JPS6031244Y2 - composite parts - Google Patents

composite parts

Info

Publication number
JPS6031244Y2
JPS6031244Y2 JP14320980U JP14320980U JPS6031244Y2 JP S6031244 Y2 JPS6031244 Y2 JP S6031244Y2 JP 14320980 U JP14320980 U JP 14320980U JP 14320980 U JP14320980 U JP 14320980U JP S6031244 Y2 JPS6031244 Y2 JP S6031244Y2
Authority
JP
Japan
Prior art keywords
thick film
varistor
film capacitor
intermediate electrode
composite component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14320980U
Other languages
Japanese (ja)
Other versions
JPS5766529U (en
Inventor
昭宏 高見
Original Assignee
松下電器産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下電器産業株式会社 filed Critical 松下電器産業株式会社
Priority to JP14320980U priority Critical patent/JPS6031244Y2/en
Publication of JPS5766529U publication Critical patent/JPS5766529U/ja
Application granted granted Critical
Publication of JPS6031244Y2 publication Critical patent/JPS6031244Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【考案の詳細な説明】 本考案は酸化亜鉛焼結体粉体を主成分とする厚膜バリス
タと誘電体磁器焼結体粉体を主成分とする厚膜コンデン
サを電気絶縁性基板の上に電極を介して積層化し、電気
的に並列になるように配置した複合部品に関するもので
あり、その目的はバリスタ特性と共に大きな静電容量を
有する複合部品を提供し、それと同時にこの複合部品の
信頼性、特に耐湿度特性の改善にある。
[Detailed description of the invention] This invention consists of a thick film varistor mainly composed of zinc oxide sintered powder and a thick film capacitor mainly composed of dielectric porcelain sintered powder on an electrically insulating substrate. It concerns a composite component that is laminated through electrodes and arranged in electrical parallel, and its purpose is to provide a composite component with varistor properties and large capacitance, and at the same time improve the reliability of this composite component. , especially in improving moisture resistance.

従来から酸化亜鉛焼結体の粉体と結合剤とじてのガラス
とからなる厚膜バリスタが開発され、微小、厚膜化部品
として実用に供されてきている。
Thick film varistors made of sintered zinc oxide powder and glass as a binder have been developed and put into practical use as minute, thick film parts.

特に、直流マイクロモータに数多く用いられ、マイクロ
モータの整流手間に接続され、電気高周波雑音を低減し
てきた。
In particular, they have been widely used in DC micromotors and connected to the micromotor's commutator to reduce electrical high-frequency noise.

しかしながら、マイクロモータの周辺機器の高精度化、
特にマイクロモータの音響機器への進出に伴ない。
However, increasing the precision of micromotor peripheral equipment,
Especially with the advancement of micro motors into audio equipment.

従来の厚膜バリスタでは雑音レベルが十分低くならなり
という問題が出てきた。
A problem with conventional thick film varistors has been that the noise level is insufficiently low.

これは従来の厚膜バリスタの静電容量がIMHzの値で
150〜300pF (ピコファラド・10−1.2F
)を低く、SX帯、FM帯などの高周波雑音を吸収する
のに十分でなかったためである。
This is because the capacitance of conventional thick film varistors is 150 to 300 pF (picofarad・10-1.2 F) at IMHz.
) was not sufficient to absorb high frequency noise such as in the SX band and FM band.

種々の実験から高周波雑音を吸収するのに必要な静電容
量はIMHzでtooopF’以上であることがわかっ
た。
It has been found from various experiments that the capacitance required to absorb high frequency noise is greater than tooopF' at IMHz.

そこで直流マイクロモータで発生する火花電圧などの異
常高電圧は厚膜バリスタで吸収せ、高周波雑音は100
0pF以上の静電容量をもつ厚膜コンデンサで吸収させ
る方法が提案された。
Therefore, abnormal high voltages such as spark voltage generated by DC micro motors are absorbed by thick film varistors, and high frequency noise is reduced to 100%.
A method has been proposed in which a thick film capacitor with a capacitance of 0 pF or more is used to absorb it.

その回路図を第1図に示し、Zrは厚膜バリスタ、乙は
厚膜コンデンサである。
The circuit diagram is shown in FIG. 1, where Zr is a thick film varistor and B is a thick film capacitor.

