JPS6029855A - Address control system - Google Patents

Address control system

Info

Publication number
JPS6029855A
JPS6029855A JP58138276A JP13827683A JPS6029855A JP S6029855 A JPS6029855 A JP S6029855A JP 58138276 A JP58138276 A JP 58138276A JP 13827683 A JP13827683 A JP 13827683A JP S6029855 A JPS6029855 A JP S6029855A
Authority
JP
Japan
Prior art keywords
address
data
circuit
counter
memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58138276A
Other languages
Japanese (ja)
Inventor
Yasukatsu Oka
岡 安克
Takayuki Ishizu
石津 隆幸
Shunsaku Fukunishi
福西 俊策
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58138276A priority Critical patent/JPS6029855A/en
Publication of JPS6029855A publication Critical patent/JPS6029855A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/06Addressing a physical block of locations, e.g. base addressing, module addressing, memory dedication

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Image Input (AREA)
  • Image Processing (AREA)
  • Memory System (AREA)

Abstract

PURPOSE:To handle two-dimensional data at a high speed and alter easily the dimension such as a longitudinally long, a laterally long, and a square shape, etc., by performing DMA (dynamic memory access) transfer in an optional rectangular area in a linear memory by one-time parameter setting and starting. CONSTITUTION:Data DELTA(x), P(x), P(y), and DELTA(y) on an image are inputted from a bus 16 to initial value registers 5-7 and a counter 14. The starting point of the image is indicated with the initial value of the data P(x) and P(y), the data DELTA(x) is counted 10 with a clock signal, and the address of the data P(x) is counted 11; once X-directional DMA is completed, an Y-directional shift is made, and the X-directional DMA is repeated until the DELTA(y) counter 14 attains to a specific value. Then, the X and Y position and ratio X/Y are indicated to a shifting circuit 8 and a decoder 13 with the output of an X and Y size control register 9. The outputs of P(x) and P(y) address counters 11 and 12 and the output of a decoder 13 are multiplexed 15 to alter the longitudinal/lateral ratio of a rectangle at a high speed.

Description

【発明の詳細な説明】 (a)発明の技術分野 本発明は主としてイメージデータを格納する一次元的構
造のメモリ装置に係り、特に該メモリ装置から二次元的
データ構造を持つイメージデータの転送を行う場合、該
イメージデータの二次元的属性を考慮して、X、Y座椋
でのアトルシングによる二次元グイナミノク・メモリ・
アクセスを可能とし、且つメモリ資源のX、Y方向の容
量の定義を可変となし得るアドレス制御方式に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention mainly relates to a memory device having a one-dimensional structure for storing image data, and in particular to a method for transferring image data having a two-dimensional data structure from the memory device. When performing this, two-dimensional Guinaminok memory by attlesing in
The present invention relates to an address control method that allows access and allows variable definition of the capacity of memory resources in the X and Y directions.

