JPS6029425A - Adjusting method of quality of hot rolled steel material - Google Patents

Adjusting method of quality of hot rolled steel material

Info

Publication number
JPS6029425A
JPS6029425A JP13756683A JP13756683A JPS6029425A JP S6029425 A JPS6029425 A JP S6029425A JP 13756683 A JP13756683 A JP 13756683A JP 13756683 A JP13756683 A JP 13756683A JP S6029425 A JPS6029425 A JP S6029425A
Authority
JP
Japan
Prior art keywords
cooling
grain size
cooling rate
constant
austenite grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13756683A
Other languages
Japanese (ja)
Inventor
Junichi Wakita
淳一 脇田
Seishiro Kato
加藤 征四郎
Manabu Takahashi
学 高橋
Kazuaki Ezaka
江坂 一彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP13756683A priority Critical patent/JPS6029425A/en
Publication of JPS6029425A publication Critical patent/JPS6029425A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment

Abstract

PURPOSE:To enable considerable adjustment of the quality of a hot-rolling steel material contg. specific carbon equiv. with a titled method which rolls and cools said material under limited conditions by setting the grain size of austenite prior to transformation and cooling conditions in such a way that the specific equation for estimating yield strength is satisfied. CONSTITUTION:A hot-rolling steel material contg. 0.10-0.50% carbon equiv. is rolled at the temp. above the Ar3 transformation point and is then immediately cooled to <=700 deg.C at a cooling rate of <=150 deg.C/sec to adjust the quality of said material. The target yield strength is obtd. here by satisfying the equation [YS: yield strength (kg/mm.<2>), Ceq: C equiv. (={(%C+%Mn)/6}X100), CT: coiling temp. or cooling stop temp. ( deg.C), CR: cooling rate ( deg.C/sec), t: plate thickness (mm.), sigma0: the term for precipitation strengthening, etc. A1-A5: constant, n: 0 or 1 m: 1 or 2, B: f(dgamma) or dgamma<1/2> or constant, dgamma: grain size of austenite (mu), C: g(CR) or log CR or (CR)<1/2>].

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は熱間圧延によって厚板及びホットストリッジ等
の鋼材全製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing steel products such as thick plates and hot strips by hot rolling.

〔従来技術の問題点〕[Problems with conventional technology]

鋼材の材質は一般に組織の特性と結晶粒径に大きく支配
されている。例えば機械的性質の中の1つである降伏強
度については(1)式のように記述できる。
Generally, the material properties of steel materials are largely controlled by the characteristics of the structure and grain size. For example, yield strength, which is one of the mechanical properties, can be described as in equation (1).

ys :17fV、+apVp+a、V、 −MMVM
+a++d、−2+σ0 °−(1)ここでσは降伏強
度金、■は体積率、dは粒径を示し、fはフェライト、
Pはパーライト、Bはベーナイト、Mはマルテンサイ)
k示す。なおaは定数でおル、σ0は析出強化、加工強
化等の他の強化因子を示す、。
ys: 17fV, +apVp+a,V, -MMVM
+a++d, -2+σ0 °-(1) where σ is yield strength gold, ■ is volume fraction, d is grain size, f is ferrite,
P is perlite, B is bainite, M is martensai)
Show k. Note that a is a constant, and σ0 indicates other strengthening factors such as precipitation strengthening and work strengthening.

よって降伏強度を造9分ける場合、結晶粒径の制御、組
織の制御(すなわち変態の、制御)をいかに行なうかが
ポイントである。結晶粒径の制御については加熱炉での
加熱条件、熱間圧延による再結晶条件及びオーステナイ
ト粒度、オーステナイトからフェライトへの変態条件が
重要である。
Therefore, when dividing the yield strength into nine grades, the key point is how to control the crystal grain size and structure (that is, control the transformation). Regarding control of crystal grain size, heating conditions in a heating furnace, recrystallization conditions by hot rolling, austenite grain size, and conditions for transformation from austenite to ferrite are important.