その構成を第2図に示す。Its configuration is shown in FIG.

第2図aは断面図、第2図すは平面図である。FIG. 2a is a sectional view, and FIG. 2a is a plan view.

図において1はアルミナなどからなる電気絶縁性基板で
、その上に銀ペーストをスクリーン印刷で塗布し、90
0°Cで空気中で焼付は下部電極2を形成した。
In the figure, 1 is an electrically insulating substrate made of alumina, etc., on which silver paste is applied by screen printing.
Baking in air at 0°C formed the bottom electrode 2.

その下部電極2の上に酸化亜鉛焼結体粉末と800°〜
900℃で溶融する結合剤としてのガラスフドツトを有
機バインダーと混練して作つたバリスターペーストをス
クリーン印刷で塗布し、900℃で焼付は厚膜バリスタ
3を形成した。
Zinc oxide sintered powder is placed on the lower electrode 2 at an angle of 80°~
A varistor paste prepared by kneading glass fudot as a binder which melts at 900°C with an organic binder was applied by screen printing, and baked at 900°C to form a thick film varistor 3.

次に、厚膜バリスタ3と並列にチタン酸バリウムを主体
とする誘電体磁器焼結体の粉末と結合剤のガラスを有機
バインダーと混練して作った誘電体ペーストをスクリー
ン印刷で塗布し、900℃で焼付は厚膜コンデンサ4を
形成した。
Next, in parallel with the thick film varistor 3, a dielectric paste made by kneading dielectric porcelain sintered body powder mainly composed of barium titanate and glass as a binder with an organic binder is applied by screen printing. Baking at °C formed a thick film capacitor 4.

その上に銀ペーストをスクリーン印刷で塗布し、900
℃で焼付は部電極5を形成した。
On top of that, apply silver paste by screen printing, 900
Baking at 0.degree. C. formed a section electrode 5.

このようにして得たバリスタとコンデンサの複合部品は
マイクロモータの電近雑音吸収という点で効果があった
The thus obtained composite component of a varistor and a capacitor was effective in absorbing electrical noise from a micromotor.

しかしながら、この従来の複合部品は厚膜バリスタと厚
膜コンデンサを同一面上に形成するため、厚膜バリスタ
だけの場合と比べてバリスタ部の面積が少なくなり、バ
リスタの限界性能面で少し問題があった。
However, since this conventional composite component forms a thick film varistor and a thick film capacitor on the same surface, the area of the varistor part is smaller than in the case of only a thick film varistor, which causes some problems in terms of the varistor's performance limit. there were.

このような問題点から、厚膜コンデンサも十分に面積を
とることができず、静電容量1000pF以上の歩留り
率は良くなかった。
Due to these problems, thick film capacitors could not take up a sufficient area, and the yield rate for capacitances of 1000 pF or more was poor.

更にこの従来の複合部品は耐湿度特性という信頼性の点
で問題があった。
Furthermore, this conventional composite component had a problem in terms of reliability in terms of moisture resistance.

これは厚膜コンデンサ部がきわめて多孔質であり、従来
の複合部品の構成では厚膜コンデンサ部が外部に露出し
ており、そこから湿気や水分が侵入しやすく、長時間の
電圧印加で絶縁抵抗が低下してくるからである。
This is because the thick film capacitor part is extremely porous, and in conventional composite component configurations, the thick film capacitor part is exposed to the outside, and moisture and water can easily enter from there, causing insulation resistance due to long-term voltage application. This is because

耐湿度特性を向上させる簡単な方法として誘電体ペース
ト中のガラス量を増加させることが考えられるが、そう
すると誘電率が大巾に低下し、1ooopF’゛以上の
静電容量が得られない。
Although increasing the amount of glass in the dielectric paste may be an easy way to improve the moisture resistance, this would greatly reduce the dielectric constant and make it impossible to obtain a capacitance of 1 ooopF' or more.

そこで、本考案は電気性能面でバリスタ特性を低下させ
ることなく、かつ静電容量も十分余裕をもって形成でき
るように、厚膜バリスタと厚膜コンデンサを積層化する
構造とした。
Therefore, the present invention has a structure in which a thick film varistor and a thick film capacitor are laminated so that the capacitance can be formed with sufficient margin without deteriorating the varistor characteristics in terms of electrical performance.