(b)従来技術と問題点 従来、−次元的メモリ構造のメモリ装置、U(Jち例え
ば縦方向に逐次的にアドレスを与え、横方向はメモリの
横方向の容量に見合ったデータ量で書込み/読出しを行
うことにより、縁方向のアドレスを指示するのめでデー
タの書込め/読出しを行うメモリ装置に於いて、本来二
次元的データ構造を持つイメージデータを扱うには、二
次元のイメージデータをラスク走査することにより、−
次元化してメモリ内に格納し、−次元のアドレス空間(
プログラムで参照することの出来るアドレスの範囲)内
でアドレス計算を行い、イメージデータを二次元的に扱
うという手法がとられており、アドレス計算のための負
担が大きかった。第1図は一次元メモリに二次元データ
を格納する動作を説明する図である。メモリ1にメモリ
1の原点0゜0より横軸X方向でP(×)、縦軸Y方向
でP (ylの位置にX方向がΔ(×)、Y方向がΔf
ylの大きさを持つイメージデータ2を格納する場合、
メモリ1のY方向のアl−レスP (y)からX方向に
ラスク走査し、始点0からP (xiの位置を計算し、
P (XlからΔ(Xlだけ連続したデータを書込み、
次にY方向のアドレスP (ylを+1して再び始点O
からP (Xlの位置を計算し、P(×)からΔ(×)
だけ連続したデータを書込む動作を繰り返しΔ(yJの
範囲を走査すれば完了する。
(b) Prior art and problems Conventionally, in a memory device with a -dimensional memory structure, addresses are given sequentially in the vertical direction, and data is written in the horizontal direction in accordance with the horizontal capacity of the memory. /In order to handle image data that originally has a two-dimensional data structure in a memory device that writes/reads data in order to specify the address in the edge direction by reading, two-dimensional image data is required. By rask scanning, −
It is dimensionalized and stored in memory, and a -dimensional address space (
The method used was to perform address calculations within the range of addresses that can be referenced by the program and treat image data two-dimensionally, which placed a heavy burden on address calculations. FIG. 1 is a diagram illustrating the operation of storing two-dimensional data in a one-dimensional memory. In memory 1, from the origin 0°0 of memory 1, P(x) in the horizontal axis X direction, P in the vertical axis Y direction (Δ(x) in the X direction and Δf in the Y direction at the yl position
When storing image data 2 with a size of yl,
Scanning is performed in the X direction from the address P (y) in the Y direction of memory 1, and calculates the position of P (xi) from the starting point 0,
P (Write continuous data by Δ(Xl from Xl,
Next, the address P in the Y direction (+1 yl and the starting point O
From P (calculate the position of Xl, from P(×) to Δ(×)
The operation is completed by repeating the operation of writing consecutive data by Δ(yJ) and scanning the range of Δ(yJ).

従って一走査線上でP(×)の位置を毎回計算する必要
かあり、X方向のデータがアドレス不連続である為、−
回のダイナミック・メモリ・アクセス起動により連続し
てデータ転送することが不可能であり、ラスク単位のダ
イナミック・メモリ・アクセス起動を必要とし、且つア
ドレス計算の負担が大きいという欠点がある。
Therefore, it is necessary to calculate the position of P(x) on one scanning line every time, and since the data in the X direction is address discontinuous, -
This method has disadvantages in that it is impossible to transfer data continuously by activating dynamic memory access once, it requires dynamic memory access activation in rask units, and the burden of address calculation is heavy.

又メモリの構造自体を二次元的にする方法もあるが、メ
モリ制御回路が複雑となりハードウェアの量も増加し経
済的でない等の欠点がある。
There is also a method of making the memory structure itself two-dimensional, but this method has drawbacks such as the memory control circuit becomes complicated, the amount of hardware increases, and it is not economical.

(C)発明の目的 本発明の目的は上記欠点を除く為、通常の一次元アドレ
ス構造のメモリ装置に於いて、二次元的なデータ構造を
持つイメージデータ等の取扱を容易にする為、イメージ
データのX、Y座標指定及びX、Y方向の大きさを指定
し、−回の起動による二次元ダイナミック・メモリ・ア
クセスを可能にすると共に、メモリのx、、Y方向の容
量の設定を可変にすることにより、各種の大きさのイメ
ージデータを扱えるようにするアルレス制御方式を提供
することにある。
(C) Object of the Invention The object of the present invention is to eliminate the above-mentioned drawbacks, and to facilitate the handling of image data having a two-dimensional data structure in a memory device having a normal one-dimensional address structure. By specifying the X and Y coordinates of the data and the size in the X and Y directions, two-dimensional dynamic memory access is possible by starting - times, and the setting of the memory capacity in the x and Y directions is variable. The object of the present invention is to provide an all-res control method that can handle image data of various sizes.

(d)発明の構成 本発明の構成はmビットのアルレスを有するメモリをア
クセスして、任怠の矩形領域のデータ転送を行う装置に
於いて、mビットのアドレスのうち下位又は上位nビッ
トをX方向アドレス、上位又は下位m −nビットをY
アドレスとして割当て、前記矩形領域のX方向及びY方
向のスタートアドレスとX方向及びY方向の転送サイズ
とを夫々セソ1−され、転送ずべきデータのX方向及び
Y方向アドレスを発生ずるX方向制御手段とY方向制御
手段とを設け、且つX方向アト゛レスを表ずビット数n
又はY方向ア1−レスを表ずビット数rn−nによりX
方向アドレス制御手段及びY方向アISレス制御手段で
発生されるX方向ア1−゛レスとY方向アドレスを合成
する手段を設けて、この合成したアドレスによりメモリ
をアクセスするようにしたものである。
(d) Structure of the Invention The structure of the present invention is that in a device that accesses a memory having an m-bit address and transfers data in an idle rectangular area, the lower or upper n bits of the m-bit address are X direction address, upper or lower m - n bits as Y
X-direction control that generates the X-direction and Y-direction addresses of the data to be transferred by assigning them as addresses and seizing the X-direction and Y-direction start addresses and the X-direction and Y-direction transfer sizes of the rectangular area, respectively. means and a Y-direction control means, and the number of bits n representing the X-direction address is provided.
Or, do not represent the address in the Y direction, but use the number of bits rn-n to
Means for synthesizing the X-direction address and the Y-direction address generated by the direction address control means and the Y-direction IS address control means is provided, and the memory is accessed using this synthesized address. .