いいかえれば仕上は圧延が完了した時点でのオーステナ
イト粒径がいくらであったかということと、このオース
テナイト粒径がいくらのフェライト粒径へ変換するかと
いうことがポイントである。
In other words, the key points in finishing are what the austenite grain size was at the time rolling was completed, and how much ferrite grain size this austenite grain size converted into.

次に組織の制御(すなわち各組織の種類と体積率、およ
び各組織の降伏強度を制御)についてであるが、これも
又変態前のオーステナイト粒径と冷却速度が大きなポイ
ントである。
Next, regarding the control of the structure (that is, controlling the type and volume fraction of each structure, and the yield strength of each structure), the austenite grain size and cooling rate before transformation are also important points.

以上かられかるように、熱間圧延後の鋼材の降伏強度を
精度よく推定するためには変態前のオーステナイト粒径
と冷却速度が不可欠の情報である。
As can be seen from the above, the austenite grain size before transformation and the cooling rate are essential information in order to accurately estimate the yield strength of steel after hot rolling.

ところが従来の鋼材の材質を調整する方法を見ると、熱
間圧延終了時の温度、及びコイルの捲取9温度で管理す
るのが通常であった。この方法では前述した材質を支配
する重要な情報であるオーステナイト粒径と冷却速度が
全く欠けている。このような非厳密な方法で精度が悪く
ても使用に耐えたのは従来方法が加熱温度、圧延スケジ
ュール、圧延後の冷却方法など全ことごとくほぼ一定に
したつまジオ−ステナイト粒径をほぼ一定とした操業で
あったからで、そのため粒度、組織制御とも必然的に成
分に依存し特にカーぎン当量(Ce、=(C+”−Mn
))の支配度合いを高くしていた。
However, when looking at the conventional method of adjusting the material quality of steel materials, it was usual to control the temperature at the end of hot rolling and at the temperature at which the coil was wound. This method completely lacks the austenite grain size and cooling rate, which are the important information governing the material properties mentioned above. The reason why such a non-strict method was able to withstand use despite its poor accuracy is because the conventional method kept everything, including the heating temperature, rolling schedule, and cooling method after rolling, almost constant, and the diostenite grain size was kept almost constant. Therefore, particle size and structure control inevitably depend on the components, especially the Cargin equivalent (Ce, = (C+''-Mn)
)) had a high degree of control.

ところが本発明者等が制御圧延、制御冷却の概念を基に
実験・検討を重ねて追跡したところ、とれらオーステナ
イト粒径と冷却速度の組合せで幅広く材質を造シ込むこ
とが可能でアシ、従来方法では得られない精度で熱間圧
延後の鋼材の材質が推定できると共に主要因子が予じめ
判明していると高い精度で目標材質の鋼材を製造できる
ことを見出した。
However, the inventors conducted repeated experiments and studies based on the concepts of controlled rolling and controlled cooling, and found that it is possible to form a wide range of materials by combining austenite grain size and cooling rate. It was discovered that the material quality of hot-rolled steel can be estimated with an accuracy that cannot be obtained by other methods, and that steel with the target material can be manufactured with high accuracy if the main factors are known in advance.

〔発明の目的〕 本発明の目的は上記した知見をもとに、従来の方法の欠
点をことごとく解消し、鋼材の材質を支配する本質的な
要件を制御して行う革新的な熱間圧延方法を提供すると
ころにある。
[Object of the Invention] The object of the present invention is, based on the above-mentioned knowledge, to provide an innovative hot rolling method that eliminates all the drawbacks of conventional methods and that performs hot rolling by controlling the essential requirements governing the material properties of steel materials. It is in a place where we provide.

〔発明の構成・作用〕[Structure and operation of the invention]

本発明の要旨とするところは下記のとおりである。 The gist of the present invention is as follows.

