JPS63153884A - Distributed feedback type semiconductor laser - Google Patents

Distributed feedback type semiconductor laser

Info

Publication number
JPS63153884A
JPS63153884A JP61302240A JP30224086A JPS63153884A JP S63153884 A JPS63153884 A JP S63153884A JP 61302240 A JP61302240 A JP 61302240A JP 30224086 A JP30224086 A JP 30224086A JP S63153884 A JPS63153884 A JP S63153884A
Authority
JP
Japan
Prior art keywords
layer
thick
guide layer
superlattice
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61302240A
Other languages
Japanese (ja)
Other versions
JPH071816B2 (en
Inventor
Mitsuhiro Kitamura
北村 光弘
Tatsuya Sasaki
達也 佐々木
Ikuo Mito
郁夫 水戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61302240A priority Critical patent/JPH071816B2/en
Publication of JPS63153884A publication Critical patent/JPS63153884A/en
Publication of JPH071816B2 publication Critical patent/JPH071816B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34306Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000nm, e.g. InP based 1300 and 1500nm lasers

Abstract

PURPOSE:To produce an MQW-DFB laser high in coupling factor and excellent in active layer quality and in performance characteristics by a method wherein a superlattice guide layer is first grown on a diffraction grating and the guide layer surface is ensured to be flat even in a very thin design. CONSTITUTION:On an Inp substrate 1, a diffraction grating 2 is formed by laser interference exposure, whereon a superlattice guide layer 6, consisting of ten 80Angstrom thick InP barrier layers 7 and ten 30Angstrom -thick In0.53Ga0.47As well layers 8; an MQW active layer 4, consisting of eight 100Angstrom -thick InP barrier layers 9 and eight 100Angstrom -thick In0.53Ga0.47As well layers 10; and an Inp clad layer 5, are grown in that order. The effective emission wavelength composition of the superlattice guide layer 6 is equivalent to approximately 1.3mum, and that of the MQW active layer 4 is equivalent to approximately 1.55mum. In this example, the superlattice guide layer 6 is only 1100Angstrom thick, as measured from the ridge of the approximately 500Angstrom -thick diffraction grading 2. The surface involving the growth, however, is virtually flat.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は分布帰還型半導体レーザに関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a distributed feedback semiconductor laser.

(従来の技術) 発光再結合をする活性層に隣接して回折格子を有する分
布帰還型半導体レーザ(DFB−LD)は長距離かつ大
容量の光フアイバ通信用光源として活発に研究開発が進
められている。その特性。
(Prior Art) Distributed feedback semiconductor lasers (DFB-LDs), which have a diffraction grating adjacent to an active layer that recombines light, are being actively researched and developed as a light source for long-distance, large-capacity optical fiber communications. ing. Its characteristics.

信頼性も従来からのファブリベロー型の半導体レーザと
同等のレベルに達しつつある。その特性のより以上の向
上を図るために、活性層に多重量子井戸構造を採用する
ことは有効であると考えられる。多重量子井戸(Mul
tiple Quantum %4ell、略してMQ
W)flu造は異なる半導体薄膜を交互に多層に成長さ
せてなる。このMQW梢遣を採用゛した半導体レーザで
は、MQWの階段状の状態密度関数を反映し、低しきい
値化、温度特性の改善、パルス変調時のスペクトル幅の
低減等が期待される。
Reliability is also reaching a level comparable to that of conventional Fabry-Bello type semiconductor lasers. In order to further improve the characteristics, it is considered effective to employ a multiple quantum well structure in the active layer. Multiple quantum well (Mul
triple Quantum %4ell, abbreviated as MQ
W) Flu structure is made by growing different semiconductor thin films alternately in multiple layers. A semiconductor laser employing this MQW topography is expected to reflect the MQW step-like state density function, lowering the threshold, improving temperature characteristics, and reducing the spectral width during pulse modulation.

AT&T  Be1l研究所のDuttaらはアプライ
ド・フィジクス・レターズ誌(^pot。
Dutta et al. of AT&T Be1l Laboratory, Applied Physics Letters (^pot.

