 電流阻止ハ□j
J s (n 〜0゜56 0,411
10 〜10 cm、、l?、み0.3 tt m )
及びN′−QaA8光吸収IMJin=lO’8〜I
O” cm−”。N −(-+ n A A A ” Current blocking h□j
J s (n ~ 0゜56 0,411 10 ~ 10 cm,, l?, mi 0.3 tt m)
and N'-QaA8 optical absorption IMJin=lO'8~I
O” cm-”.
厚み0.5μm )を順次成長形成した。この帛1回目
の結晶成長にはMO−CV 1)法を用い、成長条件は
温度750〔℃〕、V/ll−20,ギヤ!J 7カス
(H,)ノ3ij:;t 〜i 0 [tb/mir+
〕、原料はトリメチルガリウム(T MO: (CH
)、 ()a )。0.5 μm thick) were successively grown. The MO-CV 1) method was used for the first crystal growth of this fabric, and the growth conditions were: temperature 750 [°C], V/ll-20, gear! J 7cas(H,)ノ3ij:;t ~i 0 [tb/mir+
], the raw material is trimethyl gallium (T MO: (CH
), ()a).
トリメチルアルミニウム(’rMA: ((′、83)
、Ag)。Trimethylaluminum ('rMA: ((',83)
, Ag).
アルシン(Asl−L、)、pドーパント:ジエチル亜
鉛(DEZ : (C,H5)、Zn )、n)’−パ
ント:セレン化水素(11□Se)で、成長速度は0.
25 (μnl/min 〕であった。なお、第1回目
の結晶成長では必ずしもI<、10− CV D法を用
いる必要はないが、大面積で均一性の良い結晶成長が可
能なM O−CV D法を用いることは。Arsine (Asl-L, ), p dopant: diethylzinc (DEZ: (C,H5), Zn), n)'-panto: hydrogen selenide (11□Se), and the growth rate is 0.
25 (μnl/min).Although it is not necessarily necessary to use the I<, 10- CVD method in the first crystal growth, MO-, which allows crystal growth with good uniformity over a large area, Using the CVD method.
機序化を考えたjyj合L J) E法に比べて有利で
ある。It is advantageous compared to the jyj combination L J) E method considering the mechanism.
次に、第2図(b)に示す如く光吸収層x6kにソオト
レジヌ)77を塗布し、該レジスト17を幅3〔μm〕
、ピッチ3 (10Cμm )のストライブ状に抜きレ
ジヌトマスクを形成した。続いて、リン酸系エッチャン
ト(温間20℃)を月1い、」1記しジヌト17をマス
クとして光吸収層16及び?i’i、流1り11止層I
5を、クラット層14に達するまで約40秒エツチング
1.た。次いで。Next, as shown in FIG. 2(b), a sootresin 77 is applied to the light absorption layer x6k, and the resist 17 is coated with a width of 3 [μm].
, a resin mask was formed by punching in stripes with a pitch of 3 (10 Cμm). Subsequently, a phosphoric acid-based etchant (warm temperature 20° C.) was applied once a month, and the light absorption layer 16 and i'i, flow 1 11 stop layer I
5 for about 40 seconds until reaching the crat layer 14.1. Ta. Next.
L’ tyエッチ−Vントを用い光吸収層I6のみを4
°シ2図FC+に示す如く1両側0.5 (p Ill
)ずつ約1()秒間−リーイドエツプーングした。こ
のとき、岐路fl’17′rニスドライブ幅はIi!、
7Af、 l!11止層15のハ13分でW+−2C
rt Ill )、光吸収層16の部5分でvv 。Only the light absorbing layer I6 was etched using L' ty etch-Vant.
As shown in Figure 2 FC+, 0.5 on both sides (p Ill
) for about 1 () seconds. At this time, the crossroad fl'17'r varnish drive width is Ii! ,
7Af, l! 11 Stop layer 15 W+-2C in 13 minutes
rt Ill), vv in the portion of the light absorbing layer 16 for 5 minutes.
= 4 C71m ]とした、
次に、レジスト17を除去し、有t4洗浄及び表面の酸
化物を除くためのHCA処理を行ったのち、直ちに試料
を炉内に入れ第2回目の結晶成長をM O−CV I)
法で行った。すなわち、第21’< ((11に示す如
く全面にP−()aAAA80−5 0.48
被用層27 (t)=lOcm +厚み1.2μm)。= 4C71m] Next, the resist 17 was removed, and after t4 cleaning and HCA treatment to remove surface oxides, the sample was immediately placed in a furnace and the second crystal growth was performed. O-CV I)
I went by law. That is, the 21'<((as shown in 11, P-()aAAA80-5 0.48 applied layer 27 (t)=lOcm+thickness 1.2 μm on the entire surface).
