JPS58196084A - Distributed feedback type semiconductor laser element - Google Patents

Distributed feedback type semiconductor laser element

Info

Publication number
JPS58196084A
JPS58196084A JP57078247A JP7824782A JPS58196084A JP S58196084 A JPS58196084 A JP S58196084A JP 57078247 A JP57078247 A JP 57078247A JP 7824782 A JP7824782 A JP 7824782A JP S58196084 A JPS58196084 A JP S58196084A
Authority
JP
Japan
Prior art keywords
active layer
layer
semiconductor laser
laser
regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57078247A
Other languages
Japanese (ja)
Inventor
Naoki Kayane
茅根 直樹
Toshihiro Kono
河野 敏弘
Shigeo Yamashita
茂雄 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57078247A priority Critical patent/JPS58196084A/en
Publication of JPS58196084A publication Critical patent/JPS58196084A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To reduce the threshold value by a method wherein a region provided with grating is lengthened enough to obtain sufficient amount of feedback, then an active layer is restricted to a part thereof in the optical direction and made transparent to laser oscillated light at regions other than that part. CONSTITUTION:In the section of the surface parallel with the direction of advancement of laser light of DFB type semiconductor laser, an N-Ga1-xAlxAs clad layer 2, Ga1-yAlyAs active layer 3, and a P-Ga1-zAlzAs clad layer 4 are grown on an N-GaAs substrate 1, and the periodic grating 10 is formed by a chemical etching. Thereafter, a P-Ga1-xAlxAs clad layer 5 and a P-GaAs cap layer 6 are grown, and next Zn is selectively diffused into a region 9 by leaving regions 11 and 11. Afterwards, an N-side electrode 8 and a P-side electrode 7 are formed. The band gap becomes small at the Zn diffused region, and the active layer 3 becomes transparent to laser light at the regions 11 and 11.

Description

【発明の詳細な説明】 本発明は、しきい値の小さな分布帰還形半導体レーザに
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a distributed feedback semiconductor laser with a small threshold.

分布帰還形半導体レーザでは、帰還緻を十分にとって反
射損失を小さくシ、シきい電流密度を丁げるために、周
期性の凹凸(グレーティング)が設けられている部分を
te長くする必要がある。
In a distributed feedback type semiconductor laser, in order to obtain sufficient feedback density, reduce reflection loss, and reduce current density, it is necessary to lengthen the portion where periodic unevenness (grating) is provided.

このため、光軸方向について、活性層の全領域にわたっ
てグレーティングが設けられ、全体に電流を流入する、
いわゆるD F B (1)istributedl;
’eedback )形では、しきい電流が大きくなる
という欠点があった。一方、グレーティングが活性層゛
の一部分にのみ設けられ、それ以外の領域に電流を流入
する、いわゆるDBR形では、グレーティング部分での
活性層が励起されていないので、吸収損失が増え、やは
りしきい電流が大きくなるという欠点があった。
For this reason, a grating is provided over the entire area of the active layer in the optical axis direction, and current flows throughout the entire area.
The so-called D F B (1) distributedl;
The 'eedback) type had the disadvantage that the threshold current was large. On the other hand, in the so-called DBR type, in which the grating is provided only in a part of the active layer and current flows into the other region, the active layer in the grating part is not excited, so absorption loss increases and the threshold The drawback was that the current was large.

本発明の目的は、しきい値の小さな縦モードの制御され
た半導体レーザを提供することにある。
An object of the present invention is to provide a controlled longitudinal mode semiconductor laser with a small threshold value.

上述した欠点を解消し、しきいtm値を小さくするため
に、DFB形についてはグレーティングが設けられてい
る領域を−t−f)な帰還駿が得られるような長さとし
、光軸方向についてその一部分に活性層を限定し、それ
以外の領域ではレーザ発振光に対して透明となるように
すれば、合体の電流値を小さくすることが可能である。
In order to eliminate the above-mentioned drawbacks and reduce the threshold tm value, for the DFB type, the length of the area where the grating is provided is set to such a length that a -tf) feedback can be obtained, and its length is set in the optical axis direction. By limiting the active layer to a portion and making the other region transparent to laser oscillation light, it is possible to reduce the current value of coalescence.

DBR形についてもグレーティングが設けられている部
分をレーザ発振光に灯して透明となるようにすれば、電
流値を小さくすることがり能である。
For the DBR type as well, the current value can be reduced if the portion where the grating is provided is illuminated with laser oscillation light to make it transparent.