Phys、 Lett、、 Vol、46.01036
−1038.1985 )において発光波長1.3四組
成のInGaAsPウェル層。
Phys, Lett, Vol. 46.01036
-1038.1985) and an InGaAsP well layer with an emission wavelength of 1.34.

1.031Jm組成のInGaAsPバリアm<いずれ
も厚さ約300人)を数層ずつ積層したMQWレーザを
報告している。このレーザは低しきい値電流、高効率等
優れた特性を有し、Duttaらはしきい値におけるキ
ャリアライフタイムの温度依存性を評価し、通常のDH
レーザと比べてMQWレーザの温度特性が優れているこ
とを実証した。
have reported an MQW laser in which several layers of InGaAsP barriers m (all about 300 layers thick) with a composition of 1.031 Jm are laminated. This laser has excellent characteristics such as low threshold current and high efficiency, and Dutta et al.
It was demonstrated that the temperature characteristics of MQW lasers are superior to lasers.

以上のことから活性層にMQW梢遣を導入したDFBレ
ーザが優れた特性を示すであろうことが期待される。
From the above, it is expected that a DFB laser in which an MQW top layer is introduced in the active layer will exhibit excellent characteristics.

(発明が解決しようとする問題点) しかしながら通常の方法で活性層のみにMQW゛構造を
導入してDFBレーザを作製しようとすると次のような
問題が生ずる。すなわち第2図に示すように基板1上に
回折格子2を形成し、その上に例えばMOVPE法を用
いて波長1.3四に相当するI n O,73G a 
0.27 A S o、 bo P o、 aoガイド
層31I no、53Gao、nyAs/I nP  
MQW活性層4を成長するとガイド層3の厚さが0.1
四以下の場合ガイド層3の表面が平坦になりきらず、凹
凸のある面上に活性層4を成長することにより活性層4
そのものの品質が低下する可能性がある。もちろんガイ
ド層3を厚めに成長することにより、表面を平坦化する
ことはできるが、その場合にはやはり、ガイド層3が厚
くなる分だけ結合係数が小さくなる0以上のことはMB
E法によって結晶成長を行なっても同様の問題であり、
LPE法においてはガイドJw3が0.IIJm程度で
もガイドJW3表面が平坦になりやすいが、LPE法の
場合にはMQWのような多層薄r!:!楕遺を形成する
ことが困難である。
(Problems to be Solved by the Invention) However, when attempting to manufacture a DFB laser by introducing an MQW structure only into the active layer using a conventional method, the following problems occur. That is, as shown in FIG. 2, a diffraction grating 2 is formed on a substrate 1, and I n O, 73G a corresponding to a wavelength of 1.34 is formed on the diffraction grating 2 using, for example, the MOVPE method.
0.27 A So, bo Po, ao guide layer 31I no, 53Gao, nyAs/I nP
When the MQW active layer 4 is grown, the thickness of the guide layer 3 is 0.1
4 or less, the surface of the guide layer 3 is not completely flat, and the active layer 4 is grown on the uneven surface.
The quality of the product may deteriorate. Of course, the surface can be flattened by growing the guide layer 3 thicker, but in that case, the coupling coefficient becomes smaller as the guide layer 3 becomes thicker.
The same problem occurs even if crystal growth is performed using the E method.
In the LPE method, guide Jw3 is 0. The surface of the guide JW3 tends to be flat even at IIJm, but in the case of the LPE method, multilayer thin r! :! It is difficult to form an ellipsoid.

本発明の目的は結合係数が大きくとれ、優れた特性を有
するMQW−DFBレーザを提供することにある。
An object of the present invention is to provide an MQW-DFB laser with a large coupling coefficient and excellent characteristics.

(問題点を解決するための手段) 、本発明では、活性層の近傍に回折格子が形成してあり
、ガイド層により前記活性層と前記回折格子とが光結合
してある分布帰還型の半導体レーザであって、前記活性
層および前記ガイド層が異なる半導体薄膜を多層成長さ
せた超格子構造からなることを特徴とする分布帰還型半
導体レーザにより上述の問題点を解決している。
(Means for Solving the Problems) The present invention provides a distributed feedback type semiconductor in which a diffraction grating is formed in the vicinity of an active layer, and the active layer and the diffraction grating are optically coupled by a guide layer. The above-mentioned problems are solved by a distributed feedback semiconductor laser characterized in that the active layer and the guide layer have a superlattice structure formed by growing multiple layers of different semiconductor thin films.