(e)発明の実施例 本発明は、−次元アトレス構造のメモリ内に格納された
一次元化されたイメージデータのダイナミック・メモリ
・アクセス転送を行う際に、前記第1図に基づき説明し
た如く、ラスク車位のダイナミック・メモリ・アクセス
起動を行って、ラスク単位にイメージデータを転送する
必要があるという問題を解決する為、メモリのアトルス
をX、Yに分割しX方向のダイナミック・メモリ・アク
セスが終了する毎にYを自動的にセントする回路を設け
、アドレス不連続の二次元データを一回のダイナミック
・メモリ・アクセス起動で転送出来るようにした。又ア
ドレスのX、Y分割の位置を可変にすることにより、メ
モリ容量内で二次元空間の設定をX方向のべき束単位で
設定できるようにしたものである。又mビットのアドレ
スを持つメモリのmビットのアドレスの内下位nピッI
・をX方向のアドレスに割り当てた場合、上位m −n
ピッ1−はY方向アドレスに、上位nビットをX方向の
アドレスに割り当てた場合、下位m−nビットをY方向
アドレスに割り当てる。
(e) Embodiments of the Invention The present invention is applicable to dynamic memory access transfer of one-dimensional image data stored in a memory having a -dimensional address structure, as described above with reference to FIG. In order to solve the problem that it is necessary to activate dynamic memory access in the rask position and transfer image data in units of rask, the memory atrus is divided into X and Y, and dynamic memory access in the X direction is performed. A circuit is provided that automatically writes Y each time the data is completed, so that two-dimensional data with discontinuous addresses can be transferred with a single activation of dynamic memory access. Furthermore, by making the X and Y division positions of the address variable, the two-dimensional space can be set within the memory capacity in units of powers in the X direction. Also, the lower n bits of the m-bit address of a memory with an m-bit address
When ・is assigned to the address in the X direction, the upper m −n
Pi1- is assigned to the Y direction address, and when the upper n bits are assigned to the X direction address, the lower m−n bits are assigned to the Y direction address.