以下、本発明を第1図に示す実m例を用いて説明する。The present invention will be explained below using an example shown in FIG.

第1図はDFB形半導体レーザのレーザ光の進行方向に
平行な面での断面図である。n−GIAI基板1の上に
n  GJ−xA4AIクラッド層2、Gap−yAt
、As活注層3(K>7)、p−GJ−sA4AIクラ
ッド層4 (K、M>)’)を成長させ、周期性のグレ
ーティング10を化学食刻によって形成する。この時、
グレーティングの周期Aを、活性層のレーザ発振波長を
λ、レーザーモードの有効屈折率をn sffとして、
次のようにする。
FIG. 1 is a cross-sectional view of a DFB type semiconductor laser in a plane parallel to the direction in which laser light travels. n-GJ-xA4AI cladding layer 2, Gap-yAt on n-GIAI substrate 1
, an As active layer 3 (K>7), and a p-GJ-sA4AI cladding layer 4 (K, M>)'), and a periodic grating 10 is formed by chemical etching. At this time,
The period A of the grating, the laser oscillation wavelength of the active layer is λ, and the effective refractive index of the laser mode is n sff,
Do as follows.

17’、’1 、i wz m *λ/ 2 n met   但し、
m3整数この後%  P−Ga、−xAlxAsり2ラ
ド層5、p−Q&A−キャップ層6を成長させ、次いで
領域11.11’を残して、Znを領域9に選択拡散す
る。
17', '1, i wz m *λ/ 2 n met However,
m3 integer % P-Ga, -xAlxAs layer 5, p-Q&A-cap layer 6 are then grown, and then Zn is selectively diffused into region 9, leaving regions 11 and 11'.

この後、n側電極8、pit極7を形成する。Znが拡
散した領域では、バンド・ティルのためにバンドeギャ
ップが小さくなり、活性層3は領域1’l、11’では
レーザ発振光に対して透明となり、吸収損失を受けない
。このためグレーティングによる帰還は11.11’を
含む素子の全域にわたって生じ、電流は領域9のみにし
か注入しないので、しきい特性例としてはストライプ幅
5μmの素子では、しきい電流値は〜40mAであった
。なお、以F1各図にしける矢印はレーザ光を示してい
る。
After this, the n-side electrode 8 and pit electrode 7 are formed. In the region where Zn is diffused, the band e gap becomes small due to the band till, and the active layer 3 becomes transparent to the laser oscillation light in the regions 1'l and 11', and does not undergo absorption loss. For this reason, feedback by the grating occurs over the entire area of the device including 11.11', and current is injected only into region 9. As an example of threshold characteristics, for a device with a stripe width of 5 μm, the threshold current value is ~40 mA. there were. Note that the arrows in each of the F1 figures below indicate laser light.

第2図は、同様な工程を経て作られたDBR形の列であ
る。グレーティング10が設けられている領域11.j
l’では、活性層3は透明なのでレーザ光は損失を受け
ず、しきい値を小さくできる。
FIG. 2 shows a DBR type row made through a similar process. Area 11 in which grating 10 is provided. j
At l', since the active layer 3 is transparent, the laser light does not suffer any loss and the threshold value can be reduced.

第3図は他の実施例で、n形りラッドノー2の上に、l
iす50 A (D GaAs 層、100’4(DA
IAtsMを交互に全体でα1μmの厚さまで形成する
。この薄膜多層部分12を活性領域層とする。こ入に領
域11.11’のみ7.nの選択拡散を行うと、拡散部
分では、多層構造がなくなり、平均組成のGaAtAs
層となる。このため領域11.!1’はレーザ光に対し
て透明となり、第1図と同様の目的を達成できる。
FIG. 3 shows another embodiment, in which a l
iS50 A (D GaAs layer, 100'4 (DA
IAtsM is alternately formed to a total thickness of α1 μm. This thin film multilayer portion 12 is used as an active region layer. Only area 11.11'7. When selective diffusion of n is performed, the multilayer structure disappears in the diffusion part, and the average composition of GaAtAs
It becomes a layer. For this reason, area 11. ! 1' becomes transparent to the laser beam, and can achieve the same purpose as in FIG.