(1) カービン当量0.10〜0,50チの熱間圧延
鋼材f Ar3変態点以上の温度で圧延後、直ちに15
0℃/ 8 e e以下の冷却速度で700℃以下まで
冷却して材質を調整する方法において、目標降伏強度を
得るに描って、下記の降伏強度推定式全満足する変態前
オーステナイト粒径と冷却条件を設定することを特徴と
する熱間圧延鋼材の材質調整方法。
(1) Hot-rolled steel material f with carbine equivalent of 0.10 to 0.50 cm Immediately after rolling at a temperature higher than the Ar3 transformation point,
In the method of adjusting the material quality by cooling to 700℃ or less at a cooling rate of 0℃/8e or less, the target yield strength is obtained, and the austenite grain size before transformation satisfies the following yield strength estimation formula. A method for adjusting the material quality of hot rolled steel material, characterized by setting cooling conditions.

YS=AI+A2XBXCTn+A3XCXCT XC
−1−A。
YS=AI+A2XBXCTn+A3XCXCT XC
-1-A.

q X Ceq” +As X を十σO Ce、:力−ぎン当量(−((ToC〕+C%Mn〕/
6 )X100)CT:捲取温度又は冷却停止温度幅) CR:冷却速度(Vs e c ) t :板厚(+III++) 、σ0:析出強化等の項 Al−A3 :定数 n:0又はl r m : 1又は2 B : fcd )又はdr−7又は一定γ d、ニオ−ステナイト粒径(ltrIL)C:g(CR
)又はLogCR又は 【1(2) At:0.001
〜0.10%+St:0.10〜1.0チで変態前オー
ステナイト粒径が一定のA、a−8t−に鋼材を下式を
満足する冷却速度で冷却して材質全調整することを特徴
とする第1項記載の方法 YS=18.9+128×CeqXCT xtOgCR
+0.0827xC+0.25Xt q (3) Nbを0.005〜0.10%添加した変態前
オーステナイト粒径が一定のA7−8 i−に鋼材を下
式を満足する冷却速度で冷却して材質を調整することを
特徴とする第1項記載の方法 YS=18.9+128×Ce、XCT xtogCR
+0,0827XCe、十、0.25Xt+450X[
JNb](4) AA: 0.001〜0.10チで変
態前オーステナイト粒径が一定のAt−に鋼材を下式を
満足する冷却速度で冷却して材質全調整することを特徴
とする第1項記載の方法。
q X Ceq” +As
6) m: 1 or 2 B: fcd) or dr-7 or constant γ d, niostenite grain size (ltrIL) C: g (CR
) or LogCR or [1(2) At:0.001
~0.10% + St: 0.10 to 1.0 inches, and the austenite grain size before transformation is constant A, a-8t-, by cooling the steel material at a cooling rate that satisfies the following formula to completely adjust the material quality. The method described in item 1 characterized in that YS=18.9+128×CeqXCT xtOgCR
+0.0827 x C + 0.25 The method according to item 1, which is characterized by adjusting YS=18.9+128×Ce, XCT xtogCR
+0,0827XCe, 0.25Xt+450X [
JNb] (4) AA: A fourth method characterized by completely adjusting the material quality by cooling the steel material at a cooling rate that satisfies the following formula to At- with a constant austenite grain size before transformation of 0.001 to 0.10 inch. The method described in Section 1.

YS=34.28−0.0166XCT+O,0O03
06XCXC’l”q X togCR+0.00761 XCe、” + 0
.25X t(5)予測オーステナイト粒径(dr)に
基づいて下式を満足する冷却速度で冷却して材質を調整
することを特徴とする第1項記載の方法。
YS=34.28-0.0166XCT+O,0O03
06XCXC'l"q X togCR+0.00761 XCe," + 0
.. 25X t(5) The method according to item 1, characterized in that the material quality is adjusted by cooling at a cooling rate that satisfies the following formula based on the predicted austenite grain size (dr).

YS =12.76+45.47Xdr−2+47.5
6XCe9X CT””XtogCR+0.305XC
−)−0,25Xt+450[%Nb]q 以下そのモデルについて説明する。
YS=12.76+45.47Xdr-2+47.5
6XCe9X CT””XtogCR+0.305XC
-) -0,25Xt+450[%Nb]q The model will be explained below.