第2図は本発明の一実施例を示す回路のブロック図であ
る。例えばメモリの容量が64にハイドとすると、16
ビノトのアドレス線の内下位nビットをX方向のアト°
レス、残りの16− nヒソ1−をY方向のアドレスと
しζ用いる。そして第1図に示すイメージデータ2の如
き矩形f;B域の転送を考える。グイナミソク・メモリ
・アクセス起動と共にイメージデータ2を転送する為の
アドレスを指示する為、データバス16を経てX、Yサ
イズ制御レジスタ9に前記nビットをセントし、P(×
)初期値レジスタ6に転送開始アト“レスP tx+を
セットし、P (yl初期値レジスタ7に転送開始アド
レスP (ylをセットする。又Δ(×)初期値レジス
タ5に転送するイメージデータ2のX方向の大きさを示
ずΔ(X)を、Δ(ylカウンタ14に転送するイメー
ジデータ2のY方向の大きさを示ずΔ(ylを夫々セッ
トする。P (y)初期値レジスタ7にセントされた転
送開始アドレスP (ylはシフト回路8に於いて、X
、Yサイズ制御レジスタ9にセントされた前記nにより
左にnビットシフトされP (ylアドレスカカウンタ
2にセントされる。即ち、Yアドレスはメモリのアドレ
スの内上位16−nピッ1−を構成する為、P (yl
アドレスカウンタ12の上位16−nビットにPtyi
初期値レジスし7に格納されたYアドレスをセットする
。Δ(Xl初期値レジスタ5にセソ!−されたΔ(×)
はΔ(×)カウンタ10にセットされ、P(×)初期値
レジスタ6にセットされた転送開始アドレスP (Xl
はP(×)アドレスカウンタ11にセソ1−される。n
の範囲はO≦n≦15であるため、これに合わせてP(
×)アドレスカウンタ11、P (y)アドレスカウン
タ12は16ビノトの容量を持つ。
FIG. 2 is a block diagram of a circuit showing one embodiment of the present invention. For example, if the memory capacity is 64 and hide, 16
The lower n bits of the address line of Binoto are moved in the X direction.
address, and the remaining 16-n Hiso 1- is used as the address in the Y direction. Consider the transfer of a rectangular area f;B such as image data 2 shown in FIG. In order to instruct the address for transferring the image data 2 at the time of starting the memory access, the n bits are sent to the X, Y size control register 9 via the data bus 16, and P(×
) Set the transfer start address P tx+ in the initial value register 6, and set the transfer start address P (yl) in the initial value register 7. Also, set the transfer start address P (yl) in the initial value register 5. Set Δ(X) indicating the size in the X direction of the image data 2 to be transferred to the counter 14, and Δ(yl indicating the size in the Y direction of the image data 2 to be transferred to the counter 14. P (y) initial value register The transfer start address P (yl is the transfer start address P in the shift circuit 8
, shifted by n bits to the left by the n placed in the Y size control register 9 and placed in the P (yl address counter 2. That is, the Y address constitutes the upper 16-n bits 1- of the memory addresses. In order to do that, P (yl
Ptyi is set to the upper 16-n bits of the address counter 12.
Set the Y address stored in initial value register 7. Δ(Xl initial value register 5 is set!- Δ(×)
is set in the Δ(×) counter 10, and the transfer start address P(Xl
is set to 1- in the P(x) address counter 11. n
Since the range of is O≦n≦15, P(
×) Address counter 11, P (y) Address counter 12 has a capacity of 16 bits.

クロックがΔ(Xlカウンタ10とP(×)アドレスカ
ウンタ11に入り、1ハイドデータを転送する度にΔ(
×)カウンタ10を−1し、P(×)アドレスカウンタ
11を+1する。即ぢΔ(に)カウンタ10はイメージ
データ2のΔ(Xlの範囲を走査するラスク走査の一走
査分が完了するのを監視し、P (x+アドレスカウン
ク11はラスク走査の一走査分の各ハイ1〜毎のアドレ
スを示ず。Δ(Xlカウンタ10はセソ1−されたイメ
ージデータ2のX方向の大きさ八(X)が零となるとキ
ャリー信号を送出し、Δ(Xl初期値レジスタ5からΔ
(Xlカウンタ10に又Δ(×)を七ノ1−し、P (
Xl初期値レジスタ6からP(×)アドレスカウンタ1
1に転送開始アドレスP(×)を七ソトシ、P(yl初
期値レジスク7の値を+1し、Δ(ylカウンタ14の
値を−1する。P (yl初期値レジスク7のト1され
た値はシフト回路8で又X、Yザイズ制御レジスタ9に
セットされているnビットにより、左にnヒツトシフト
されP (ylアドレスカウンタ12にセントされる。
The clock enters Δ(Xl counter 10 and P(×) address counter 11, and Δ(
x) counter 10 is incremented by -1, and P(x) address counter 11 is incremented by +1. Immediately, the Δ(ni) counter 10 monitors the completion of one scan of the rask scan that scans the range of Δ(Xl of the image data 2, and the Addresses for each high 1 to 1 are not shown. Δ(Xl counter 10 sends out a carry signal when the size 8 (X) in the X direction of image data 2 that has been secessed 1 - becomes zero, and Δ(Xl initial value Δ from register 5
(Add Δ(×) to the Xl counter 10 again by seven times, and P (
From Xl initial value register 6 to P(x) address counter 1
1, set the transfer start address P(x) by 7, add 1 to the value of P(yl initial value register 7, and decrement the value of Δ(yl counter 14 by 1. The value is shifted n hits to the left by the shift circuit 8 and n bits set in the X, Y size control register 9, and then sent to the P(yl address counter 12).

P (ylアドレスカウンタ12の出力は前記説明のイ
メージデータがY方向のアドレスで不連続であるものを
、連続させる動作をする。X、、Yサイズ制御レジスタ
9にセットされたnビットはデコーダ13でデコードさ
れ、マルチプレクサ15に送出される。又P(×)アド
レスカウンタ11とP (ylアドレスカウンタ12の
計数値もマルチプレクサ15に送出される。
P (The output of the yl address counter 12 serves to make the image data described above continuous at addresses in the Y direction. The n bits set in the X, Y size control register 9 are The count values of the P(x) address counter 11 and the P(yl address counter 12) are also sent to the multiplexer 15.

第3図はマルチプレクサ15の詳細回路図を示す。P(
×)アドレスカウンタ11の下位ビア h x Oから
上位ヒノl−x 15までの各ビットは順にxOはAN
D回路21に、xlはAND回路23に、x2はA、N
D回路25に、xl4はAND回路27に、xl5はA
ND回路29に夫々送出される。
FIG. 3 shows a detailed circuit diagram of multiplexer 15. P(
×) Each bit from lower via h x O to upper hino l-x 15 of address counter 11 is in order xO is AN
D circuit 21, xl to AND circuit 23, x2 to A, N
D circuit 25, xl4 to AND circuit 27, xl5 to A
The signals are sent to the ND circuit 29, respectively.

P (ylアドレスカウンタ12の下位ビットyOから
yl5までの各ビットは順にyOはAND回路22に、
ylばANDI回路24に、y2はANI)回路26に
、yl4はAND回路28に、yl5はAND回路30
に夫々送出される。デコーダ13の下位ビットSOから
S15までの各ビットは順にsOはAND回路21とN
OT回路16に、SlはAND回路23とNOT回路1
7に、S2はAND回路25とNOT回路18に、S1
4はAND回路27とNOT回路19に、S15はAN
D回路29とNOT回路20に夫々送出される。
P (The lower bits yO to yl5 of the yl address counter 12 are sequentially input to the AND circuit 22,
yl is connected to the ANDI circuit 24, y2 is connected to the ANI) circuit 26, yl4 is connected to the AND circuit 28, and yl5 is connected to the AND circuit 30.
will be sent to each. Each bit from the lower bit SO to S15 of the decoder 13 is sequentially connected to the AND circuit 21 and N.
OT circuit 16, Sl is AND circuit 23 and NOT circuit 1
7, S2 is connected to the AND circuit 25 and NOT circuit 18;
4 is connected to AND circuit 27 and NOT circuit 19, S15 is connected to AN
The signals are sent to the D circuit 29 and the NOT circuit 20, respectively.

NOT回路16の出力はAND回路22に、NOT回路
17の出力ばAND回路24に、NOT回路18の出力
ばAND回路26に、NOT回路19の出力はAND回
路28に、NOT回路20の出力はAND回路30に夫
々送出される。従ってデコーダ13の前記nビット(X
アドレスを表すビット)を例えば3ビツトとすればデコ
ーダ12の下位ビン1〜sQから52はP(×)アドレ
スカウンタ11のxOlxl、x2を選択する為に1”
となるから、AND回路21.23.25がオンとなり
P(×)アドレスカウンタ11の下位3ピノ1−xOか
らx2までをOR回路31,32.33を経て端子AO
からA2までに夫々送出する。残りの端子A3からA1
5まではP fylアドレスカウンタ12のy3からy
15までの各ビットをAND回路28.30等がOR回
路34.35等を経て送出する。Δfy)カウンタ14
はΔ(Xiカウンタ10がキャリー信号を送出する度に
−1する為、ラスク走査がイメージデータ2のΔ(y1
分走査すると零となる。Δ(ylカウンタ14が零とな
るとキャリー信号を端子Bに送出し、グイナミソク・メ
モリ・アクセスを終了させる。上記の如く動作する為、
一度グイナミソク・メモリ・アクセスを起動すればイメ
ージデータ2をアドレスP (Xl、P fylの位置
から端子AO〜A15に送出される連続するアドレスに
より転送可能となる。又前記nの値によりメモリ内で二
次元空間を任意に設定出来る。
The output of NOT circuit 16 is sent to AND circuit 22, the output of NOT circuit 17 is sent to AND circuit 24, the output of NOT circuit 18 is sent to AND circuit 26, the output of NOT circuit 19 is sent to AND circuit 28, and the output of NOT circuit 20 is sent to AND circuit 22. The signals are sent to the AND circuit 30, respectively. Therefore, the n bits (X
For example, if the bits representing the address are 3 bits, the lower bins 1 to sQ to 52 of the decoder 12 are 1'' to select xOlxl and x2 of the P(x) address counter 11.
Therefore, the AND circuits 21, 23, and 25 are turned on, and the lower three pins 1-xO to x2 of the P(x) address counter 11 are connected to the terminal AO through the OR circuits 31, 32, and 33.
to A2, respectively. Remaining terminals A3 to A1
5 is from y3 to y of P fyl address counter 12.
Each bit up to 15 is sent out by an AND circuit 28, 30, etc. via an OR circuit 34, 35, etc. Δfy) counter 14
is Δ(y1
If you scan for a minute, it becomes zero. When the Δ(yl counter 14 becomes zero, a carry signal is sent to terminal B and the memory access is terminated. Because it operates as described above,
Once the Guinamisoku memory access is started, image data 2 can be transferred from the address P (Xl, P fyl position) by consecutive addresses sent to terminals AO to A15. Also, depending on the value of n, the image data 2 can be transferred in the memory by Two-dimensional space can be set arbitrarily.

(f)発明の詳細 な説明した如く、本発明は一次元メモリ内の任意の矩形
領域のグイナミノク・メモリ・アクセス転送を一回のバ
ラメーク設定と起動により実施することが可能な為、イ
メージデータ等の二次元データ構造を持つ情報の取扱を
高速に行える。又二次元論理空間の定義をX、Yアドレ
スの分割位置、即ち前記nを変更することで可変出来る
為、縦長、横長、正方形等イメージデータの形に応した
二次元空間を任意に設定出来る。
(f) As described in detail, the present invention is capable of performing Guinaminok memory access transfer of an arbitrary rectangular area in a one-dimensional memory by setting and starting up the image data, etc. Information with a two-dimensional data structure can be handled at high speed. Furthermore, since the definition of the two-dimensional logical space can be varied by changing the dividing position of the X and Y addresses, that is, the n mentioned above, the two-dimensional space can be arbitrarily set according to the shape of the image data, such as vertically long, horizontally long, square, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一次元メモリに二次元データを格納する動作を
説明する図、第2図は本発明の一実施例を示す回路のブ
ロック図、第3図はマルチプレクサ15の詳細回路図で
ある。 5はΔ(×)初期値レジスタ、6はP (X)初期値レ
ジスタ、7はP (yll初期値レジスフ8はシフト回
路、9はX1Yサイズ制御レジスタ、10はΔ(×)カ
ウンタ、11はP (Xlアドレスカカウンタ12はP
 fylアドレスカウンタ、13はデコーダ、14はΔ
fylカウンタ、15はマルチプレクサである。
FIG. 1 is a diagram explaining the operation of storing two-dimensional data in a one-dimensional memory, FIG. 2 is a block diagram of a circuit showing an embodiment of the present invention, and FIG. 3 is a detailed circuit diagram of the multiplexer 15. 5 is a Δ(×) initial value register, 6 is a P (X) initial value register, 7 is a P (yll initial value register, 8 is a shift circuit, 9 is an X1Y size control register, 10 is a Δ(×) counter, 11 is a P (Xl address counter 12 is P
fyl address counter, 13 is decoder, 14 is Δ
fyl counter 15 is a multiplexer.

Claims (1)

