JPS603033B2 - Silicon nitride manufacturing method - Google Patents

Silicon nitride manufacturing method

Info

Publication number
JPS603033B2
JPS603033B2 JP52151685A JP15168577A JPS603033B2 JP S603033 B2 JPS603033 B2 JP S603033B2 JP 52151685 A JP52151685 A JP 52151685A JP 15168577 A JP15168577 A JP 15168577A JP S603033 B2 JPS603033 B2 JP S603033B2
Authority
JP
Japan
Prior art keywords
silicon nitride
mixture
nitrogen gas
powder
si3n4
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52151685A
Other languages
Japanese (ja)
Other versions
JPS5484899A (en
Inventor
潔 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP52151685A priority Critical patent/JPS603033B2/en
Publication of JPS5484899A publication Critical patent/JPS5484899A/en
Publication of JPS603033B2 publication Critical patent/JPS603033B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • C01B21/0685Preparation by carboreductive nitridation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 本発明の窒化碇素、即ちSi3N4を製造する方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing nitride silicate, namely Si3N4.

Si粉末を、高圧のN2ガスと接触せしめつつ加圧放電
鱗結する、いわゆるスパーク・アイソスタティック・プ
レス法により室化珪素が得られることは、例えば樽公昭
47一14125号公報その他により公知である。
It is known, for example, from Taruko Sho 47-14125 and other publications, that silicon nitride can be obtained by the so-called spark isostatic press method, in which Si powder is subjected to pressurized discharge scaling while being brought into contact with high-pressure N2 gas. .

また、Si粉末と例えばFe2N3、BN、Nが等の窒
素含有物とを混合し、放電凝結して窒化桂素を得る技術
も袴公昭49−繁斑2号に開示されている。
Furthermore, a technique for obtaining boron nitride by mixing Si powder and a nitrogen-containing substance such as Fe2N3, BN, N, etc. and performing discharge condensation is also disclosed in Hakama Kosho 49-Shigema No. 2.

然しながら、これら公知の方法はSiを出発物質とする
ものである。一方、Siは地殻中に多量に存在するが、
遊離状態で産出するものでなく、主として酸化物又は桂
酸塩として産出するものである。従って、例えばSiQ
を還元してSiを得、これを叙上の如き方法で窒化して
Sう3N4を得るという従来の方法は迂遠な方法であり
、合理的でなく、そのため、Si02は、例えば桂石又
は桂砂として大草かつ安価に供給されているにも拘らず
、叙上の方法により得られたSi3N4は必ずしも安価
であるとは云えないものであった。
However, these known methods use Si as a starting material. On the other hand, although Si exists in large quantities in the earth's crust,
It is not produced in a free state, but mainly as an oxide or citrate. Therefore, for example, SiQ
The conventional method of reducing Si to obtain Si and nitriding it in the manner described above to obtain S3N4 is a roundabout method and is not rational. Although Si3N4 is widely available as sand at a low price, it cannot be said that the Si3N4 obtained by the above method is necessarily cheap.

また、この他の室化碇素の製造方法としては、100の
‘/100タ以上の吸油量を有する無定形のカーボン粉
末を使用し、且つ重量比にて上記無定形カーボン粉末/
シリカ粉末が0.母音以上となるように配合し混合原料
とした後、この混合原料に窒素含有非酸化性ガスを供艶
資しつつ高温下で加熱して拳化凝結せしめる技術が袴関
昭52一90499号に開示されている。
In addition, as another method for producing hydrogenated carbide, an amorphous carbon powder having an oil absorption amount of 100'/100 ta or more is used, and the weight ratio is the above amorphous carbon powder/
Silica powder is 0. Hakama Sekisho No. 52-90499 describes a technique in which the mixed raw materials are blended so as to have a vowel or more, and then heated at high temperature while supplying nitrogen-containing non-oxidizing gas to condense the mixed raw materials into fists. Disclosed.