第4図は他の実施例で、n型クラッド層2とn型光ガイ
ド層13の間にグレーティング10を設け、n型光ガイ
ド層の上に活性層3、P型クラッド層5、p型キャップ
層6を成長させる。この後、領域11.11’をn型光
ガイド層の表面に至るまで、化学食刻によって選択除去
し、その後、n型GaB−b At bAs層14(b
:lを選択成長させる。この場合も、領域11.11’
は、レーザ発振光に封して透明となり、電流は活性層3
のある部分に限定されるので、第1図と同様の効果が期
待できる。
FIG. 4 shows another embodiment, in which a grating 10 is provided between the n-type cladding layer 2 and the n-type light guide layer 13, and on the n-type light guide layer, an active layer 3, a p-type cladding layer 5, a p-type Grow the cap layer 6. Thereafter, the regions 11.11' are selectively removed by chemical etching up to the surface of the n-type optical guide layer, and then the n-type GaB-b At bAs layer 14 (b
:L is selectively grown. In this case too, the area 11.11'
becomes transparent when sealed with laser oscillation light, and the current flows through the active layer 3.
Since it is limited to a certain area, the same effect as in FIG. 1 can be expected.

なお、光ガイド層は活性層より屈折率が小さく、クラッ
ド層より屈折率の大なる半導体層で構成される。G’A
S GaAjAs系ではクラッド層Ga、−。
Note that the light guide layer is composed of a semiconductor layer that has a lower refractive index than the active layer and a higher refractive index than the cladding layer. G'A
In the S GaAjAs system, the cladding layer Ga, -.

AtアA1層のAlAl混晶比(y)より、光ガイド層
G as−x Al z A’層のそれ(X)を小(x
<y )を選択することによって実現される。
From the AlAl mixed crystal ratio (y) of the Ata A1 layer, that (X) of the light guide layer G as-x Al z A' layer is made smaller (x
<y).

光ガイド層によって実効的な光出力の増大をはかること
ができる。
The effective light output can be increased by the light guide layer.

以上の例ではGILAI−QaAtAl系の半導体レー
ザ素子に関して説明したが、他の材料系、たとえば1n
−v  化合物半導体、G aA II  G a (
A I P ) pIn  Qa  P@ In  G
jl  A1. In  RAM、 Qa−At−As
−P、 Ga −As−8b、 Al−Ga−8b。
In the above example, explanation was given regarding a GILAI-QaAtAl semiconductor laser device, but other material systems, such as 1n
-v Compound semiconductor, GaA II Ga (
A I P ) pIn Qa P@In G
jl A1. In RAM, Qa-At-As
-P, Ga-As-8b, Al-Ga-8b.

等を用いた半導体レーザにも適用可能である。電流値を
小さくできる。
It is also applicable to semiconductor lasers using etc. The current value can be reduced.

なお、gt表に()aAs−GaAtAI系を用いた場
合の各層の具体例を示す。
Note that the gt table shows specific examples of each layer when the ()aAs-GaAtAI system is used.

たとえば、第1図、第2図の構造を持つ半導体に幻し、
第2表に示す9日き構成を用いても本発明の半導体レー
ザ素子を実現できた。
For example, if you imagine a semiconductor with the structure shown in Figures 1 and 2,
The semiconductor laser device of the present invention was also realized using the 9-day configuration shown in Table 2.

また、上記の説明では、1次元のDFB、DBRのみに
ついて説明したが、2次元のDFB、DBRにりいても
同様の効果を奏する。
Further, in the above description, only one-dimensional DFB and DBR were explained, but the same effect can be achieved even when two-dimensional DFB and DBR are used.

更に上述の列における基板や各半導体層の導電型を逆導
電型として構成した半導体レーザにおいても全く同様に
本発明が適用し得ることはいうまでもないことであろう
Furthermore, it goes without saying that the present invention is equally applicable to semiconductor lasers in which the conductivity types of the substrates and semiconductor layers in the above-mentioned rows are opposite conductivity types.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はDFB形レーし系子の縦断面図、第2図はDB
R杉レーザ素子の縦断面図、43図、第4図はDFB形
レーし木子の縦断面図である。
Figure 1 is a longitudinal cross-sectional view of the DFB type relay system, Figure 2 is the DB
43 and 4 are vertical cross-sectional views of the R-cedar laser element, and FIG. 4 is a vertical cross-sectional view of the DFB type laser beam.