また、耐湿度特性を向上させるために、厚膜コンデンサ
部を露出させず、中間電極と厚膜バリスタで完全に密封
させた。
Additionally, in order to improve moisture resistance, the thick film capacitor section is not exposed and is completely sealed with the intermediate electrode and thick film varistor.

厚膜バリスタは酸化亜鉛焼結体粉体に対するガラス量が
重量比で40%もあり、耐湿特性は何ら問題ない。
The thick film varistor has a glass content of 40% by weight relative to the zinc oxide sintered powder, and there is no problem with its moisture resistance.

以下、図面に基づいて本考案の一実施例を説明する。Hereinafter, one embodiment of the present invention will be described based on the drawings.

第3図aは本考案の複合部品の断面図であり、同図すは
平面図である。
FIG. 3a is a sectional view of the composite component of the present invention, and the same figure is a plan view.

第3図において6はアルミナなどの電気絶縁性で耐熱性
を有する基板、7,9と11は電極、8は厚膜コンデン
サで、誘電性磁器焼結体の粉末と微量のガラスからなる
In FIG. 3, 6 is an electrically insulating and heat-resistant substrate such as alumina, 7, 9 and 11 are electrodes, and 8 is a thick film capacitor, which is made of dielectric sintered ceramic powder and a small amount of glass.

10は厚膜バリスタで、酸化亜鉛焼結体の粉体とガラス
からなる。
10 is a thick film varistor made of sintered zinc oxide powder and glass.

本考案において使用したバリスタペーストは、平均粒径
6ミクロンの酸化亜鉛焼結体粉体と平均粒径5ミクロン
のホウケイ酸亜鉛ガラス(33−3i−Zn−Q系ガラ
ス)を重量比でそれぞれ60%、40%を秤量し、有機
バインダーを加えて混練し作成した。
The varistor paste used in this invention consists of zinc oxide sintered powder with an average particle size of 6 microns and zinc borosilicate glass (33-3i-Zn-Q glass) with an average particle size of 5 microns at a weight ratio of 60% each. %, 40% was weighed, an organic binder was added thereto, and the mixture was kneaded.

一方、誘電体ペーストは誘電率の大きいチタン酸バリウ
ム(BaTi03)を主成分とする誘電性磁器焼結体の
粉体に微量のガラスを添加し、有機バインダーを加えて
混練し作成した。
On the other hand, the dielectric paste was prepared by adding a small amount of glass to powder of a dielectric ceramic sintered body whose main component is barium titanate (BaTi03) having a high dielectric constant, and kneading the mixture with an organic binder.

また、市販品として、デュポン社の誘電体ペーストNo
、5217、No。
In addition, as a commercially available product, DuPont's dielectric paste No.
, 5217, No.

8289などを使った。I used something like 8289.

これらの誘電率はそれぞれ175へ1200である。Their dielectric constants are 175 to 1200, respectively.

電極材料は中間電極9が厚膜コンデンサの耐湿カバーの
役割を果すので2種類検討した。
Two types of electrode materials were considered because the intermediate electrode 9 plays the role of a moisture-resistant cover for the thick film capacitor.

一つは銀粉に酸化ビスマスを加え、有機バインダーと混
練し、銀ペーストを作った。
One was to create a silver paste by adding bismuth oxide to silver powder and kneading it with an organic binder.

ここで銀粉に対する酸化ビスマスの重量比が2%未満に
なると、銀電極の基板6及び厚膜コンデンサとの固着が
悪くなった。
When the weight ratio of bismuth oxide to silver powder was less than 2%, the adhesion of the silver electrode to the substrate 6 and the thick film capacitor deteriorated.

一方、30%を超えると酸化ビスマスの厚膜コンデンサ
への拡散が多くなり、静電容量を低下させた。
On the other hand, when it exceeds 30%, the diffusion of bismuth oxide into the thick film capacitor increases, reducing the capacitance.

そこで、銀粉に対する酸化ビスマスの最適量は2〜3唾
量%である。
Therefore, the optimum amount of bismuth oxide relative to silver powder is 2 to 3% by weight.