然しながら、上記の方法は効率が低く、製造に手間と時
間がかかる割には徴量の製品しか得られないためコスト
が高くなると云う問題点があった。
However, the above-mentioned method has a problem in that efficiency is low and production costs are high because only the desired product can be obtained despite the labor and time required for production.

本発明は級上のる馬点に立ってなされたものであって、
その目的とするところは、峯化珪素を短時間に大量且つ
安価に製造する方法を提供しようとするものである。
The present invention was made based on the idea of a superior horse,
The purpose of this invention is to provide a method for manufacturing oxidized silicon in large quantities in a short period of time at low cost.

而して、上記の目的は、重量比で約10:4の割合で酸
化珪素及び炭素の粉末を配合してなる混合物を通気性を
有する型内で加圧すると共に、これに窒化ガスを強制的
に浸透せしめつつ放電燐結を行なうことによって達成さ
れる。
The above purpose is achieved by pressurizing a mixture of silicon oxide and carbon powder in a weight ratio of about 10:4 in a mold with air permeability, and forcing nitriding gas into the mixture. This is achieved by performing discharge phosphorization while infiltrating the

而して、金属又は合金粉末の放電擁結を行う際、通気性
を有する型を用い、その型内に競縞すべき粉末と充填し
、これに押圧体兼遍電電極を軽圧縮圧力で接触させると
共に、型の外部から型内部に高圧ガスを流通浸透させた
状態で、上記粉末に通電し、粒子間放電及びジュール熱
加熱を行なった後、圧縮成形すると共に上記ガスを糠絹
体中に拡散させる技術及びその装置は、特公昭44−2
3732号に開示されており、公知である。
Therefore, when carrying out electrical discharge of metal or alloy powder, a breathable mold is used, the powder to be competitively streaked is filled into the mold, and a pressing body/uniform electrode is placed in the mold with light compression pressure. At the same time, the powder is brought into contact with a high pressure gas flowing from the outside of the mold into the inside of the mold, and then electricity is applied to the powder to perform interparticle discharge and Joule heat heating. The technology and equipment for dispersing the
It is disclosed in No. 3732 and is well known.

而して、本発明に於ては、この公3句の装置と類似した
装置が使用されるが、本発明方法を実施するときには、
型内で高度の化学反応が行なわれるため、暁結成形体の
側面等の表面層部分のみに小量の窒化珪素が生成される
のではなく、良質で繊密な窒化桂素塊を大量に得ること
ができるものである。以下、図面及び実施例により本発
明を説明する。
Therefore, in the present invention, a device similar to this device is used, but when carrying out the method of the present invention,
Because a high-level chemical reaction takes place inside the mold, a small amount of silicon nitride is not produced only on the surface layer such as the side surface of the Akatsuki formed body, but instead a large amount of high-quality, dense boron nitride lumps are obtained. It is something that can be done. The present invention will be explained below with reference to drawings and examples.

図面は本発明を実施するために使用する装置の一実施例
を示す説明図であり、図中1は通気性グラフアィトから
成る耐熱性円筒状の競絹用のダィ、2は真空槽、3は窒
素ガス槽、4及び5は絶縁プッシュ、6及び7はそれぞ
れ繊密部6a,7a及び多孔質部6b,7bから成る一
対の通電擬縞用パンチ、8及び9は図示されていない油
圧ユニットに接続する油圧シリンダ、10及び11はピ
ストン、12及び13はコネクテイング・ロッド、14
及び15は絶縁用ガスケツト、16,16はボルト、1
7は酸化珪素粉末と炭素粉末の混合物、18は通電焼結
用の直交混成電源、19はスイッチ、20は窒素ガスボ
ンベ、21は真空ポンプ、22及び23は止弁である。
The drawing is an explanatory view showing one embodiment of the apparatus used to carry out the present invention, in which 1 is a heat-resistant cylindrical die for competitive silk made of air-permeable graphite, 2 is a vacuum tank, and 3 is a 1 is a nitrogen gas tank, 4 and 5 are insulating pushers, 6 and 7 are a pair of energized pseudo-stripe punches each consisting of delicate parts 6a, 7a and porous parts 6b, 7b, and 8 and 9 are hydraulic units (not shown). 10 and 11 are pistons, 12 and 13 are connecting rods, 14
and 15 is an insulating gasket, 16, 16 is a bolt, 1
7 is a mixture of silicon oxide powder and carbon powder, 18 is an orthogonal hybrid power source for current sintering, 19 is a switch, 20 is a nitrogen gas cylinder, 21 is a vacuum pump, and 22 and 23 are stop valves.