Claims (1)

【特許請求の範囲】 1、再結合発光を行う活性層内あるいはその周辺に周期
的な凹凸が設けられ、この凹凸によって光の反射がなさ
れ、レーザ発振が生ずる構造の半導体レーザ素子に訃い
て、レーザ発振が生ずる光軸方向について、素子内の一
部分に上記活性層が限定され、上記凹凸が活性層の存在
する部分以外においても設けられ、活性層がなくかつ凹
凸が設けられている部分はレーザ光に約して透明な材質
で形成されていることを特徴とする分布帰還形半導体レ
ーザ素子。 2 活性層が存在している部分においては、周期的凹凸
が設けられていないことを特徴とする特許請求範囲第1
項記載の分布帰還形半導体レーザ素子。
[Claims] 1. A semiconductor laser element having a structure in which periodic unevenness is provided in or around an active layer that emits recombinant light, and light is reflected by the unevenness to generate laser oscillation, With respect to the optical axis direction in which laser oscillation occurs, the active layer is limited to a part of the device, and the unevenness is also provided in areas other than the area where the active layer exists, and the areas where there is no active layer and where the unevenness is provided are not suitable for laser oscillation. A distributed feedback semiconductor laser device characterized in that it is made of a material that is transparent to light. 2 Claim 1 characterized in that periodic unevenness is not provided in the part where the active layer is present.
Distributed feedback semiconductor laser device as described in .
JP57078247A 1982-05-12 1982-05-12 Distributed feedback type semiconductor laser element Pending JPS58196084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57078247A JPS58196084A (en) 1982-05-12 1982-05-12 Distributed feedback type semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57078247A JPS58196084A (en) 1982-05-12 1982-05-12 Distributed feedback type semiconductor laser element

Publications (1)

Publication Number Publication Date
JPS58196084A true JPS58196084A (en) 1983-11-15

Family

ID=13656670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57078247A Pending JPS58196084A (en) 1982-05-12 1982-05-12 Distributed feedback type semiconductor laser element

Country Status (1)

Country Link
JP (1) JPS58196084A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61115368A (en) * 1984-11-12 1986-06-02 Nec Corp Distributed reflection type semiconductor laser
EP0334209A2 (en) * 1988-03-22 1989-09-27 Siemens Aktiengesellschaft Laser diode for the generation of strongly monochromatic laser light
JPH0266984A (en) * 1988-08-31 1990-03-07 Hikari Keisoku Gijutsu Kaihatsu Kk Bragg reflection type laser and manufacture thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61115368A (en) * 1984-11-12 1986-06-02 Nec Corp Distributed reflection type semiconductor laser
EP0334209A2 (en) * 1988-03-22 1989-09-27 Siemens Aktiengesellschaft Laser diode for the generation of strongly monochromatic laser light
JPH0266984A (en) * 1988-08-31 1990-03-07 Hikari Keisoku Gijutsu Kaihatsu Kk Bragg reflection type laser and manufacture thereof

Similar Documents

Publication Publication Date Title
EP0029167B1 (en) Semiconductor laser device
JPH069272B2 (en) Phased array semiconductor laser
US4803691A (en) Lateral superradiance suppressing diode laser bar
JPS5940592A (en) Semiconductor laser element
JPH06302908A (en) Semiconductor laser
JPS58196084A (en) Distributed feedback type semiconductor laser element
JPH0462195B2 (en)
JPS58225681A (en) Semiconductor laser element
JPH03104292A (en) Semiconductor laser
JP3648357B2 (en) Manufacturing method of semiconductor laser device
JPH0388382A (en) Semiconductor laser
JP3144821B2 (en) Semiconductor laser device
JPS63276289A (en) Semiconductor laser and using method thereof
JPS61160990A (en) Semiconductor laser device
JPH01102982A (en) Semiconductor laser device
JPH0824207B2 (en) Semiconductor laser device
JPS63306686A (en) Semiconductor laser device
JPS6332979A (en) Semiconductor laser
JPS63278290A (en) Semiconductor laser and its use
JPH0423378A (en) Semiconductor laser
JPS63120490A (en) Semiconductor laser
JPH01161794A (en) Semiconductor laser device
JPS61236187A (en) Semiconductor laser device and its manufacture
JPS63222476A (en) Manufacture of edge light emitting diode
JPS58207691A (en) Semiconductor laser element