(作用) 本発明の発明者はMOVPE法において回折格子上に活
性層と同様な半導体多層薄膜を成長させることにより、
相対的にわずかな厚さで平坦化が進むことを見出した0
例えば深さ500人のInP回折格子上に結晶成長する
場合、100人のInP、100人のI n 6.53
G a o、 47A Sを5層ずつ、計0.1−積層
することによりほぼ成長表面が平坦化することがわかっ
た。
(Function) The inventor of the present invention achieved the following by growing a semiconductor multilayer thin film similar to the active layer on the diffraction grating in the MOVPE method.
We found that flattening progresses with a relatively small thickness.
For example, when growing a crystal on an InP diffraction grating with a depth of 500 people, 100 people InP, 100 people I n 6.53
It was found that by laminating 5 layers each of Gao and 47A S with a total thickness of 0.1, the growth surface was almost flattened.

(実施例) 以下実施例を示す図面を参照して本発明をより詳細に説
明する0本発明の一実施例を第1図に示す、この実施例
の製造においては、InP基板1上にレーザ干渉露光法
によって回折格子2(周期2400人)を形成し、その
うえに80人のInPバリア層7.30人のI n o
、 s3G a 0.47A Sウェル層8を各107
1ずつ積層してなる超格子ガイド層6゜100人のIn
Pnツバ9フ G a 6, 47 A Sウェル層10を各8!fl
t層してなるMQW活性層4,InPクラッド!f!J
5を順次に成長させる.超格子ガイド層6の実効的な発
光波長組成は約1.3四に相当し、MQW活性活性の実
効的な発光波長組成は約1.55−に相当する.この実
施例では500人程度の深さの回折格子2の山から測っ
て超格子ガイド層6の厚さはわずか1100人であるが
、成長の結果その成長表面はほぼ平坦になっていること
が確認された。
(Example) The present invention will be explained in more detail below with reference to drawings showing examples.An example of the present invention is shown in FIG. A diffraction grating 2 (period: 2400) was formed by interference exposure method, and an 80-layer InP barrier layer 7.30
, s3G a 0.47A S well layer 8 each 107
Super lattice guide layer formed by laminating one layer at a time 6゜100 In
Pn brim 9f G a 6, 47 A S well layer 10 8 each! fl
MQW active layer 4 consisting of a t-layer, InP cladding! f! J
5 in sequence. The effective emission wavelength composition of the superlattice guide layer 6 corresponds to about 1.34, and the effective emission wavelength composition of the MQW activity corresponds to about 1.55. In this example, the thickness of the superlattice guide layer 6 is only 1100 mm measured from the peak of the diffraction grating 2 which is about 500 mm deep, but as a result of growth, the growth surface has become almost flat. confirmed.

このようにして作製したMQW−DFBレーザを通常の
埋め込み構造にし特性を評価しなところ、室温CWでの
発振しきい値電流20〜30mA、微分量子効率片面2
5゛%程度の素子が再現性良く得られた。
The MQW-DFB laser fabricated in this way was made into a normal buried structure and its characteristics were evaluated.
Elements of about 5% were obtained with good reproducibility.

レーザの温度特性を評価したところ、その特性温度′!
゛。は90〜100にと通常のDH梢遣レーザと比べて
大幅な改善が認められた.しきい値におけるキャリアラ
イフタイムの温度依存性もDH槽構造比べてその変化率
が小さく、さらにM Q W !ill造による階段状
の状態密度関数を反映してパルス変調時の発振スペクト
ル拡がりもDHl’li造レーザと比べて172〜1/
3に低減されていることがわかった。
When we evaluated the temperature characteristics of the laser, we found that its characteristic temperature ′!
゛. was 90 to 100, a significant improvement compared to the normal DH beam laser. The temperature dependence of the carrier lifetime at the threshold value also has a smaller rate of change compared to the DH tank structure, and furthermore, M Q W ! Reflecting the step-like density of states function created by the IL structure, the oscillation spectrum spread during pulse modulation is also 172 to 1/
It was found that the number was reduced to 3.