而して、Sj02等を含まない高純度のSi3N4を得
ようとする場合、混合物17におけるSi02とCの配
合比はSi021モルに対してC2モルの割合とするこ
とが推奨される。この配合比は重量比では約60:24
である。Si02としては粒度40仏以下の桂砂が用い
られ、Cとしては粒度20仏以下の石油コークスが用い
られる。これらを均一に混合し、ダィ1の内部でパンチ
2及び3の間に充填し、100kg′地前後またはそれ
以下程度の圧力で軽く圧縮しておく。
Therefore, when trying to obtain high purity Si3N4 that does not contain Sj02 etc., it is recommended that the blending ratio of Si02 and C in the mixture 17 is 2 moles of C to 1 mole of Si02. This blending ratio is approximately 60:24 by weight.
It is. Cinnamon sand with a particle size of 40 French or less is used as Si02, and petroleum coke with a particle size of 20 French or less is used as C. These are mixed uniformly, filled between the punches 2 and 3 inside the die 1, and lightly compressed under a pressure of about 100 kg' or less.

パンチ6及び7の各半分、即ちそれぞれ混合物17を圧
縮する面から真空槽2又は窒素ガス槽3に通ずる部分6
b,7bは多孔費グラフアィト等の通気性ある導電体と
なっており、残りの各半分6a,7aは繊密な導軍体と
なっている。
Each half of the punches 6 and 7, i.e. the portion 6 that communicates with the vacuum chamber 2 or the nitrogen gas chamber 3 from the side that compresses the mixture 17, respectively;
b and 7b are made of an air-permeable conductive material such as porous graphite, and the remaining halves 6a and 7a are made of a dense conductive material.

窒素ガス槽3の内部には窒素ガスボンベ20から所定の
圧力の窒素ガスが導入され、真空槽2の内部は真空ポン
プ21により排気、減圧される。
Nitrogen gas at a predetermined pressure is introduced into the nitrogen gas tank 3 from a nitrogen gas cylinder 20, and the inside of the vacuum tank 2 is evacuated and depressurized by a vacuum pump 21.

このため窒素ガス槽3内の窒素ガスはパンチ7の多孔質
部7b、混合物17及びパンチ6の多孔質部6b、又は
ダィ1を通って、真空槽2又はダィ1の側面方向に拡散
、流通せしめられる。この状態で、スイッチ19を投入
すると、混合物17には周波数200〜2000HZの
交流と直流とを電力比で約1:3となるよう重畳したパ
ルス状脈動電流が流れる。この電源は数十ボルトの電圧
であるが、大容量であり、200〜2000A/地の大
電流を流し得るものである。Sj02は絶縁体であるが
、カーボンは良導体であり、上記の電流はダィ2及び混
合物17中のカーボン粉末を通って流れ、このため粒子
間放電及びジュール熱が発生し、鍵合物が灼熱状態とな
り、かつ窒素ガスが活性化されるので混合物17中では
次の如き化学反応が生起する。Si02十C→Si0十
CO 簿i○十C+N2→Si20N2十CO $i20N2十3C+N2一$i3N4十3CO而して
、最終的には$i02十に十2N2一Si3N4十に0
なる反応によりSi3N4が得られるものである。
Therefore, the nitrogen gas in the nitrogen gas tank 3 passes through the porous part 7b of the punch 7, the mixture 17 and the porous part 6b of the punch 6, or the die 1, and diffuses in the side direction of the vacuum tank 2 or the die 1. , will be distributed. In this state, when the switch 19 is turned on, a pulsed pulsating current in which alternating current and direct current having a frequency of 200 to 2000 Hz are superimposed at a power ratio of about 1:3 flows through the mixture 17. Although this power source has a voltage of several tens of volts, it has a large capacity and can flow a large current of 200 to 2000 A/ground. Sj02 is an insulator, but carbon is a good conductor, and the above current flows through the die 2 and the carbon powder in the mixture 17, which causes interparticle discharge and Joule heat, causing the key compound to scorch. Since this state occurs and the nitrogen gas is activated, the following chemical reaction occurs in the mixture 17. Si020C→Si010CO Book i○10C+N2→Si20N20CO $i20N213C+N2-$i3N4103CO, and finally $i020 to 12N21 Si3N40 to 0
Si3N4 is obtained by this reaction.

この反応により発生するCOは余剰のN2と共に真空槽
2内に掩集され図示されていない装置により処理又は回
収される。この反応は、loo帆/地程度の通電を約5
分間継続すると共に、その期間に理論値の2〜3倍量の
N2ガスを供給することによりほぼ完結するので、その
後、圧縮圧力を0.4〜1.伽/嫌程度に増大し、強圧
成形すると、繊密なSi3N4塊が得られるものである
The CO generated by this reaction is collected together with excess N2 in the vacuum chamber 2 and treated or recovered by a device (not shown). This reaction requires about 5 lbs of current
The compression pressure continues for 0.4 to 1 minute, and is almost completed by supplying 2 to 3 times the theoretical value of N2 gas during that period, and then the compression pressure is increased to 0.4 to 1. When it increases to a certain degree and is subjected to strong pressure molding, a dense Si3N4 lump is obtained.

前記圧縮圧力を0.0/係またはそれ以下に低くすると
多孔状、或いはさらに粒子状のSi3N4が得られる。
尚炭素の配合量を加減することにより、 Si20N2、Si02等とSi3 N4の混合物が得
られる。
When the compression pressure is lowered to 0.0% or less, porous or even particulate Si3N4 can be obtained.
By adjusting the blending amount of carbon, a mixture of Si20N2, Si02, etc. and Si3 N4 can be obtained.

次に本発明の一実施例を示す。実施例 粒度40仏のSi02粉末と同15仏の石油コークスと
を重量比で10:4の比率で配合し、これを内径8仇の
グラフアイト製のダイに充填、30k9′地の圧力で軽
く圧縮し、窒素ガスを供給しつつD.C.30V×10
00船:AC.30VX333船×400HZの電力を
5分間供給した後、圧縮圧力を0.5T/地として加圧
成形し、10%のSiON2を含む繊密なSi3N4塊
を得た。
Next, one embodiment of the present invention will be described. Example Si02 powder with a particle size of 40 mm and petroleum coke with a particle size of 15 mm were mixed in a weight ratio of 10:4, filled into a graphite die with an inner diameter of 8 mm, and lightly crushed under a pressure of 30 k9'. D. while compressing and supplying nitrogen gas. C. 30V×10
00 ship: AC. After supplying power of 30V x 333 ships x 400Hz for 5 minutes, compression molding was carried out at a compression pressure of 0.5T/ground to obtain a dense Si3N4 lump containing 10% SiON2.

本発明は叙上の如く構成されるから、本発明によるとき
は、Si3N4を極めて安価に製造できるものである。
Since the present invention is constructed as described above, Si3N4 can be manufactured at extremely low cost when using the present invention.

図面の簡単な説明図面は本発明方法を実施するため使用
する装置の一実施例を示す説明図である。
BRIEF DESCRIPTION OF THE DRAWINGS The drawing is an illustration showing one embodiment of the apparatus used to carry out the method of the invention.

1……ダイ、2……真空槽、3……窒素ガス槽、6,7
……パンチ、8,9…・・・油圧シリンダ、17……S
i02とCの混合物、18……電源、20…・・・窒素
ガスボンベ、21・・・・・・真空ポンプ。
1...Die, 2...Vacuum chamber, 3...Nitrogen gas tank, 6,7
...Punch, 8,9...Hydraulic cylinder, 17...S
Mixture of i02 and C, 18...Power supply, 20...Nitrogen gas cylinder, 21...Vacuum pump.