P−UaAsコyタクト層、l’2(p=lOcrn
。P-UaAs coytact layer, l'2 (p=lOcrn
.
厚み211 Ill )を順次成長形成した。このとき
、霧出しているクラッドI?J J 4及び電流阻止層
15は共にA 、4濃度が0.45であるから。A thickness of 211 Ill) was sequentially grown. At this time, is the crud I fogging out? This is because both J J 4 and the current blocking layer 15 have an A 4 concentration of 0.45.
LPE法では成長できず、MO−CVI)法或いはM
B E法(分子線エピタキシャル法ンが必要とされる。It cannot be grown using the LPE method, and the MO-CVI method or M
BE method (molecular beam epitaxial method) is required.
次いで、P側電極としてCr −A u層23、IN側
電極としてA u −Oc層24をリレペした。この試
料をへき開によって、共振器長250〔μm〕、幅3
(10(μrn :)のチップにして半導体レーザを完
成した。Next, a Cr-Au layer 23 was formed as a P-side electrode, and an Au-Oc layer 24 was formed as an IN-side electrode. By cleaving this sample, a resonator with a length of 250 [μm] and a width of 3
(A semiconductor laser was completed with a chip of 10 (μrn:).
かくして作成されたレーザの特性を測定したところ1次
のような結果が得られた。tなわち、発振しきい値は7
0(InA)す、下、非ノjさ、収差は1(BμITI
′3以下で茫木横モード発i辰し、5Cm W :]
まで酸多モード発振C1戻り光ノイズによる出力変動用
は1〔チ〕以下であった。この特性は、光デイスク用レ
ーザとして十分!1llfj足できる範囲である。When the characteristics of the thus produced laser were measured, the following first-order results were obtained. t, that is, the oscillation threshold is 7
0(InA), lower, non-aperture, aberration is 1(BμITI
'3 or less, I will start the Itogi horizontal mode, 5Cm W:]
Until now, the output fluctuation due to the acid multimode oscillation C1 return light noise was less than 1 [ch]. This characteristic is sufficient for use as a laser for optical disks! This is within the range of 1llfj.
このように本実施例によれば、茫本横モード発振で非点
収差を十分小さくすることができ。As described above, according to this embodiment, astigmatism can be sufficiently reduced by Isamoto transverse mode oscillation.
かつ戻り光ノイズによるlii力gyハeも十分小さく
することができる。このため、光デイスク用光源として
用いるのに極めてn幼である。また。In addition, the force due to the return light noise can be made sufficiently small. Therefore, it is extremely difficult to use as a light source for optical disks. Also.
M O−CV L)法で形成できるので、人眼生産にも
極めて有功である。さらに、光吸収層16を電流阻止層
15と同じ導電型(N型)としているので、屯流狭°り
がより確実になる等の利点がある。Since it can be formed by the MO-CV L) method, it is extremely effective in producing human eyes. Furthermore, since the light absorption layer 16 is of the same conductivity type (N type) as the current blocking layer 15, there are advantages such as more reliable narrowing of the current.
なお1本発明は上述した実施例に限定されるものではな
い。例えば、前記各層の成長方法はM (J −CV
D法に限らず、 Ivi B E法であってもよい。ま
た、各層の組成比は何ら実施例に限定されるものではな
く、仕様に応じて適宜変jlllu =J能である。例
えば、前記クラッド層のA1組成を0.35として、光
ガイド層としての効果を持たせた高出力レーザとするこ
ともiJ能である。Note that the present invention is not limited to the embodiments described above. For example, the growth method for each layer is M (J −CV
The method is not limited to the D method, and may be the Ivi BE method. Further, the composition ratio of each layer is not limited to the embodiment, and can be changed as appropriate depending on the specifications. For example, it is also possible to set the A1 composition of the cladding layer to 0.35 to obtain a high-output laser that has the effect of functioning as a light guide layer.
さらに、GaA/4As系の材料の代りに、C1aln
P−jGaAAA8P系の化合物半導体材料を用いるこ
とも可能である。また、前記光吸収層の導電型はN型に
限るものではなくP型であっても何ら差し支えない。さ
らに、基板とし7てN型の代りにP型基板を用い、各層
の導電型を逆にすることも”J’ h!?である。その
他、本発明の要旨を逸脱しない範囲で1種々変形して実
施することができる。Furthermore, instead of GaA/4As-based materials, C1aln
It is also possible to use a P-jGaAAA8P-based compound semiconductor material. Further, the conductivity type of the light absorption layer is not limited to N type, and may be P type without any problem. Furthermore, it is also possible to use a P-type substrate instead of an N-type substrate 7 and reverse the conductivity type of each layer.In addition, various modifications may be made without departing from the gist of the present invention. It can be implemented by
【図面の簡単な説明】
第1図は従来の内部ストライブ自己整合型レーザの概略
構造を示すl断面図、第2図(al〜(diは本発明の
一実施例に係わる半導体レーザの製造工程を示す断面図
である。
11−N−(JaAs基板。
J x −=N−Ga ie Asクラッド層、O40
0,45
13・・・アンドープtJ a A −1= A s活
性層、0.85 0.is
14−−−P−Ga A、# Asクラッド層、(1,
5!I O,4B
15−N−(la A、I!−As電流阻止層。
0、Sfi O,4!1
16−N−GaAs光吸収層、
z Z−P−Oa Ae As被覆層、22・・・P−
GaA8コンタクト層。
出願人代理人 弁理士 鈴 江 武 彦第1図
]0
第2図
(a)
6
第2図[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a sectional view showing the schematic structure of a conventional internal stripe self-aligned laser, and FIG. It is a sectional view showing a process. 11-N- (JaAs substrate. Jx-=N-Gaie As cladding layer, O40
0,45 13...Undoped tJ a A -1=A s active layer, 0.85 0. is 14---P-Ga A, #As cladding layer, (1,
5! I O,4B 15-N-(la A,I!-As current blocking layer. 0, Sfi O,4!1 16-N-GaAs light absorption layer, z Z-P-Oa Ae As coating layer, 22.・・P-
GaA8 contact layer. Applicant's representative Patent attorney Takehiko Suzue Figure 1] 0 Figure 2 (a) 6 Figure 2
Claims (2)
(トマ造をイ1する半導1入レーザ装置において、活性
層の基板と反対側面上に成長形成された該活性層より屈
折率の小さいクラッド層と、このクラッド層上に成長形
成され、かつストライブ状の11h部が形成された上記
クラッド層とは逆導長形成され、かつ1配溝部上に該溝
部より幅の広いストライプ状の溝部が形成された前記ク
ラッド層及び/[、IAE阻止層より屈折率の大きい光
吸収層と、前記各6部を含み光吸収層上に成長形成され
た耐1記クラッド層と同所電型で前記活性1・ηより屈
折率の小さい被覆層とを具備してなることを特徴とする
半導体レーザ装置。(1) In a semiconductor single-input laser device that is made of a compound semiconductor material and has a double heterojunction, a cladding layer with a refractive index smaller than that of the active layer is grown on the side of the active layer opposite to the substrate. The cladding layer is grown on this cladding layer, and has a stripe-shaped groove portion having a length opposite to that of the cladding layer in which the striped 11h portion is formed, and is wider than the groove portion on one groove portion. The formed cladding layer and / 1. A semiconductor laser device comprising: a coating layer having a refractive index smaller than active 1·η.
型であることを特徴とする特許請求の範囲第1項記載の
半導体レーザ装置。(2) The semiconductor laser device according to claim 1, wherein the light absorption layer has the same conductivity type as the 11J current blocking layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11137683A JPS603181A (en) | 1983-06-21 | 1983-06-21 | Semiconductor laser device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11137683A JPS603181A (en) | 1983-06-21 | 1983-06-21 | Semiconductor laser device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS603181A true JPS603181A (en) | 1985-01-09 |
Family
ID=14559614
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11137683A Pending JPS603181A (en) | 1983-06-21 | 1983-06-21 | Semiconductor laser device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS603181A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01302886A (en) * | 1988-05-31 | 1989-12-06 | Matsushita Electric Ind Co Ltd | Semiconductor laser apparatus |
EP0444366A2 (en) * | 1990-02-28 | 1991-09-04 | Kabushiki Kaisha Toshiba | Semiconductor laser with inverse mesa-shaped groove section |
JPH03209897A (en) * | 1990-01-12 | 1991-09-12 | Nec Corp | Semiconductor laser |
JPH03268471A (en) * | 1990-03-19 | 1991-11-29 | Sharp Corp | Semiconductor laser and manufacturing method thereof |
JPH03296290A (en) * | 1990-04-13 | 1991-12-26 | Sharp Corp | Semiconductor laser element and manufacture thereof |
EP1039600A2 (en) * | 1999-03-24 | 2000-09-27 | Sanyo Electric Co., Ltd. | Semiconductor laser device and method of fabricating the same |
US6465144B2 (en) | 2000-03-08 | 2002-10-15 | Canon Kabushiki Kaisha | Magnetic toner, process for production thereof, and image forming method, apparatus and process cartridge using the toner |
US7043175B2 (en) | 2000-11-15 | 2006-05-09 | Canon Kabushiki Kaisha | Image forming method and apparatus |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5638885A (en) * | 1979-09-07 | 1981-04-14 | Fujitsu Ltd | Light emission semiconductor device |
JPS56135994A (en) * | 1980-03-28 | 1981-10-23 | Fujitsu Ltd | Semiconductor light emitting device |
-
1983
- 1983-06-21 JP JP11137683A patent/JPS603181A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5638885A (en) * | 1979-09-07 | 1981-04-14 | Fujitsu Ltd | Light emission semiconductor device |
JPS56135994A (en) * | 1980-03-28 | 1981-10-23 | Fujitsu Ltd | Semiconductor light emitting device |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01302886A (en) * | 1988-05-31 | 1989-12-06 | Matsushita Electric Ind Co Ltd | Semiconductor laser apparatus |
JPH03209897A (en) * | 1990-01-12 | 1991-09-12 | Nec Corp | Semiconductor laser |
EP0444366A2 (en) * | 1990-02-28 | 1991-09-04 | Kabushiki Kaisha Toshiba | Semiconductor laser with inverse mesa-shaped groove section |
JPH03268471A (en) * | 1990-03-19 | 1991-11-29 | Sharp Corp | Semiconductor laser and manufacturing method thereof |
JPH03296290A (en) * | 1990-04-13 | 1991-12-26 | Sharp Corp | Semiconductor laser element and manufacture thereof |
EP1039600A2 (en) * | 1999-03-24 | 2000-09-27 | Sanyo Electric Co., Ltd. | Semiconductor laser device and method of fabricating the same |
EP1039600A3 (en) * | 1999-03-24 | 2003-10-15 | Sanyo Electric Co., Ltd. | Semiconductor laser device and method of fabricating the same |
US6904071B1 (en) | 1999-03-24 | 2005-06-07 | Sanyo Electric Co., Ltd. | Semiconductor laser device and method of fabricating the same |
US6465144B2 (en) | 2000-03-08 | 2002-10-15 | Canon Kabushiki Kaisha | Magnetic toner, process for production thereof, and image forming method, apparatus and process cartridge using the toner |
US7043175B2 (en) | 2000-11-15 | 2006-05-09 | Canon Kabushiki Kaisha | Image forming method and apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5143863A (en) | Method of manufacturing semiconductor laser | |
JPS603181A (en) | Semiconductor laser device | |
JPH05327112A (en) | Manufacture of semiconductor laser | |
JPS61190994A (en) | Semiconductor laser element | |
JPS641952B2 (en) | ||
US5113405A (en) | Semiconductor diode laser having a stepped effective refractive index | |
JPS603178A (en) | Semiconductor laser device | |
JPH01102982A (en) | Semiconductor laser device | |
JPS60167488A (en) | Semiconductor laser device | |
JPS60137088A (en) | Semiconductor laser device | |
JP2518221B2 (en) | Semiconductor laser device | |
JPS61112392A (en) | Semiconductor laser and manufacture thereof | |
JPS603177A (en) | Semiconductor laser device | |
JPS59171187A (en) | Semiconductor laser device | |
JPH0437597B2 (en) | ||
JPH0282678A (en) | Manufacture of semiconductor light emitting device | |
JP2949927B2 (en) | Semiconductor laser and method of manufacturing the same | |
JPS603173A (en) | Semiconductor laser device | |
JPS59163883A (en) | Semiconductor laser device and manufacture thereof | |
JPS6066891A (en) | Semiconductor laser device | |
JP2525776B2 (en) | Method for manufacturing semiconductor device | |
JPS6151984A (en) | Semiconductor laser device | |
JPH0559594B2 (en) | ||
JPH04229678A (en) | Semiconductor laser device | |
JPS6262580A (en) | Semiconductor laser |