(発明の効果) 以上のように本発明においては回折格子2上に超格子ガ
イド層6をはじめに成長させることにより全体の厚さが
0.1μm程度でも成長表面を平坦化することが可能と
なり、結合係数が大きくかつ活性層の品質が良好で、特
性の優れたMQW−DFBレーザを提供することができ
た。
(Effects of the Invention) As described above, in the present invention, by first growing the superlattice guide layer 6 on the diffraction grating 2, it is possible to flatten the growth surface even if the total thickness is about 0.1 μm. It was possible to provide an MQW-DFB laser with a large coupling coefficient, a good quality active layer, and excellent characteristics.

なお実施例においては超格子ガイド層6として80人の
InP、30人のI n O,!130 a 0.47
A 8層からなる超格子構造を用いたが、ガイド層とし
ては活性層4に用いたものと同じ構成のMQW′WI造
を用いてもさしつかえない、もちろん用いる材料系もI
 nP−、−I n□!13Gao4yAs系に限るも
のではなくGaAρAs〜GaAs系の材料を用いても
、本発明は何らさしつかえなく実現できる。
In the example, the superlattice guide layer 6 is made of 80 InP, 30 InO,! 130 a 0.47
A: Although a superlattice structure consisting of 8 layers was used, it is also possible to use an MQW'WI structure with the same structure as that used for the active layer 4 as a guide layer.Of course, the material system used can also be I
nP-, -I n□! The present invention is not limited to the 13Gao4yAs type material, and the present invention can also be realized using GaAρAs to GaAs type materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a>は本発明の一実施例を示す断面図、第1図
(b)はその活性層周辺を拡大して示す断面図、第2図
(a)は従来例のMQw−DFBレーザを示す断面図、
第2図(b)はその活性層周辺を拡大して示す断面図で
ある。 図中1は基板、2は回折格子、3はI nGaAsPガ
イド層、4はMQWガイド層、5は1nPクラッド層、
6は超格子ガイド層、7,9はInPnツバ9フ Asウ工ル層をそれぞれあられす。
FIG. 1(a) is a sectional view showing one embodiment of the present invention, FIG. 1(b) is an enlarged sectional view showing the vicinity of the active layer, and FIG. 2(a) is a conventional MQw-DFB. A cross-sectional view showing a laser,
FIG. 2(b) is an enlarged cross-sectional view showing the vicinity of the active layer. In the figure, 1 is a substrate, 2 is a diffraction grating, 3 is an InGaAsP guide layer, 4 is an MQW guide layer, 5 is a 1nP cladding layer,
6 is a superlattice guide layer, and 7 and 9 are InPn and As wafer layers, respectively.

Claims (1)

【特許請求の範囲】[Claims] 活性層の近傍に回折格子が形成してあり、ガイド層によ
り前記活性層と前記回折格子とが光結合してある分布帰
還型の半導体レーザにおいて、前記活性層および前記ガ
イド層が異なる半導体薄膜を多層成長させた超格子構造
からなることを特徴とする分布帰還型半導体レーザ。
In a distributed feedback semiconductor laser in which a diffraction grating is formed in the vicinity of an active layer, and the active layer and the diffraction grating are optically coupled by a guide layer, the active layer and the guide layer are made of different semiconductor thin films. A distributed feedback semiconductor laser characterized by having a superlattice structure grown in multiple layers.
JP61302240A 1986-12-17 1986-12-17 Distributed feedback semiconductor laser Expired - Fee Related JPH071816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61302240A JPH071816B2 (en) 1986-12-17 1986-12-17 Distributed feedback semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61302240A JPH071816B2 (en) 1986-12-17 1986-12-17 Distributed feedback semiconductor laser

Publications (2)

Publication Number Publication Date
JPS63153884A true JPS63153884A (en) 1988-06-27
JPH071816B2 JPH071816B2 (en) 1995-01-11