【特許請求の範囲】[Claims] mビットのアドレスを有するメモリをアクセスして、任
意の矩形領域のデータ転送を行う装置に於いて、mビッ
トのアドレスのうち下位又は上位nビ・7トをX方向ア
ドレス、上位又は下位m −rlビ、トをYアドレスと
して割当て、前記矩形領域のX方向及びY方向のスター
トアドレスとX方向及びY方向の転送サイズとを人々セ
ットされ、転送ずべきデータのX方向及びY方向アドレ
スを発生ずるX方向制御手段とY方向制御手段とを設け
、且つX方向アドレスを表ずピント数n又はY方向アド
レスを表ずビット数rn−riによりX方向アドレス制
御手段及びY方向−7ドレス制御手段で発生されるX方
向アドレスとY方向アドレスを合成する手段を設レノで
、この合成したアドレスによりメモリをアクセスするこ
とを特徴とするアドレス制御方式。
In a device that accesses a memory having an m-bit address and transfers data in an arbitrary rectangular area, the lower or upper n bits of the m-bit address are used as the X-direction address, and the upper or lower m - The rl bit and bit are assigned as Y addresses, the start addresses in the X and Y directions of the rectangular area and the transfer sizes in the X and Y directions are set, and the X and Y directions addresses of the data to be transferred are issued. X-direction address control means and Y-direction control means are provided, and the X-direction address control means and Y-direction-7 address control means are provided based on the number of focus n, which does not represent the X-direction address, or the number of bits rn-ri, which does not represent the Y-direction address. An address control method characterized in that means is provided for synthesizing an X-direction address and a Y-direction address generated in the above, and a memory is accessed using the synthesized address.
JP58138276A 1983-07-28 1983-07-28 Address control system Pending JPS6029855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58138276A JPS6029855A (en) 1983-07-28 1983-07-28 Address control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58138276A JPS6029855A (en) 1983-07-28 1983-07-28 Address control system

Publications (1)

Publication Number Publication Date
JPS6029855A true JPS6029855A (en) 1985-02-15

Family

ID=15218127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58138276A Pending JPS6029855A (en) 1983-07-28 1983-07-28 Address control system

Country Status (1)

Country Link
JP (1) JPS6029855A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61228582A (en) * 1985-04-02 1986-10-11 Sharp Corp Picture processor
JPH01239643A (en) * 1988-03-22 1989-09-25 Nec Corp Memory device
JPH02140846A (en) * 1988-11-22 1990-05-30 Tokyo Electric Co Ltd Method for controlling image buffer
JPH05108581A (en) * 1991-10-17 1993-04-30 Fujitsu Ltd Data transfer control system
JPH07121433A (en) * 1993-06-10 1995-05-12 Nec Corp Address generation system for image recorder
EP1055886A2 (en) 1999-05-25 2000-11-29 Matsushita Electric Industrial Co., Ltd. Control device of air contitioning system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61228582A (en) * 1985-04-02 1986-10-11 Sharp Corp Picture processor
JPH01239643A (en) * 1988-03-22 1989-09-25 Nec Corp Memory device
JPH02140846A (en) * 1988-11-22 1990-05-30 Tokyo Electric Co Ltd Method for controlling image buffer
JPH05108581A (en) * 1991-10-17 1993-04-30 Fujitsu Ltd Data transfer control system
JPH07121433A (en) * 1993-06-10 1995-05-12 Nec Corp Address generation system for image recorder
EP1055886A2 (en) 1999-05-25 2000-11-29 Matsushita Electric Industrial Co., Ltd. Control device of air contitioning system

Similar Documents

Publication Publication Date Title
JP3068842B2 (en) Direct memory access device in image processing device and external storage device used therefor
KR20210070369A (en) Data reading/writing method and system, storage medium and terminal during 3D image processing
JPS6029855A (en) Address control system
WO1986006523A1 (en) Image processor
JP4970378B2 (en) Memory controller and image processing apparatus
JPS6285343A (en) Memory reading-out circuit
JPH0728991A (en) Data processing circuit using memory
JPS61276049A (en) Direct memory access control system
JPS6035075B2 (en) CRT display device
JPH0736772A (en) Device and method for fast bit map access control
JPH02163862A (en) Digital signal processor
JPS58103253A (en) Communication controller
JPH0316374A (en) Calculation device of picture processing designation area information
JPS59158168A (en) Size converter for picture
JPH06266834A (en) Device and method for magnifying and reducing rectangular picture
JPH05159042A (en) Picture processor
JP2008287571A (en) Shared memory switching circuit and switching method
JPH02112075A (en) Picture processor
JPH0316375A (en) Calculation device of picture processing designation area information
JPS6380374A (en) Polygon painting-out device
JP2019074896A (en) Data processing device
JPH0756807A (en) Automatic memory bank switching system
JPH0290274A (en) Raster operation device
JPS62109176A (en) Control system for transfer address of picture memory
JPH0216665A (en) Data transfer equipment