Claims (1)

【特許請求の範囲】[Claims] 1 重量比で約10:4の割合で酸化硅素及び炭素の粉
末を配合して成る混合物を通気性を有する型内で加圧す
ると共に、これに窒素ガスを浸透せしめつつ放電焼結を
行ない窒化硅素を得ることを特徴とする窒化硅素製造方
法。
1 A mixture of silicon oxide and carbon powders in a weight ratio of approximately 10:4 is pressurized in an air-permeable mold, and discharge sintering is performed while nitrogen gas is permeated into the mixture to form silicon nitride. A method for producing silicon nitride, characterized in that it obtains silicon nitride.
JP52151685A 1977-12-19 1977-12-19 Silicon nitride manufacturing method Expired JPS603033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52151685A JPS603033B2 (en) 1977-12-19 1977-12-19 Silicon nitride manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52151685A JPS603033B2 (en) 1977-12-19 1977-12-19 Silicon nitride manufacturing method

Publications (2)

Publication Number Publication Date
JPS5484899A JPS5484899A (en) 1979-07-06
JPS603033B2 true JPS603033B2 (en) 1985-01-25

Family

ID=15524009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52151685A Expired JPS603033B2 (en) 1977-12-19 1977-12-19 Silicon nitride manufacturing method

Country Status (1)

Country Link
JP (1) JPS603033B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0424379U (en) * 1990-06-20 1992-02-27

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE449221B (en) * 1983-04-19 1987-04-13 Kemanord Ind Ab PROCEDURE FOR THE PREPARATION OF SILICON NITRIDE BY THE TRANSACTION OF SILICON Dioxide, COAL AND NITROGEN AT A TEMPERATURE OVER 1300? 59OC

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0424379U (en) * 1990-06-20 1992-02-27

Also Published As

Publication number Publication date
JPS5484899A (en) 1979-07-06

Similar Documents

Publication Publication Date Title
US3913280A (en) Polycrystalline diamond composites
CN110845237A (en) High-entropy ceramic powder, preparation method thereof and high-entropy ceramic block
RU2006111507A (en) MAGNETIC SOFT POWDER BASED ON IRON
JPS603033B2 (en) Silicon nitride manufacturing method
CN109502562A (en) A kind of preparation method of higher degree hexagonal boron nitride powder
DE69126616T2 (en) METHOD FOR PRODUCING SILICON NITRIDE ITEMS
JPS6468405A (en) Production of cam for cam shaft by powder metallurgy
Padyukov et al. Self-propagating high-temperature synthesis: a new method for the production of diamond-containing materials
SU730285A3 (en) Method of hot pressing of metallic powders
ATE231829T1 (en) PISTON MADE OF FINE GRAIN CARBON AND METHOD FOR PRODUCING IT
JPH0556284B2 (en)
JP3175170B2 (en) Method for producing TiC sintered body
US1343976A (en) Hardened material for use in the arts as substitutes for diamonds
CN106524769A (en) One-way hot-press sintering furnace
US3296021A (en) Heat-resistant and oxidationproof materials
US3404000A (en) Process for the production of copper bodies of high mechanical strength and high electrical conductivity
CN101811190B (en) In-situ TiB2 and Ti5Si3 composite material and preparation method thereof
JPH03239509A (en) Manufacture of molding die decorative plastics
JP3697510B2 (en) Manufacturing method of WC cemented carbide
JPS55140707A (en) Carbon sintering method
JPH037627B2 (en)
Dubois et al. Experimental evidence of the emptying core mechanism during combustion synthesis of TiC performed under isostatic gas pressure
US5552356A (en) Boron subphosphide/aluminum oxide composite materials, processes for the production thereof and use thereof
JPS55115901A (en) Production of electric contact point material
JPH036209B2 (en)