もう一方の銀ペーストは銀粉にホウケイ酸ビスマスガラ
ス(13−3i −Bi−Q系)を加え有機バインダー
と混練し、銀ペーストを作った。
The other silver paste was prepared by adding bismuth borosilicate glass (13-3i-Bi-Q type) to silver powder and kneading it with an organic binder.

この時の銀粉に対するホウケイ酸ビスマスガラスの重量
比の最適値は酸化ビスマスの時と同じ理由で5〜3唾量
%となった。
At this time, the optimum weight ratio of bismuth borosilicate glass to silver powder was 5 to 3% by weight for the same reason as in the case of bismuth oxide.

次に、本実施例の複合部品の製造法について述べる。Next, a method for manufacturing the composite component of this example will be described.

銀ペーストをまずアルミナ基板6の上にスクリーン印刷
法により塗布し、乾燥後、最高温度900℃で和分間保
持するトンネル炉中を通し、空気中で焼付は下部電極7
を形成した。
First, the silver paste is applied onto the alumina substrate 6 by screen printing, and after drying, it is passed through a tunnel furnace where it is held at a maximum temperature of 900°C for a period of time, and baked in the air on the lower electrode 7.
was formed.

次に、誘電体ペーストをスクリーン印刷で下部電極7の
幅より広く塗布し、同じトンネル炉で900℃で焼付け
、厚膜コンデンサ8を形成した。
Next, a dielectric paste was applied by screen printing to a wider width than the lower electrode 7, and baked at 900° C. in the same tunnel furnace to form a thick film capacitor 8.

次に、図に示すように銀ペーストをスクリーン印刷で厚
膜コンデンサ8よりも幅広く塗布し、同じトンネル炉で
900℃で焼付け、中間電極9を形成した。
Next, as shown in the figure, a silver paste was applied by screen printing to a wider area than the thick film capacitor 8, and baked at 900° C. in the same tunnel furnace to form an intermediate electrode 9.

その上にバリスタペーストをスクリーン印刷で厚膜コン
デンサ8より幅広く、かつ、中間電極9でカバーしきれ
なかった厚膜コンデンサ8部をカバーするように塗布し
、同じトンネル炉で900℃で焼付は厚膜バリスタ10
を形成した。
On top of that, varistor paste was applied by screen printing so as to be wider than the thick film capacitor 8 and to cover the parts of the thick film capacitor 8 that could not be covered by the intermediate electrode 9. Membrane varistor 10
was formed.

最後に銀ペーストをスクリーン印刷で厚膜バリスタ10
の幅より狭く、かつ、下部電極7と接触するように塗布
し、トンネル炉で900℃で焼付け、上部電極11を形
成した。
Finally, thick film varistor 10 is screen printed with silver paste.
The coating was applied so as to be narrower than the width of , and in contact with the lower electrode 7 , and baked at 900° C. in a tunnel furnace to form the upper electrode 11 .

このようにして得た厚膜バリスタと厚膜コンデンサの複
合部品は、従来例よりバリスタ特性、特に耐パルス電圧
が200vと従来例の150Vと比較して大幅に向上し
、静電容量もIMH2で1ooopF’以上の歩留りが
95%と従来の60%と比較し大幅に良くなった。
The thus obtained composite component of a thick film varistor and a thick film capacitor has significantly improved varistor characteristics than the conventional example, especially the pulse withstand voltage of 200V compared to the conventional example's 150V, and the capacitance is also IMH2. The yield of 1ooopF' or more is 95%, which is significantly better than the conventional 60%.

耐湿特性も第4図に示すように従来例に比べて大幅に向
上した。
The moisture resistance properties were also significantly improved compared to the conventional example, as shown in Figure 4.

第4図でイは本実施例の特性、口は従来例の特性である
In FIG. 4, A indicates the characteristics of this embodiment, and A indicates the characteristics of the conventional example.

この試験に用いたバリスタ電圧VAo(この複合部品に
l QmAの電流を流した時の端子間電圧)が15Vで
、静電容量が約1ooopF’である。
The varistor voltage VAo (the voltage between the terminals when a current of 1 QmA is passed through this composite component) used in this test is 15 V, and the capacitance is about 1 ooopF'.

この複合部品にDCOolWを印加し、60°C190
〜95%RHの湿度槽に入れて試験した。
Apply DCOolW to this composite part and heat it at 60°C190
Tested in a humidity bath at ~95% RH.