Family

ID=17906640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61302240A Expired - Fee Related JPH071816B2 (en) 1986-12-17 1986-12-17 Distributed feedback semiconductor laser

Country Status (1)

Country Link
JP (1) JPH071816B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0461187A (en) * 1990-06-22 1992-02-27 Agency Of Ind Science & Technol Semiconductor laser and manufacture thereof
JPH04146679A (en) * 1990-10-09 1992-05-20 Hikari Keisoku Gijutsu Kaihatsu Kk Distributed feedback semiconductor laser device
JP2007258269A (en) * 2006-03-20 2007-10-04 Sumitomo Electric Ind Ltd Semiconductor optical element
JP2014220386A (en) * 2013-05-08 2014-11-20 富士通株式会社 Optical semiconductor device and method of manufacturing optical semiconductor device
JP2016184705A (en) * 2015-03-26 2016-10-20 富士通株式会社 Semiconductor optical element and manufacturing method of the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61202487A (en) * 1985-03-06 1986-09-08 Nippon Telegr & Teleph Corp <Ntt> Distributed feedback type semiconductor laser
JPS61242090A (en) * 1985-04-19 1986-10-28 Matsushita Electric Ind Co Ltd Semiconductor laser

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61202487A (en) * 1985-03-06 1986-09-08 Nippon Telegr & Teleph Corp <Ntt> Distributed feedback type semiconductor laser
JPS61242090A (en) * 1985-04-19 1986-10-28 Matsushita Electric Ind Co Ltd Semiconductor laser

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0461187A (en) * 1990-06-22 1992-02-27 Agency Of Ind Science & Technol Semiconductor laser and manufacture thereof
JPH04146679A (en) * 1990-10-09 1992-05-20 Hikari Keisoku Gijutsu Kaihatsu Kk Distributed feedback semiconductor laser device
JP2007258269A (en) * 2006-03-20 2007-10-04 Sumitomo Electric Ind Ltd Semiconductor optical element
US7769065B2 (en) 2006-03-20 2010-08-03 Sumitomo Electric Industries Ltd. Semiconductor optical device
JP2014220386A (en) * 2013-05-08 2014-11-20 富士通株式会社 Optical semiconductor device and method of manufacturing optical semiconductor device
JP2016184705A (en) * 2015-03-26 2016-10-20 富士通株式会社 Semiconductor optical element and manufacturing method of the same

Also Published As

Publication number Publication date
JPH071816B2 (en) 1995-01-11

Similar Documents

Publication Publication Date Title
JP2842292B2 (en) Semiconductor optical integrated device and manufacturing method
JP2001308451A (en) Semiconductor light emitting element
JPS6254489A (en) Semiconductor light emitting element
EP0507956B1 (en) Distributed feedback semiconductor laser
JPS6180882A (en) Semiconductor laser device
KR100632308B1 (en) Gain-coupled distributed feedback semiconductor laser device and manufacturing method thereof
JP4618854B2 (en) Semiconductor device and manufacturing method thereof
JP2536714B2 (en) Optical modulator integrated multiple quantum well semiconductor laser device
JPH09232625A (en) Side light-emitting optical semiconductor element and manufacture thereof
JPS63153884A (en) Distributed feedback type semiconductor laser
JPH04305992A (en) Semiconductor laser element
JP4151043B2 (en) Manufacturing method of optical semiconductor device
JPH0462195B2 (en)
JPH02228087A (en) Semiconductor laser element
JPS6046087A (en) Distributed bragg reflection type semiconductor laser
CA2139141C (en) Quantum-well type semiconductor laser device having multi-layered quantum-well layer
JPS633477B2 (en)
JPS61202487A (en) Distributed feedback type semiconductor laser
JP7296845B2 (en) MODULATION DOPED SEMICONDUCTOR LASER AND MANUFACTURING METHOD THEREOF
JPH01248585A (en) Distributed feedback type semiconductor laser
JP2957198B2 (en) Semiconductor laser device
JPS63152194A (en) Semiconductor laser
JPS61220389A (en) Integrated type semiconductor laser
JPH0728093B2 (en) Semiconductor laser device
JP3075822B2 (en) Semiconductor distributed feedback laser device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees