JPS603177A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS603177A
JPS603177A JP11137283A JP11137283A JPS603177A JP S603177 A JPS603177 A JP S603177A JP 11137283 A JP11137283 A JP 11137283A JP 11137283 A JP11137283 A JP 11137283A JP S603177 A JPS603177 A JP S603177A
Authority
JP
Japan
Prior art keywords
layer
striped
refractive index
convex portion
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11137283A
Other languages
Japanese (ja)
Inventor
Naohiro Shimada
島田 直弘
Masasue Okajima
岡島 正季
Yuhei Muto
武藤 雄平
Naoto Mogi
茂木 直人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11137283A priority Critical patent/JPS603177A/en
Publication of JPS603177A publication Critical patent/JPS603177A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2231Buried stripe structure with inner confining structure only between the active layer and the upper electrode

Abstract

PURPOSE:To obtain a laser device, an astigmatism and noises therefrom are small and which is suitable for a light source for an optical disk, by simultaneously forming refractive-index waveguide structure and gain waveguide structure in the direction of a resonator and independently selecting structural parameters determining the effective refractive-index difference of a refractive-index waveguide section and the gain distribution of a gain waveguide section. CONSTITUTION:An n type Ga0.55Al0.45As clad layer 2, an un-doped Ga0.85Al0.15 As active layer 3 and a p type Ga0.65Al0.35As optical guide layer 4 are laminated on an n type GaAs substrate 1 and grown in a liquid phase in an epitaxial manner, and a latticed optical guide with striped projecting sections 5 and flat sections 6 is formed on the surface of the layer 4 through etching by a phosphoric acid group etchant while being covered with a resist mask. A p type Ga0.55Al0.45As clad layer 7 and a p type GaAs contact layer 8 are grown on the latticed optical guide through a molecular-beam epitaxial method, the layer 8 is changed into a plurality of striped shapes through etching, and sections among the striped layers 8 are buried with oxide films 9. Metallic electrodes 11 and 12 are each applied on the films 9 and the back of the substrate 1.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、利得導波路(1,f造及び屈折率導波路構造
への双方を備えた半導体レーザ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor laser device having both a gain waveguide (1, f structure and a refractive index waveguide structure).

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、GaALAs系等の■−v族化合物半導体材料を
用いた半導体レーザば、DAD(ディジタル・オーディ
オ・ディスク)を始めとして光ディスク・ファイル等の
情報処理機器への応用が進められている。光デイスク用
の半導体レーザにおいては、レーザ光のビームを小さく
絞シ込む必要があシ、光学系を簡単にすると云う点から
基本横モード発振で非点収差が小さいことが要求される
。また、光ディスクに応用する点から次のような問題点
のあることが明らかになっている。すなわち、光ディス
ク・ファイル等においては、ディスクに当てた光の反射
光の強度を検出して情報を読み出すと云う機構上、反射
光の一部が半導体レーザに戻っていくのは避けられない
。このため、上記半導体レーザは該レーザの両端面が作
る共振器の他に、レーザ端面とディスク面とで形成され
る共振器も存在することになシ、2重共振器を持つレー
ザとなる。そして、ディスク面が回転中に振動すると、
後者の共振器長が変化することになシ、スペクトルや光
出力等に変動が生じ、所6目戻シ光ノイズが発生する。
In recent years, semiconductor lasers using ■-v group compound semiconductor materials such as GaALAs have been increasingly applied to information processing equipment such as DADs (digital audio disks) and optical disk files. In semiconductor lasers for optical disks, it is necessary to narrow the laser beam to a small size, and in order to simplify the optical system, fundamental transverse mode oscillation and small astigmatism are required. Furthermore, the following problems have been found when applied to optical discs. That is, in optical disk files and the like, due to the mechanism of reading out information by detecting the intensity of the reflected light of the light irradiated on the disk, it is inevitable that some of the reflected light returns to the semiconductor laser. Therefore, in addition to the resonator formed by both end faces of the laser, the semiconductor laser also has a resonator formed by the laser end face and the disk surface, resulting in a laser having a double resonator. When the disk surface vibrates while rotating,
The latter change in resonator length causes fluctuations in the spectrum, optical output, etc., and optical noise occurs at some points.

ここで、戻シ光ノイズを抑制すると云う観点から半導体
レーザの導波路構造を見直してみる。
Here, we will review the waveguide structure of a semiconductor laser from the viewpoint of suppressing return optical noise.

半導体レーザの導波路構造は、一般に利得導波路構造と
屈折率導波路構造との2つに大別される。これらの構造
において、非点収差を小さくすることと戻シ光ノイズを
少なくすることとはトレード・オフの関係にある。すな
わち、屈折率導波路構造においては、非点収差は5〔μ
rn5〕以下と小さく横モードが安定しているために縦
モードも単一モードで発振するが、スペクトル線幅が狭
いために戻シ光ノイズによる出力変動量は10〔6以上
と大きい。一方、利得導波路構造においては、縦モード
が多モード化しスペクトル線幅が広いために戻シ光ノイ
ズによる出力変動量は1〔チ〕以下となるが、非点収差
は20〔μm〕以上と大きくなる。
Waveguide structures of semiconductor lasers are generally classified into two types: gain waveguide structures and refractive index waveguide structures. In these structures, there is a trade-off between reducing astigmatism and reducing reflected light noise. That is, in the refractive index waveguide structure, the astigmatism is 5 [μ
Since the transverse mode is small and stable at less than rn5], the longitudinal mode also oscillates in a single mode, but because the spectral line width is narrow, the amount of output fluctuation due to feedback noise is large at more than 10[6]. On the other hand, in the gain waveguide structure, the longitudinal mode becomes multi-mode and the spectral linewidth is wide, so the amount of output fluctuation due to return optical noise is less than 1 [μm], but the astigmatism is more than 20 [μm]. growing.

このように従来、屈折率導波路構造成いは利得導波路構
造の単独では、非点収差及び戻シ光ノイズの双方を、光
デイスク用半導体レーザに実用上許容される範囲内に抑
えることはできなかった。
As described above, conventionally, it has been impossible to suppress both astigmatism and return noise within the range that is practically acceptable for semiconductor lasers for optical disks using only the refractive index waveguide structure or the gain waveguide structure. could not.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、基本横モード発振で非点収差が小さい
と云う特性を失うことなく、戻シ光ノイズによる悪影響
を十分小さくすることができ、光デイスク用光源として
極めて有用な半導体レーザ装置を提供することにちる。
An object of the present invention is to provide a semiconductor laser device which is extremely useful as a light source for optical disks, which can sufficiently reduce the adverse effects of reflected light noise without losing its characteristics of fundamental transverse mode oscillation and small astigmatism. I am determined to provide it.

〔発明の概要〕[Summary of the invention]

本発明の骨子は、屈折率導波路構造と利得導波路構造と
の双方の特長を兼ね備えた構造を実現することにある。
The gist of the present invention is to realize a structure that combines the features of both a refractive index waveguide structure and a gain waveguide structure.

屈折率導波路構造として、最近活性層上の光ガイド層に
ストライプ状の凸部を設けた、所謂リプストライプ構造
が提案されている。しかし、単独の屈折率導波路構造で
は横モードが非常に良く制御され、スペクトルが単一モ
ードでかつ線幅が狭く々シコヒーレンシーが高く、戻シ
光による出力変動量が太きいためDAD用レーザとして
適していない。
As a refractive index waveguide structure, a so-called lipstripe structure in which a light guide layer on an active layer is provided with striped convex portions has recently been proposed. However, in a single refractive index waveguide structure, the transverse mode is very well controlled, the spectrum is a single mode, the linewidth is narrow, the coherency is high, and the amount of output fluctuation due to returned light is large, so it is difficult to use a DAD laser. Not suitable as.

そこで本発明者等は上記ストライプ方向に屈折率導波路
及び利得導波路の双方を形成することを目的として鋭意
研究を重ねた結果、ストライプ状凸部の幅を変えたシ、
該凸部を共振器方向の全域でなく一部に形成すればよい
のを見出した。すなわち、ストライプ状凸部の幅を一部
広くした場合、蚊帳の広い部分では利得導波路構造とな
り、それ以外の部分では屈折率導波路構造となることが
判明した。また、ストライプ状凸部を共振器方向の一部
に形成した場合、該凸部では屈折率導波路構造となシ、
それ以外の部分では利得導波路構造となることが判明し
た。
Therefore, the inventors of the present invention have conducted intensive research with the aim of forming both a refractive index waveguide and a gain waveguide in the stripe direction, and as a result, they have found that the width of the striped convex portions is changed.
It has been found that the convex portion may be formed not over the entire area in the direction of the resonator, but only in a portion thereof. That is, it has been found that when the width of the striped convex portion is partially widened, the mosquito net has a gain waveguide structure in the wide part, and a refractive index waveguide structure in other parts. In addition, when a striped convex portion is formed in a part of the resonator direction, the convex portion does not have a refractive index waveguide structure.
It was found that the other parts have a gain waveguide structure.

本発明はこのような点に着目し、平坦に形成された活性
層上に成長形成され、かつその表面にストライプ状の凸
部が形成された該活性層よシ屈折率の小さい光ガイド層
と、この光ガイド層上に成長形成された該光ガイド層よ
υ屈折率の小さいクラッド層と、このクラッド層上に形
成され上記ストライプ状凸部を含む部分にストライプ状
に電流を注入する電流狭窄構造とを具備した半導体レー
ザ装置において、前記光ガイド層を共振器方向に対し前
記ストライプ状凸部を形成した部分と該凸部を形成し々
い平坦な部分とで構成するか、或いはそのストライプ状
凸部が1本のストライプ中で少なくとも2種の幅を持つ
よう構成したものである。
The present invention focuses on such points, and includes a light guide layer that is grown on a flat active layer and has striped convex portions formed on its surface, and has a smaller refractive index than the active layer. , a cladding layer having a smaller refractive index than that of the optical guide layer grown on the optical guide layer, and a current confinement formed on the cladding layer to inject a current in a stripe pattern into the portion including the stripe-shaped convex portion. In the semiconductor laser device having a structure, the optical guide layer is composed of a portion where the striped convex portion is formed in the direction of the resonator and a flat portion where the convex portion is formed, or the stripe The convex portions are configured to have at least two different widths in one stripe.

また本発明は、上記ストライプ状凸部が活性層よりも基
板側の層に至るまで形成されている半導体レーザ装置に
おいて、活性層を含む半導体層を共振器方向に対しスト
ライプ状凸部を形成した部分と該凸部を形成しない平坦
な部分とで構成するか、或いはそのストライプ状凸部が
1本のストライプ中で少なくとも2種の幅を持つよう構
成したものである。
Further, the present invention provides a semiconductor laser device in which the striped convex portions are formed extending to a layer closer to the substrate than the active layer, in which the striped convex portions are formed in the semiconductor layer including the active layer in the direction of the resonator. The striped protrusions may have at least two different widths in one stripe.

なお、屈折率導波路構造部分の実効的屈折率差は各半導
体層の組成(バンドギャップ、屈折率)、厚さ、特に活
性層の厚さd(d=0.1μm)、及びストライプ状凸
部の厚さとその段差に依存する。また、基本横モード発
振のためには凸部の幅に上限があシ、実効率折率差との
関係もある。これらの関係を、材料をGaAtAsとし
てモード計算した結果の一例を第18図に示す。ここで
、実線Aは第2図に示すリプストライプ(ストライプ状
凸部)の幅Wと光ガイド層の段差Δtとの関係を示し、
破線Bは実効屈折率差Δ”eff と上記段差Δtとの
関係を示している。そして、実線Aを境界とし斜綜側が
基本横モード発振が得られる領域である。まだ、利得導
波路構造部分の利得分布は、電極ストライプの幅、各層
の厚さ、特に電極から活性層までの距離、及び各層の抵
抗率に依存する。
The effective refractive index difference in the refractive index waveguide structure depends on the composition (band gap, refractive index) and thickness of each semiconductor layer, especially the thickness d of the active layer (d = 0.1 μm), and the striped convexity. It depends on the thickness of the part and its step. Furthermore, for fundamental transverse mode oscillation, there is an upper limit to the width of the convex portion, and there is also a relationship with the effective refractive index difference. FIG. 18 shows an example of the results of mode calculation of these relationships using GaAtAs as the material. Here, the solid line A indicates the relationship between the width W of the lipstripe (stripe-like convex portion) shown in FIG. 2 and the step difference Δt of the optical guide layer,
The broken line B shows the relationship between the effective refractive index difference Δ”eff and the above-mentioned step difference Δt.The area on the diagonal side with the solid line A as the boundary is the region where fundamental transverse mode oscillation can be obtained. The gain distribution of depends on the width of the electrode stripes, the thickness of each layer, especially the distance from the electrode to the active layer, and the resistivity of each layer.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、共振器方向に対し屈折率導波路構造及
び利得導波路構造の双方を同時に形成することができる
。そして、屈折率導波路部分の実効屈折率差及び利得導
波路部分における利得分布等を決定する構造パラメータ
を全て独立に選ぶことができる。さらに、共振器長の中
における屈折率等波路部分と利得導波路部分との割合を
任意に変えることができる。以上のことから、戻シ光ノ
イズ特性に対する2つの導波路構造の依存性を見ること
ができた。したがって、2つの導波路部分の割合及び各
種の構造パラメータを適当に設定することによって、光
デイスク用レーザに好適する特性、すなわち基本横モー
ド発振で非点収差が十分小さく、かつ戻υ光ノイズによ
る出力変動量も十分小さい特性を得ることができる。
According to the present invention, both the refractive index waveguide structure and the gain waveguide structure can be formed simultaneously in the cavity direction. All of the structural parameters that determine the effective refractive index difference in the refractive index waveguide portion, the gain distribution in the gain waveguide portion, etc. can be independently selected. Furthermore, the ratio of the equal refractive index waveguide portion and the gain waveguide portion in the resonator length can be arbitrarily changed. From the above, it was possible to see the dependence of the two waveguide structures on the return light noise characteristics. Therefore, by appropriately setting the ratio of the two waveguide sections and various structural parameters, it is possible to obtain characteristics suitable for an optical disk laser, that is, fundamental transverse mode oscillation with sufficiently small astigmatism, and the ability to suppress return υ optical noise. Characteristics in which the amount of output fluctuation is also sufficiently small can be obtained.

本発明者等の実験によれば、GaAAAsを材料とし、
実効屈折率差!1=2X10 、凸部の幅W=2.5〔
μm〕、ストライプ状電極の幅3.5〔μm〕で共振器
の片側にのみ屈折率導波路を持つ場合に横モードは基本
モードで発振し、共振器の片側45 (%)以上に凸部
があると屈折率導波路の性質を示し、非点収差3〔μm
〕以下、縦モードは単一モード、戻り光ノイズによる出
力変動量は10 [%E以上であった。また、共振器の
片側5〜45 C%)に凸部が存在する場合、屈折率・
利得導波路型の性質を示し、非点収差5〜10〔μm〕
、縦モードは3 [mW’:]まで多モード、それ以上
では単一モード型傾向は見えるがまだ多モード、戻り光
ノイズによる出力変動量は1〔係〕以下であった。さら
に、共振器の片側5〔チ〕以下に凸部が存在する場合、
利得導波路型の性質を示し、非点収差30〔μ77も〕
、縦モードは多モード、戻シ光ノイズによる出力変動量
は1〔チ〕以下であるのが判った。ここで、上記凸部が
5〜45 [%)の場合の非点収差5〜10〔μm〕、
戻シ光ノイズによる出力変動量1〔チ〕以下と云う特性
は、光デイスク用レーザとして極めて好適するものであ
る。
According to the experiments of the present inventors, using GaAAAs as a material,
Effective refractive index difference! 1=2X10, width of convex part W=2.5 [
If the width of the striped electrode is 3.5 [μm] and the refractive index waveguide is provided only on one side of the resonator, the transverse mode oscillates in the fundamental mode, and there is a convex portion on one side of the resonator of 45% or more. If there is, it indicates the properties of a refractive index waveguide, and the astigmatism is 3 [μm
] Hereinafter, the longitudinal mode was a single mode, and the amount of output fluctuation due to return light noise was 10%E or more. In addition, if a convex portion exists on one side of the resonator (5 to 45 C%), the refractive index
Shows gain waveguide type properties, astigmatism 5-10 [μm]
, the longitudinal mode was multimode up to 3 [mW':], and above that, a single mode tendency appeared, but it was still multimode, and the amount of output variation due to return light noise was less than 1 [mW']. Furthermore, if there is a convex part below 5 [chi] on one side of the resonator,
Shows gain waveguide type properties, astigmatism 30 [μ77]
It was found that the longitudinal mode is multi-mode, and the amount of output fluctuation due to return light noise is less than 1 [chi]. Here, the astigmatism is 5 to 10 [μm] when the convex portion is 5 to 45 [%],
The characteristic that the amount of output variation due to return light noise is 1 [chi] or less is extremely suitable for use as a laser for optical disks.

〔発明の実施例〕[Embodiments of the invention]

第3図(a)〜(f)は本発明の一実施例に係わる半導
体レーザ装置の製造工程を示す斜視図である。
FIGS. 3(a) to 3(f) are perspective views showing the manufacturing process of a semiconductor laser device according to an embodiment of the present invention.

まず、第3図(a)に示す如(N−GaAs基板1(n
−1〜2XiOcm )上にN−Ga o 、55 A
to、45 Asクラッド層2 (n=lX10 (M
 %厚さ1.511qn ) 、アンドープG Ill
 o 、as AZo 、15 AS活性層3(厚さ0
.1μm)及びP −Ga O,65AAo、35 A
s光ガイドM 4 (p=1x10 cm 、厚さ0.
5μ脩)を順次成長形成した。
First, as shown in FIG. 3(a) (N-GaAs substrate 1 (n
-1~2XiOcm) on top of N-Gao, 55A
to, 45 As cladding layer 2 (n=lX10 (M
% thickness 1.511qn), undoped G Ill
o, as AZo, 15 AS active layer 3 (thickness 0
.. 1μm) and P-GaO,65AAo,35A
s light guide M4 (p=1x10 cm, thickness 0.
5 μm) were sequentially grown and formed.

8 −3 この第1回目の結晶成長にはMO−CVD法(有機金属
気相成長法)を用い、成長条件は温度750〔℃〕、f
=20、キャリアガス(H2)の流量〜10 (A’/
1nin:) 、原料はトリメチルガリウム(TMG 
: (CH)3Ga’)、トリメチルア、IL/ミニウ
ム(TMA : (CH3)5AA)、アルシン(As
Hρ、pドーパント:ジエチル亜鉛(DEZ : (C
2H5)2Zn)、nドーパント:セレン化水素(H2
S e )で、成長速度は0.25 DJ/m in 
)であった。なお、第1回目の結晶成長では必ずしもM
O−CVD法を用いる必要はないが、犬面債で均一性の
良い結晶成長が可能なMO−CVp法を用いることは、
量産化を考えた場合LPE法に比べて有利である。
8-3 MO-CVD (metal-organic chemical vapor deposition) was used for this first crystal growth, and the growth conditions were a temperature of 750 [°C], f
=20, carrier gas (H2) flow rate ~10 (A'/
1nin:), the raw material is trimethyl gallium (TMG
: (CH3Ga'), trimethyla, IL/minium (TMA: (CH3)5AA), arsine (As
Hρ, p dopant: diethyl zinc (DEZ: (C
2H5)2Zn), n dopant: hydrogen selenide (H2
S e ), and the growth rate is 0.25 DJ/min
)Met. Note that the first crystal growth does not necessarily require M.
Although it is not necessary to use the O-CVD method, it is possible to use the MO-CVp method, which allows crystal growth with good uniformity in a uniform manner.
When mass production is considered, this method is more advantageous than the LPE method.

次に光ガイド層4上にフォト・レジスト・マスク(図示
せず)を作シ、リン酸系エツチヤント(温度20℃)で
約10秒間のエツチングを行い、第3図(b)に示す如
く光ガイド層4表面に幅2.5 [7上m〕、長さ30
0〔μm〕、段差0.2 Cttm〕のストライプ状凸
部5と、長さ300〔μm〕のエツチングされていない
平坦な部分6とを長さ300〔μ悟〕ピッチで周期的に
形成した。なお、これらの値は前記第1図から実効屈折
率差2X10−3以上、基本横モード発振が得られる条
件を満たすように決めればよい。また、1つのチップに
ついて見ると、光導波路層4は第3図(C)に示す如く
共振器方向に幅2.5〔μm〕、300〔越〕のストラ
イプ状凸部5と、該凸部5と同じ高さの平坦部6とを有
することになる。
Next, a photoresist mask (not shown) is made on the light guide layer 4, and etched with a phosphoric acid etchant (temperature 20°C) for about 10 seconds, so that the photoresist mask (not shown) is exposed as shown in FIG. 3(b). Width 2.5 [7 m above] and length 30 on the surface of guide layer 4
Striped convex portions 5 with a height of 0 [μm] and a step difference of 0.2 Cttm and unetched flat portions 6 with a length of 300 [μm] were formed periodically at a pitch of 300 [μm]. . Note that these values may be determined from FIG. 1 so as to satisfy the condition that the effective refractive index difference is 2×10 −3 or more and fundamental transverse mode oscillation is obtained. In addition, when looking at one chip, the optical waveguide layer 4 has a striped convex portion 5 with a width of 2.5 μm and 300 μm in the cavity direction, and the convex portion as shown in FIG. 3(C). 5 and a flat portion 6 of the same height.

次に、前記フォト・レジスト・マスクを除去したのち、
第2回目の結晶成長をMO−CVD法で行った。すなわ
ち、第3図(d)に示す如く光ガイド層4上に)’ −
Gao、5sAto、xs”クラッド層7(p= I 
X 10’ 8cm−3,厚さ0.3 ttm)及びP
−GaAs コンタクト層8 (P””lXl019c
m−3、厚さ0.5μm)を順次成長形成した。このと
き、光ガイド層4のAt濃度が0.35であるから、L
PE法では成長できず、MO−CVD法或いはMBE法
(分子線エピタキシャル法)が必要とされる。次いで、
コンタクト層8にZnを拡散し、コンタクト層8中のキ
ャリア濃度を上げた。次いで、第3図(、)に示す如く
コンタクト層8を1つのチップに対し都3.5〔μm〕
のストライプとなるよう残して選択エツチングし、露出
したクラッド層7の表面に酸化膜9を2000(久〕形
成し、HCt処理によりコンタクト層8上の酸化膜9を
除去して電極ストライプを形成した。
Next, after removing the photoresist mask,
The second crystal growth was performed by MO-CVD method. That is, as shown in FIG. 3(d), on the light guide layer 4)' -
Gao, 5sAto, xs'' cladding layer 7 (p=I
X 10' 8cm-3, thickness 0.3 ttm) and P
-GaAs contact layer 8 (P""lXl019c
m-3, thickness 0.5 μm) were successively grown. At this time, since the At concentration of the light guide layer 4 is 0.35, L
It cannot be grown using the PE method, and requires the MO-CVD method or the MBE method (molecular beam epitaxial method). Then,
Zn was diffused into the contact layer 8 to increase the carrier concentration in the contact layer 8. Next, as shown in FIG.
An oxide film 9 was formed on the exposed surface of the cladding layer 7 for 2000 years by selective etching, leaving stripes as shown in FIG. .

次に、P型電極としてGr−Au層11及びN型電極と
してAu−Ge層12を被着しオーミック・コンタクト
をとった。この試料をへき開によって第3図(f)に示
す如く共振器長250〔μm〕、幅300〔μm〕のチ
ップとし、半導体レーザを完成した。
Next, a Gr-Au layer 11 as a P-type electrode and an Au-Ge layer 12 as an N-type electrode were deposited to establish ohmic contact. This sample was cleaved into a chip with a cavity length of 250 [μm] and a width of 300 [μm] as shown in FIG. 3(f), and a semiconductor laser was completed.

かくして作成された半導体レーザの特性を調べたところ
、基本横モード発振で非点収差が十分小さく、かつ戻)
光ノイズによる出力変動量も十分小さいものが得られた
。また、共振器中での屈折率導波路部分と利得導波路部
分との割合を種々変化させたところ、モードガイドに関
して〔発明の効果〕の項で述べたような結果が得られた
When we investigated the characteristics of the semiconductor laser thus created, we found that it oscillated in the fundamental transverse mode, had sufficiently small astigmatism, and
The amount of output fluctuation due to optical noise was also sufficiently small. Furthermore, when the ratio of the refractive index waveguide portion and the gain waveguide portion in the resonator was varied, the results described in the section [Effects of the Invention] regarding the mode guide were obtained.

以上のことから、横モード制御に優れた戻υ光に強い特
性のレーザを得るには、本実施例の構造で例えば共振器
長250t、trnC屈折率導波路部分50μ惧、利得
導波路部分200μm)、幅300〔μm〕のチップに
すればよいことが判る。実際、この構造での特性を調べ
たところ、発振しきい値70 [mA)以下、微分量子
効率15〔擾〕、非点収差10〔μm〕以下で基本様モ
ード発振し、縦モードは5 、(論)まで多モードで、
戻り元ノイズによる出力変動量は1〔チ〕以下で、光デ
イスク用レーデとして極めて好適するものであった。
From the above, in order to obtain a laser with excellent transverse mode control and strong characteristics against returned light, the structure of this example has a cavity length of 250t, a trnC refractive index waveguide portion of 50μ, and a gain waveguide portion of 200μ. ), it can be seen that a chip with a width of 300 [μm] is sufficient. In fact, when we investigated the characteristics of this structure, we found that the fundamental-like mode oscillates below the oscillation threshold of 70 [mA], the differential quantum efficiency is 15 [μm], and the astigmatism is below 10 [μm], and the longitudinal mode is 5 [μm] or less. (argument) in multiple modes,
The amount of output fluctuation due to return source noise was less than 1 [chi], making it extremely suitable as a radar for optical disks.

第4図は他の実施例の概略’479造を示す斜視図であ
る。なお、第3図(f)と同一部分には同一符号を付し
て、その詳しい説明は省略する。先に説明した実施例は
屈折率導波効果を生じせしめるに必要なストライプ状凸
部が光ガイド層4にのみ形成されているのに対し、本実
施例はストライプ状凸部が活性層3を含むように形成さ
れている点で異なる。本実施例の場合、活性層3は活性
層3よシ低屈折率な層(クラッド層7)によって四方を
取シ囲まれておシ、屈折率導波構造を設けた効果はより
確実に得られる。すなわち、先の実施例の場合、利得導
波路部分において導波されてきた光は屈折率導波路部分
に結合し、屈折率導波部分の端面から非点収差の小さい
レーザ光として放射されるが、屈折率導波部分に結合し
なかったレーザ光成分もストライプ状凸部両側の活性層
に導波され、同様に端面から放射されることになる。こ
のため、レーザ光を微小スポット状に絞り込んだ時、結
像面のパターンは屈折率導波路に結合したレーザ光によ
る微少スポットに屈折率導波路に結合しなかった成分に
よる幅広いノターンが重畳されることになυ、半導体レ
ーザ光をできるだけ小さいスポットに結像することが必
要な光デイスク装置へ応用する場合には、信号検出方式
等によっては問題となることがおる。
FIG. 4 is a perspective view schematically showing the structure of another embodiment. Note that the same parts as in FIG. 3(f) are given the same reference numerals, and detailed explanation thereof will be omitted. In the previously described embodiment, the striped convex portions necessary to produce the refractive index waveguide effect are formed only on the optical guide layer 4, whereas in this embodiment, the striped convex portions are formed on the active layer 3. It differs in that it is formed to include In the case of this example, the active layer 3 is surrounded on all sides by a layer (cladding layer 7) with a lower refractive index than the active layer 3, and the effect of providing the refractive index waveguide structure can be obtained more reliably. It will be done. That is, in the case of the previous embodiment, the light guided in the gain waveguide section is coupled to the refractive index waveguide section, and is emitted from the end face of the refractive index waveguide section as a laser beam with small astigmatism. , the laser beam components not coupled to the refractive index waveguide portion are also guided to the active layer on both sides of the striped convex portion, and are similarly emitted from the end face. Therefore, when the laser beam is narrowed down to a minute spot, the pattern on the imaging plane is such that the minute spot due to the laser beam coupled to the refractive index waveguide is superimposed with a wide range of notars due to components that are not coupled to the refractive index waveguide. In particular, when applied to an optical disk device in which it is necessary to image a semiconductor laser beam into a spot as small as possible, problems may arise depending on the signal detection method.

これに対し、本実施例では、ストライプ状凸部の両側に
は活性層が存在せず、まだストライプ状凸部両側に洩れ
た光を導波する何らの構造も存在しない。このため、屈
折率導波路に結合しなかった光も端面に達するまでには
十分床がり、したがって本実施例の半導体レーザの場合
にはレーザ光を微少スポットに絞シ込んだ時にも微少ス
ポット状パターンの周囲に裾引きの成分が現われること
はない。以上のように、本実施例の半導体レーザの方が
先の実施例の半導体レーザより、レーザ光ビームの結像
特性が良い利点があるが、基本横モードを安定に実現す
るだめのストライプ状凸部の幅の条件が第1の実施例の
場合よシより厳しくなる欠点もある。
On the other hand, in this example, there is no active layer on both sides of the striped convex portion, and there is no structure for guiding leaked light on both sides of the striped convex portion. For this reason, even the light that has not been coupled to the refractive index waveguide is sufficiently spread out before reaching the end facet, and therefore, in the case of the semiconductor laser of this example, even when the laser beam is narrowed down to a minute spot, it still remains as a minute spot. No hemming components appear around the pattern. As described above, the semiconductor laser of this example has the advantage of better imaging characteristics of the laser light beam than the semiconductor laser of the previous example, but the striped convexity is insufficient to stably realize the fundamental transverse mode. There is also the drawback that the condition for the width of the section is more severe than in the first embodiment.

本実施例の製作法は先の実施例の場合と略同様でラシ、
ストライプ状凸部を形成するだめのエツチングを活性層
3より深くまで行なう点が異なるのみでおる。共振器中
での屈折率導波路部分と利得導波路部分の割合に対する
モードガイドの特性は、先の実施例の場合と同様な結果
が得られた。したがって、本構造の場合も共振器長25
0〔μm〕のうち屈折率導波路部分を50〔鳥〕、利得
導波路部分を200〔μm〕とした・異なる点は、モー
ドガイド部分で活性領域以外のガイド構造がなくなるた
め伝播損失が減少するので、発振しきい値60〔ηLA
)、微分量子効率20 [%) 、エア・フィールド・
ノぐターンにおいて先の実施例では存在したNO8成分
による広がシがなくなシ等方的な・ぐターンが得られた
。非点収差は10〔μm〕以下、基本横モード発振が得
られ、縦モードは5 [mW〕まで多モードで戻シ光ノ
イズによる出力変動量は1〔裂〕以下で光デイスク用と
してすぐれた特性を示した。
The manufacturing method of this example is almost the same as that of the previous example.
The only difference is that the etching for forming the striped convex portions is performed deeper than the active layer 3. Regarding the characteristics of the mode guide with respect to the ratio of the refractive index waveguide part and the gain waveguide part in the resonator, results similar to those of the previous example were obtained. Therefore, in the case of this structure as well, the resonator length is 25
0 [μm], the refractive index waveguide part is 50 [μm] and the gain waveguide part is 200 [μm]. The difference is that in the mode guide part there is no guide structure other than the active region, so propagation loss is reduced. Therefore, the oscillation threshold value is 60 [ηLA
), differential quantum efficiency 20 [%], air field
In the cross-turn, the spread caused by the NO8 component, which was present in the previous example, was eliminated, and an isotropic cross-turn was obtained. The astigmatism is less than 10 [μm], fundamental transverse mode oscillation is obtained, the longitudinal mode is multi-mode up to 5 [mW], and the output fluctuation due to return light noise is less than 1 [fissure], making it excellent for optical disks. The characteristics were shown.

なお、本発明は上述した実施例に限定されるものではな
い。実施例では共振器の片側にのみ屈折率導波構造を設
けたが、これを利得導波路部分を挾むように両側に設け
てもよい。さらに、利得導波路部分の高さは必ずしも屈
折率導波路部分の高さと同じである必要はなく、それよ
υ低くしてもよい。また、形成材料としてはGaAtA
sに限るものではなく、QaInAsPやGaA4As
Sb等の化合物半導体を用いてもよい。さらに、N型基
板の代9にP壓基板を用い、各層の導電型を逆にするこ
とも可能でおる。丑た、結晶成長法としてMO−CVD
法以外にMBE法を用いることも可能である。また、前
記電流狭窄構造は、ストライプ状のコンタクト層及び酸
化膜からなるものに限らず、光ガイド層のストライプ状
凸部を含み活性層にストライプ状に電流を注入できる構
造であればよく、適宜変更可能である。その他、本発明
の要旨を逸脱しない範囲で、種々変形して実施すること
ができる。
Note that the present invention is not limited to the embodiments described above. In the embodiment, the refractive index waveguide structure is provided only on one side of the resonator, but it may be provided on both sides so as to sandwich the gain waveguide portion. Furthermore, the height of the gain waveguide portion does not necessarily have to be the same as the height of the refractive index waveguide portion, and may be smaller than that. In addition, the forming material is GaAtA
Not limited to s, QaInAsP and GaA4As
A compound semiconductor such as Sb may also be used. Furthermore, it is also possible to use a P-type substrate in place of the N-type substrate and reverse the conductivity type of each layer. MO-CVD as a crystal growth method
In addition to the MBE method, it is also possible to use the MBE method. Further, the current confinement structure is not limited to one consisting of a striped contact layer and an oxide film, but may be any structure that includes striped convex portions of the optical guide layer and can inject a current into the active layer in a striped manner. Can be changed. In addition, various modifications can be made without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はりブストライプ構造を持つ半導体レーザにおけ
るガイド層段差Δtと実効屈折率差Δ”eff及び基本
横モード発振を与えるリブストライプ幅Wとの関係を示
す特性図、第2図は上記段差Δt、@W及び活性層厚み
dを定義して示す模式図、第3図(a)〜(f)は本発
明の一実施例に係わる半導体レーザの製造工程を示す斜
視図、第4図は他の実施例の概略構造を示す斜視図であ
る。 1−−− N−GaAs基板、2 ・” N−Gao、
55Ato、45ASクラッド層、3・・・アンドープ
GaO,85AtO,15A8活性層、4 ・−P−G
ao、5AAo、35As光ガイド層、5・・・ストラ
イプ状凸部、6・・・平坦部、訃−P−Ga、5、A/
=、45Asり2ラド層、8・・・P−GaAsコンタ
クト層、9・・・酸化膜、11.12・・・金属電極。 出願人代理人 弁理士 鈴 江 武 彦第1図 第2図 一膓一 第3図 <a) 第3図 (c) (d) 第3図
Fig. 1 is a characteristic diagram showing the relationship between the guide layer step Δt, the effective refractive index difference Δ”eff, and the rib stripe width W that provides fundamental transverse mode oscillation in a semiconductor laser with a beam stripe structure. , @W and the active layer thickness d are schematic diagrams defining and showing, FIGS. 3(a) to 3(f) are perspective views showing the manufacturing process of a semiconductor laser according to an embodiment of the present invention, and FIG. 4 is a schematic diagram showing another example. It is a perspective view showing a schematic structure of an example. 1---N-GaAs substrate, 2.''N-Gao,
55Ato, 45AS cladding layer, 3... undoped GaO, 85AtO, 15A8 active layer, 4 -P-G
ao, 5AAo, 35As optical guide layer, 5... striped convex portion, 6... flat portion, 5-P-Ga, 5, A/
=, 45As 2 Rad layer, 8... P-GaAs contact layer, 9... Oxide film, 11.12... Metal electrode. Applicant's Representative Patent Attorney Takehiko Suzue Figure 1 Figure 2 Ichigoichi Figure 3 <a) Figure 3 (c) (d) Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)化合物半導体材料からなシダプル・ヘテロ接合構
造を有する半導体レーザ装置において、平坦に形成され
た活性層と、この活性層の基板と反対側面上に成長形成
され、かつその表面にストライプ状の凸部が形成された
上記活性層よシ屈折率の小さい光ガイド層と、この光ガ
イド層上に成長形成された該光ガイド層より屈折率の小
さいクラッド層と、このクラッド層上に形成され上記ス
トライプ状の凸部を含む部分にストライプ状に電流を注
入するための電流狭窄構造とを具備し、前記光ガイド層
は共振器方向に対し前記ストライプ状の凸部を形成した
部分と該凸部を形成しない平坦な部分とを持つか、或い
は前記ストライプ状凸部に1本のストライプ中で少なく
とも2種の幅を持たせたものであることを特徴とする半
導体レーザ装置。
(1) In a semiconductor laser device having a cedar-pull heterojunction structure made of a compound semiconductor material, there is a flat active layer and a stripe-like structure grown on the side of the active layer opposite to the substrate. a light guide layer having a lower refractive index than the active layer in which a convex portion is formed; a cladding layer having a lower refractive index than the light guide layer grown on the light guide layer; and a current confinement structure for injecting a current in a striped manner into a portion including the striped convex portion, and the light guide layer is arranged between the portion where the striped convex portion is formed and the convex portion in the direction of the resonator. 1. A semiconductor laser device characterized in that the semiconductor laser device has a flat portion with no portion formed therein, or the striped convex portion has at least two different widths in one stripe.
(2)化合物半導体材料からなシダプル・ヘテロ接合構
造を有する半導体レーザ装置において、基板上に成長形
成されかつその表面に活性層よl) 7基板側の層まで至るストライプ状の凸部が形成された
少なくとも活性層を含む半導体層と、この半導体層上に
形成された上記活性層よシ屈折率の小さいクラッド層と
、このクラッド層上に形成され上記ストライプ状凸部を
含む部分にストライプ状に電流を注入するだめの電流狭
窄構造とを具備し、前記半導体層は゛共振器方向に対し
前記ストライプ状凸部を形成した部分と該凸部を形成し
ない平坦な部分とを持つか、或いは前記ストライプ状凸
部に1本のストライプ中で少なくとも2′#iの幅を持
たせたものであることを特徴とする半導体レーザ装置。
(2) In a semiconductor laser device having a cedar pull heterojunction structure made of a compound semiconductor material, a striped convex portion is formed on the surface of the active layer and extends to a layer on the substrate side. a semiconductor layer including at least an active layer, a cladding layer formed on the semiconductor layer and having a lower refractive index than the active layer, and a striped layer formed on the cladding layer in a portion including the striped convex portion. a current confinement structure for injecting current; A semiconductor laser device characterized in that a convex portion has a width of at least 2'#i in one stripe.
JP11137283A 1983-06-21 1983-06-21 Semiconductor laser device Pending JPS603177A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11137283A JPS603177A (en) 1983-06-21 1983-06-21 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11137283A JPS603177A (en) 1983-06-21 1983-06-21 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS603177A true JPS603177A (en) 1985-01-09

Family

ID=14559518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11137283A Pending JPS603177A (en) 1983-06-21 1983-06-21 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS603177A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001095446A1 (en) * 2000-06-08 2001-12-13 Nichia Corporation Semiconductor laser device, and method of manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51142283A (en) * 1975-06-02 1976-12-07 Nippon Telegr & Teleph Corp <Ntt> Light emitting diode
JPS5215218A (en) * 1975-07-25 1977-02-04 Nec Home Electronics Ltd Still picrure reproducing unit
JPS52152182A (en) * 1976-06-14 1977-12-17 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light emitting element
JPS52153686A (en) * 1976-06-16 1977-12-20 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light emitting device
JPS5839086A (en) * 1981-08-31 1983-03-07 Mitsubishi Electric Corp Semiconductor laser device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51142283A (en) * 1975-06-02 1976-12-07 Nippon Telegr & Teleph Corp <Ntt> Light emitting diode
JPS5215218A (en) * 1975-07-25 1977-02-04 Nec Home Electronics Ltd Still picrure reproducing unit
JPS52152182A (en) * 1976-06-14 1977-12-17 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light emitting element
JPS52153686A (en) * 1976-06-16 1977-12-20 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light emitting device
JPS5839086A (en) * 1981-08-31 1983-03-07 Mitsubishi Electric Corp Semiconductor laser device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001095446A1 (en) * 2000-06-08 2001-12-13 Nichia Corporation Semiconductor laser device, and method of manufacturing the same
US6925101B2 (en) 2000-06-08 2005-08-02 Nichia Corporation Semiconductor laser device, and method of manufacturing the same
US7470555B2 (en) 2000-06-08 2008-12-30 Nichia Corporation Semiconductor laser device, and method of manufacturing the same
US7709281B2 (en) 2000-06-08 2010-05-04 Nichia Corporation Semiconductor laser device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US5143863A (en) Method of manufacturing semiconductor laser
US4257011A (en) Semiconductor laser device
US5581570A (en) Semiconductor laser device
JPS6135587A (en) Self-aligned rib waveguide high power laser
JPH0656906B2 (en) Semiconductor laser device
KR100632308B1 (en) Gain-coupled distributed feedback semiconductor laser device and manufacturing method thereof
US4335461A (en) Injection lasers with lateral spatial thickness variations (LSTV) in the active layer
JPS603181A (en) Semiconductor laser device
JPH11220220A (en) Semiconductor laser and manufacture thereof
JPS603177A (en) Semiconductor laser device
US4937836A (en) Semiconductor laser device and production method therefor
JP2702871B2 (en) Semiconductor laser and method of manufacturing the same
JPS641952B2 (en)
JPS60167488A (en) Semiconductor laser device
JPH0671121B2 (en) Semiconductor laser device
JPS63153884A (en) Distributed feedback type semiconductor laser
JPH01248585A (en) Distributed feedback type semiconductor laser
JPS5911690A (en) Semiconductor laser device
JPH01102982A (en) Semiconductor laser device
JPH0422033B2 (en)
JPS58196084A (en) Distributed feedback type semiconductor laser element
JPH02113586A (en) Semiconductor laser element
JPS603180A (en) Semiconductor laser device
JP2558767B2 (en) Semiconductor laser device
JPH0569318B2 (en)