以上のように構成された本考案の複合部品は、厚膜コン
デンサが中間電極を介して厚膜バリスタの下部に位置す
るように積層化され、厚膜コンデンサが中間電極と厚膜
バリスタで完全に密閉され外部に露出しない構造のため
、耐湿度特性が大幅に向上するものである。
The composite component of the present invention constructed as described above is stacked so that the thick film capacitor is located below the thick film varistor through the intermediate electrode, and the thick film capacitor is completely formed by the intermediate electrode and the thick film varistor. The structure is sealed and not exposed to the outside, which greatly improves moisture resistance.

これは上述したように厚膜コンデンサはきわめて多孔質
であり、それが外部に露出した場合には外気、特に湿度
の影響を受けやすいという問題点を有しているが、本考
案では簡単な構造でもって耐湿度特性を改善できるとい
う利点を有しているものである。
This is because, as mentioned above, thick film capacitors are extremely porous, and when exposed to the outside, they are easily affected by the outside air, especially humidity. This has the advantage of improving humidity resistance.

また、本考案では中間電極を介して厚膜コンデンサ、厚
膜バリスタを積層化する構造のため、印刷、焼付けによ
り簡単に得ることができ、焼結工程を必要とせず、安価
にして提供できるものである。
In addition, since the present invention has a structure in which thick film capacitors and thick film varistors are laminated via intermediate electrodes, it can be easily obtained by printing and baking, and does not require a sintering process, and can be provided at low cost. It is.

さらに、アルミナ等の基板上に直接作ることができる構
成であり、設計の自在性が大きいものであるとともに厚
膜コンデンサ、厚膜バリスタは非常に薄く形成できるこ
とから、全体を小型にして構成できるという長所を有し
ているものである。
Furthermore, the structure can be manufactured directly on a substrate such as alumina, which allows for great flexibility in design, and thick film capacitors and thick film varistors can be formed very thin, making it possible to make the entire structure compact. It has its advantages.

また、電極の取出しが簡単であり、かつ上述したように
印刷、焼付けで作成できることから、特に耐熱温度の高
い高価な白金−パラジウム合金等の材料を電極に用いる
必要もないものである。
Furthermore, since the electrodes are easy to take out and can be created by printing or baking as described above, there is no need to use expensive materials such as platinum-palladium alloys with particularly high heat resistance for the electrodes.

このような複合部品は小形化が可能であり、音響機器に
おけるマイクロモータへの適用や、今後マイコン応用機
器に対するノイズ防止等の多方面にわたり、使用に供す
ることができるものであり、その産業的価値はきわめて
大きい。
Composite parts like this can be miniaturized and can be used in a wide variety of fields, including applications to micromotors in audio equipment and noise prevention for microcomputer-applied equipment in the future, and their industrial value is high. is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本複合部品の等他回路を示す回路図、第2図a
、 bは従来例の複合部品の構成を示す断面図と平面図
、第3図a、 bは本考案の複合部品の構成を示す断面
図と平面図、第4図は従来例と本考案の複合部品の耐湿
試験の結果を示す図である。 6・・・・・・電気絶縁性基板、7・・曲下部電極、8
・・・・・・厚膜コンデンサ、9・・・・・・中間電極
、1o・・曲厚膜バリスタ、11・・・・・・上部電極
Figure 1 is a circuit diagram showing other circuits of this composite part, Figure 2 a
, b are a cross-sectional view and a plan view showing the configuration of a conventional composite part, Figures 3a and b are a cross-sectional view and a plan view showing the configuration of a composite part of the present invention, and Figure 4 is a cross-sectional view and a plan view showing the configuration of a composite part of the conventional example and the present invention. It is a figure which shows the result of the moisture resistance test of a composite part. 6...Electrical insulating substrate, 7...Curved lower electrode, 8
... Thick film capacitor, 9 ... Intermediate electrode, 1o ... Curved thick film varistor, 11 ... Upper electrode.