基本的な構成は、材質を決定する基本的な因子を抽出し
、その因子の組合せで材質を最も精度よく説明する因子
を決定し、それらを線型に並べて重回帰分析によシ決定
した係数を各々の説明因子に付したものである。まず材
質を決定する基本的因子としては、過去の通念と新たな
知見金もとに成分、冷却速度2巻取シ温度(冷却停止温
度)。
The basic structure is to extract the basic factors that determine material properties, determine the factors that most accurately describe the material by combining those factors, arrange them linearly, and calculate the coefficients determined by multiple regression analysis. This is attached to each explanatory factor. First, the basic factors that determine the material are the composition, cooling rate, 2 winding temperatures (cooling stop temperature), based on past wisdom and new knowledge.

オーステナイト粒径を決定した。The austenite grain size was determined.

このうち成分と巻取多温度については従来の材質推定式
にも取シ入れられていた因子であシ、他の2因子つまシ
、冷却速度とオーステナイト粒径は前述した本発明者等
の実験結果から取入れた本発明特有の必須要件となる因
子である。
Of these, the components and coiling temperature are factors that were also incorporated into conventional material estimation formulas, and the other two factors, cooling rate and austenite grain size, were determined by the above-mentioned experiments conducted by the inventors. This is a factor that is an essential requirement unique to the present invention and was incorporated from the results.

次に、これらの因子の組合せによシ説明因子を決定する
方法であるが、これは前述の4因子のあらゆる組合せと
材質との単相開音とシ単相関係数の篩いものを選択する
。次にこれらの面切因子を使って重回帰分析を行ないt
値が1%有意のもののみを残した。その結果YSについ
ては次式が得られた。
Next, the explanatory factor is determined by a combination of these factors, which involves sifting the single-phase open sound and single-phase correlation coefficient between all combinations of the four factors mentioned above and the material. . Next, multiple regression analysis was performed using these facet factors, and t
Only those values with 1% significance were retained. As a result, the following formula was obtained for YS.

YS”’AI+A2Xdγ−2XCT0+A3XCXC
T−”XtogCRq +A4XC”+A5Xt十σ。 ・・・・・・・・・(
2)q ここでd、はオーステナイト粒径、CTは捲取多温度、
又は冷却停止温度、cnは冷却速度、tは板厚、co、
はカーがン当量である。
YS"'AI+A2Xdγ-2XCT0+A3XCXC
T-”XtogCRq +A4XC”+A5Xt1σ.・・・・・・・・・(
2)q where d is the austenite grain size, CT is the winding temperature,
or cooling stop temperature, cn is cooling rate, t is plate thickness, co,
is the carbon equivalent.

なお、nはO又はl、−11,mばl又は2の数値をと
るが、これは鋼種によって最適な値を選ぶものとする。
Note that n takes a numerical value of O, l, -11, mbal, or 2, and the optimum value is selected depending on the type of steel.

次にこれらの係数を決定したAt−8i 4鋼の1例を
示す。
Next, an example of At-8i 4 steel for which these coefficients were determined will be shown.

YS =12.76+45.47xdr−z +47.
56XC,、XCT”X Zo gCR+ 0,305
 X Ce q + 0.25 X t + 450 
X 〔%Nb)・・・・・・・・・・・(3) ここで各因子の単位はd、はM、CTは℃、Ceqはチ
X100.CRは℃/s 、tは飾、 YSは閲/胴で
ある。
YS=12.76+45.47xdr-z+47.
56XC,,XCT”X Zo gCR+ 0,305
X Ce q + 0.25 X t + 450
X [%Nb) (3) Here, the unit of each factor is d, is M, CT is °C, and Ceq is ChiX100. CR stands for °C/s, t stands for decoration, and YS stands for cross/body.

(3)式で各係数はlチ有意1式の寄与率はR=0.9
3である。
In equation (3), each coefficient is significant. The contribution rate of equation 1 is R=0.9
It is 3.

式の寄与率から明らかなように(3)式は極めて精度高
く実際のYSを示す。又重回帰分析の手法を使用したこ
とおよび実際には設備能力上の制限があったことから、
Ce9の適用範囲は0.lO〜0,50チ、CTの適用
範囲は700℃以下、CRの適用範囲は150℃/8以
下としたが、本発明の実施にあたっては、これ等の制限
を前提とするのではなく、本発明の目的に沿った実施を
優先して、Ceq、CT。
As is clear from the contribution rate of the equation, equation (3) shows the actual YS with extremely high accuracy. In addition, due to the use of multiple regression analysis and the fact that there were limitations on equipment capacity,
The applicable range of Ce9 is 0. The applicable range of CT is 700°C or less, and the applicable range of CR is 150°C/8 or less. However, in implementing the present invention, these limitations should not be assumed. Ceq, CT, in favor of carrying out the purpose of the invention.

CRの各々を決定すればよい。What is necessary is just to determine each CR.

次に(3〕式でdr−−一定の場合つまシ、あるオース
テナイト粒径一定の場合の例を以下に示す。
Next, in equation (3), when dr is constant, an example where a certain austenite grain size is constant is shown below.

まず、At−81−に鋼は[)含t3. o:o雪8゛
↓0″′YS=18.9+128×Ce、×CTxto
gCR+0.0827xC+0.25xt ・・・・・
・・・・・・・(4,)q ys=189+ l 28 X Ce qXCT X 
Zo gCR+ o、o 827XC8,+0.25X
t+450X[チNb]・・・・・・・・・(5)At
−に鋼は(侶t) 0.001−0.1チ1)O,10
%以下 YS=34.28−0.0166XCT+0.0003
06XCe。
First, At-81- contains steel [) t3. o:o snow 8゛↓0″′YS=18.9+128×Ce,×CTxto
gCR+0.0827xC+0.25xt...
・・・・・・・・・(4,)q ys=189+ l 28 X Ce qXCT X
Zo gCR+ o, o 827XC8, +0.25X
t+450X [CHNb]・・・・・・・・・(5) At
- Steel is (t) 0.001-0.1chi1) O,10
% or less YS=34.28-0.0166XCT+0.0003
06XCe.

X CT XZo gCR+0.00761 XCe 
q ’ +0−25X tギーポイントとなるが、その
方法には次のようなものがある。
X CT XZo gCR+0.00761 XCe
q' +0-25X tgi points, and the following methods are available.

■ 直接測定法ニオンラインで超音波、X線を使って測
定する方法。
■ Direct measurement method A method of measuring using ultrasound and X-rays on-line.

■ d、からの推定法:d、とd、の関係は成分、冷却
速度で決定される。例えば第1図、第2図のような効果
が得られるのを利用してd、 754 d、を推定する
方法。
■ Estimation method from d: The relationship between d and d is determined by the components and cooling rate. For example, a method of estimating d, 754 d, using the effects shown in Figures 1 and 2.

〔実施例〕〔Example〕

次に本発明による実施例を示す。本発明の実施′例は(
:C)=0.15%、[Mn]= O’、 90 %、
Ce9−0.30%のAt−8i−に鋼(■〜■) 、
 [:C)=0.10%。
Next, examples according to the present invention will be shown. An example of implementing the present invention is (
:C)=0.15%, [Mn]=O', 90%,
Ce9-0.30% At-8i- to steel (■~■),
[:C)=0.10%.

〔Mn〕=1.20チ、Coq=0.30チ、〔Nb〕
=0.030チのNb添加At−8i−に鋼(■〜■)
 、[:C:l=0.1096 、 (Mn〕=1.2
096、 C=0.30%、[Nb)=0.02596
のNb動口At−8i −Kq 鋼(■ン、 [C]=0.08%、 [Mn ]= 0
.42%、 Ce、=O,l 5% At、−に鋼(■
〜■)の例であり、従来の方法の結果と比較して表1に
示す。
[Mn]=1.20chi, Coq=0.30chi, [Nb]
= 0.030T of Nb addition At-8i- to steel (■~■)
, [:C:l=0.1096, (Mn]=1.2
096, C=0.30%, [Nb)=0.02596
Nb moving mouth At-8i-Kq steel (■n, [C] = 0.08%, [Mn] = 0
.. 42%, Ce, = O, l 5% At, - steel (■
Examples of ~■) are shown in Table 1 in comparison with the results of the conventional method.

表1でのは通常の製造条件である。当然のことながら従
来法でも本発明による方法でも推定値と実績値のずれは
小さなものである。■は通常の条件から仕上げ圧延の圧
下スケジュールが変化してオーステナイト粒径が小さく
なったものである。
Table 1 shows normal manufacturing conditions. Naturally, the difference between the estimated value and the actual value is small in both the conventional method and the method according to the present invention. In case (2), the reduction schedule of finish rolling was changed from the normal conditions and the austenite grain size became smaller.

■は冷却速度が変化したもの、■は加熱温度が低くな夛
、オーステナイト粒が細かくなったものである。
(2) is a case where the cooling rate has changed, and (2) is a case where the heating temperature is low, and the austenite grains have become finer.

■■■及び■■■■の場合の推定値と実績値を比較すれ
ばわかるように、従来法が大きくずれているのに対し、
本発明による方法は非常に精度が高いことがわかる。又
、■はNb=0.025%かつCR=lOO℃/Sで他
の条件は■と全く同じ条件の実施例であるが冷却速度を
上げることによシ降伏強度を低下させずにNbを減少で
き、コストが安くできるというメリットを示すものであ
る。
As can be seen by comparing the estimated values and actual values in the cases of ■■■ and ■■■■, there is a large deviation in the conventional method, whereas
It can be seen that the method according to the invention is very accurate. In addition, ■ is an example in which Nb = 0.025% and CR = lOO℃/S, and other conditions are exactly the same as ■, but by increasing the cooling rate, Nb was added without decreasing the yield strength. This shows the advantage that it can be reduced and the cost can be reduced.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、加熱温度、熱間圧延条
件、圧延後の冷却条件が変化して変態前オーステナイト
粒径が変化しても本発明によると材質を精度よく推定す
ることが可能であシ、かつ、製造できるばかりでなく、
変態前オーステナイト粒径を変化せしめて大巾な材質調
整を行なうことが可能となシ、多用途にわたる鋼材を少
ない鋼種から作シ出す大巾な成分集約を可能としかつ、
合金を節約できるので鋼材の製造費を飛躍的に低減する
ことができる等もたらす効果は大きい。
As is clear from the above explanation, even if the pre-transformation austenite grain size changes due to changes in the heating temperature, hot rolling conditions, and post-rolling cooling conditions, the present invention makes it possible to accurately estimate the material quality. Not only can we manufacture reeds, but also
It is possible to make a wide range of material adjustment by changing the austenite grain size before transformation, and it is possible to make a wide range of ingredient concentration to produce a steel material with a wide variety of uses from a small number of steel types.
Since the alloy can be saved, the manufacturing cost of steel materials can be dramatically reduced, which has great effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はオーステナイト粒度別のd、/dctの値と冷
却速度の関係を示す図、第2図はC,MJ別のdr/d
C1の値と冷却速度の関係を示すVである。 第1 図 算2 図 A加速度(’% )
Figure 1 is a diagram showing the relationship between d, /dct values and cooling rate for each austenite grain size, and Figure 2 is a diagram showing the relationship between dr/d for each C and MJ.
V indicates the relationship between the value of C1 and the cooling rate. 1st Calculation 2 Figure A Acceleration ('%)

Claims (1)

【特許請求の範囲】 (1) カーボン当量0.10〜0.50−の熱間圧延
鋼材k Ar5変態点以上の温度で圧延後、直ちに15
0℃/see以下の冷却速度で700℃以下まで冷却し
て材質を調整する方法において、目標降伏強度を得るに
轟って、下記の降伏強度推定式を満足する変態前オース
テナイト粒径と冷却条件を設定することを特徴とする熱
間圧延鋼材の材質調整方法0 YS=Al+A3×BxCTn十A3×C0qxCT−
1×C十A4×Ceff+A5×を十σO C:カーエン尚量(=((%C)+[:%Mn〕/6)
xtoo)q CT:捲取温度又は冷却停止温度働 CR:冷却速度(℃/5ee) t:板厚(IllII+) σ0:析出強化等の項 A!〜A5:定数 n:0又は1. m:l又は2 B : f(dρ又はd、−2又は一定drニオーステ
ナイト粒径(fi→ C: g(CR)又はtogCR又は履(2)At:0
.001〜0.10%、 83: 0.10−1.0%
で変態前オーステナイト粒径が一定のAt−8i−に鋼
材全下式を満足する冷却速度で冷却して材質全調整する
こと全特徴とする第1項記載の方法 YS=18.9+128XCXCT−1XtogCR+
0.0827q ×C十〇、25Xt q (3) Nb’t O,005〜(1,10%添加した
変態前オーステナイト粒径が一定のAt−8i−に鋼材
を下式を満足する冷却速度で冷却して材質を調整するこ
とを特徴とする第1項記載の方法 YS=18.9+128XCXCT−1XtogCR+
0.0827q XC□+0.25Xt+450XC%Nb〕(4) A
t:0.001〜0.10%テ変態前オーステナイト粒
径が一定のAt−に鋼材金工式K1足する冷却速度で冷
却して材質を調整することを特徴とする第1項記載の方
法。 YS=34.28−0.0j66XCT−1−0,00
0306XC89XCT X Zog CR+ 0,0
0761 X Ce q ” + O−25X t(5
) 予測オーステナイト粒径(d、)に基づいて下式を
満足する冷却速度で冷却して材質を調整することを特徴
とする第1項記載の方法。 YS=12.76+4.5.47Xd −2+4.7.
56XCXCT−’eq XAogCR+0.305XC+0.25Xt+450
X(%Nblq
[Scope of Claims] (1) Hot-rolled steel material k having a carbon equivalent of 0.10 to 0.50 immediately after rolling at a temperature equal to or higher than the Ar5 transformation point.
In the method of adjusting the material quality by cooling to 700°C or less at a cooling rate of 0°C/see or less, the pre-transformed austenite grain size and cooling conditions are used to obtain the target yield strength and satisfy the yield strength estimation formula below. Material adjustment method for hot rolled steel material characterized by setting 0 YS=Al+A3×BxCTn+A3×C0qxCT−
1×C0A4×Ceff+A5×10σO C: Caen equivalent (=((%C)+[:%Mn]/6)
xtoo)q CT: Rolling temperature or cooling stop temperature CR: Cooling rate (°C/5ee) t: Plate thickness (IllII+) σ0: Terms such as precipitation strengthening A! ~A5: constant n: 0 or 1. m: l or 2 B: f (dρ or d, -2 or constant dr niostenite grain size (fi → C: g (CR) or togCR or 2) At: 0
.. 001-0.10%, 83: 0.10-1.0%
The method described in item 1, characterized in that the material is completely adjusted by cooling at a cooling rate that satisfies the following equation for the steel material to At-8i- with a constant austenite grain size before transformation YS=18.9+128XCXCT-1XtogCR+
0.0827q × C 〇, 25Xt q (3) Nb't O,005~(1,10% added At-8i- with a constant austenite grain size before transformation) was cooled at a cooling rate that satisfied the following formula. The method described in item 1, characterized by adjusting the material quality by cooling YS=18.9+128XCXCT-1XtogCR+
0.0827q XC□+0.25Xt+450XC%Nb] (4) A
t: 0.001 to 0.10% The method according to item 1, characterized in that the material quality is adjusted by cooling at a cooling rate of At-, which has a constant austenite grain size before Te transformation, and K1 plus K1. YS=34.28-0.0j66XCT-1-0,00
0306XC89XCT X Zog CR+ 0,0
0761 X Ceq ” + O-25X t(5
) The method according to item 1, characterized in that the material quality is adjusted by cooling at a cooling rate that satisfies the following formula based on the predicted austenite grain size (d, ). YS=12.76+4.5.47Xd-2+4.7.
56XCXCT-'eq XAogCR+0.305XC+0.25Xt+450
X(%Nblq
JP13756683A 1983-07-29 1983-07-29 Adjusting method of quality of hot rolled steel material Pending JPS6029425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13756683A JPS6029425A (en) 1983-07-29 1983-07-29 Adjusting method of quality of hot rolled steel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13756683A JPS6029425A (en) 1983-07-29 1983-07-29 Adjusting method of quality of hot rolled steel material

Publications (1)

Publication Number Publication Date
JPS6029425A true JPS6029425A (en) 1985-02-14

Family

ID=15201711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13756683A Pending JPS6029425A (en) 1983-07-29 1983-07-29 Adjusting method of quality of hot rolled steel material

Country Status (1)

Country Link
JP (1) JPS6029425A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH035726A (en) * 1989-06-02 1991-01-11 Mitsubishi Petrochem Co Ltd Backlighting device
JPH035725A (en) * 1989-06-02 1991-01-11 Mitsubishi Petrochem Co Ltd Backlighting device
JPH036525A (en) * 1989-06-02 1991-01-14 Mitsubishi Petrochem Co Ltd Backlighting device
JPH04234786A (en) * 1990-12-29 1992-08-24 Meitaku Syst:Kk Composite irregular reflection pattern for edge light panel
JPH0553848A (en) * 1991-08-26 1993-03-05 Mitsubishi Electric Corp Fault tolerant system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH035726A (en) * 1989-06-02 1991-01-11 Mitsubishi Petrochem Co Ltd Backlighting device
JPH035725A (en) * 1989-06-02 1991-01-11 Mitsubishi Petrochem Co Ltd Backlighting device
JPH036525A (en) * 1989-06-02 1991-01-14 Mitsubishi Petrochem Co Ltd Backlighting device
JPH04234786A (en) * 1990-12-29 1992-08-24 Meitaku Syst:Kk Composite irregular reflection pattern for edge light panel
JPH0553848A (en) * 1991-08-26 1993-03-05 Mitsubishi Electric Corp Fault tolerant system

Similar Documents

Publication Publication Date Title
JPS6029425A (en) Adjusting method of quality of hot rolled steel material
JPS6119322B2 (en)
JPH05142126A (en) Method for predicting quality of steel plate
JPS6029424A (en) Adjusting method of quality of hot rolled steel material
JPS62192539A (en) Manufacture of high gamma value hot rolled steel plate
JPH03174909A (en) Manufacture of hot coil of high carbon steel
JPH0441618A (en) Production of cold rolled high carbon steel sheet
JPH08931B2 (en) Manufacturing method of steel plate for particle accelerator by continuous annealing
JP4133419B2 (en) Hot-rolled steel sheet material prediction method, pass schedule correction or setting method, and hot-rolled steel sheet manufacturing method
JPH06228652A (en) Production of thin high strength hot rolled steel sheet excellent in overhang molding property at high yield
JPH02258932A (en) Method for controlling cooling of hot rolled steel sheet
JPS6337166B2 (en)
JPS62228458A (en) Method for rolling pure ti billet of large diameter having fine recrystallized structure as hot rolled
RU2060846C1 (en) Method of making rolled sheets of low-perlite steel
JPS60181228A (en) Manufacture of hot rolled steel material
JPH0617140A (en) Production of cold rolled steel sheet for deep drawing
JPS6017018A (en) Method for adjusting quality of hot-rolled steel material
JPS60405B2 (en) Manufacturing method of low yield ratio steel with excellent low temperature toughness
JPS6179731A (en) Manufacture of hot-rolled high-tension steel sheet
JP2021123764A (en) Non-oriented electromagnetic steel sheet and method for manufacturing the same
JPS5842723A (en) Manufacture of high tensile steel with superior homogeneity
JPS5989728A (en) Rolled steel product structure automatic control
JPS5871330A (en) Production of hot rolled steel strip having excellent uniformity in material quality
JPS54119323A (en) Production of high strength reinforcing steel material of superior weldability
KR900005373B1 (en) Making method for hot rolled coil