Claims (3)

【実用新案登録請求の範囲】[Scope of utility model registration request] (1)電気絶縁性基板の上に厚膜コンデンサと厚膜バリ
スタを、上記厚膜コンデンサを中間電極を介して上記厚
膜バリスタの下部に位置するように積層化するとともに
電気的に並列になるように配置し、上記厚膜コンデンサ
を上記中間電極と上記厚膜バリスタで完全に密閉し外部
に露出しないようにしたことを特徴とする複合部品。
(1) A thick film capacitor and a thick film varistor are stacked on an electrically insulating substrate so that the thick film capacitor is located below the thick film varistor via an intermediate electrode, and are electrically parallel to each other. A composite component characterized in that the thick film capacitor is completely sealed with the intermediate electrode and the thick film varistor so that it is not exposed to the outside.
(2)中間電極として、銀粉に2〜3唾量%の酸化ビス
マス(B12O3)を加え、有機バインダーと混練した
銀ペーストを用いた実用新案登録請求の範囲第1項記載
の複合部品。
(2) The composite component according to claim 1, which is a registered utility model, using as an intermediate electrode a silver paste prepared by adding 2 to 3% bismuth oxide (B12O3) to silver powder and kneading it with an organic binder.
(3)中間電極として銀粉に5〜30重量%のホウケイ
酸ビスマスガラス(B −3i−Bi −Q系)を加え
、有機バインダーと混練したペーストを用いた実用新案
登録請求の範囲第1項記載の複合部日日0
(3) Utility model registration using a paste prepared by adding 5 to 30% by weight of bismuth borosilicate glass (B-3i-Bi-Q system) to silver powder and kneading it with an organic binder as an intermediate electrode as claimed in claim 1 Composite part day day 0
JP14320980U 1980-10-06 1980-10-06 composite parts Expired JPS6031244Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14320980U JPS6031244Y2 (en) 1980-10-06 1980-10-06 composite parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14320980U JPS6031244Y2 (en) 1980-10-06 1980-10-06 composite parts

Publications (2)

Publication Number Publication Date
JPS5766529U JPS5766529U (en) 1982-04-21
JPS6031244Y2 true JPS6031244Y2 (en) 1985-09-18

Family

ID=29502966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14320980U Expired JPS6031244Y2 (en) 1980-10-06 1980-10-06 composite parts

Country Status (1)

Country Link
JP (1) JPS6031244Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230081158A1 (en) * 2021-08-31 2023-03-16 Panasonic Intellectual Property Management Co., Ltd. Varistor and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230081158A1 (en) * 2021-08-31 2023-03-16 Panasonic Intellectual Property Management Co., Ltd. Varistor and method for manufacturing the same
US11908599B2 (en) * 2021-08-31 2024-02-20 Panasonic Intellectual Property Management Co., Ltd. Varistor and method for manufacturing the same

Also Published As

Publication number Publication date
JPS5766529U (en) 1982-04-21

Similar Documents

Publication Publication Date Title
US3683245A (en) Hermetic printed capacitor
JPS6031244Y2 (en) composite parts
JPS6020920Y2 (en) composite parts
JPH1064703A (en) Multilayer chip electronic component
JPH03283581A (en) Laminated piezoelectric actuator element
JPS6032752Y2 (en) composite parts
US4747014A (en) Reduction-reoxidation type semiconductor ceramic capacitor and method of manufacturing thereof
JPS6015275Y2 (en) Composite thick film varistor
JPS633147Y2 (en)
JPS63102218A (en) Laminated multiterminal electronic component
JPS6032722Y2 (en) thick film thermistor
JPH01302714A (en) High-voltage ceramic capacitor
JP3478628B2 (en) Semiconductor ceramic composition for grain boundary insulating layer type semiconductor capacitor and grain boundary insulating layer type semiconductor capacitor using the same
JP2853040B2 (en) Electrode paste for grain boundary insulated semiconductor ceramic capacitors
JPS58163102A (en) Conductive paste
JPS6015277Y2 (en) thick film varistor
JPS6141223Y2 (en)
JPS593559Y2 (en) surge absorber
JPS6231108A (en) Ceramic capacitor
JP2605332B2 (en) Method for forming grain boundary layer of semiconductor porcelain
JPH0113406Y2 (en)
JPS6316504A (en) Ceramic forming composition and semiconductor ceramic substrate, dielectric ceramic substrate and capacitor using the same
JPH0316242Y2 (en)
JPH03173403A (en) Chip varistor
JP3951329B2 (en) Dielectric porcelain composition