JPH035726A - Backlighting device - Google Patents

Backlighting device

Info

Publication number
JPH035726A
JPH035726A JP1140319A JP14031989A JPH035726A JP H035726 A JPH035726 A JP H035726A JP 1140319 A JP1140319 A JP 1140319A JP 14031989 A JP14031989 A JP 14031989A JP H035726 A JPH035726 A JP H035726A
Authority
JP
Japan
Prior art keywords
light
transparent substrate
light source
reflecting layers
irregular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1140319A
Other languages
Japanese (ja)
Inventor
Yoshinao Mukasa
武笠 由直
Tatsuji Mizobe
達司 溝部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YONMARUGO KK
Mitsubishi Petrochemical Co Ltd
Original Assignee
YONMARUGO KK
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YONMARUGO KK, Mitsubishi Petrochemical Co Ltd filed Critical YONMARUGO KK
Priority to JP1140319A priority Critical patent/JPH035726A/en
Publication of JPH035726A publication Critical patent/JPH035726A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To reduce the thickness and weight and to maintain the uniformity of brightness even when the area is increased by arranging a light source at one of the four sides of a transparent substrate, forming light irregular reflecting layers which increase in density with the distance from the light source on the back surface, and laminating a light diffusing layer which has an irregular surface on the top surface by using light-transmissive ink or paint. CONSTITUTION:The transparent substrate 1 is a thin plate which has excellent light transmissivity and the light source 2 is arranged at one edge among the four sides. The light irregular reflecting layers 3 are so depicted on the back surface of the transparent substrate 1 by using volatile setting type white ink containing reflecting particulates of titanium oxide that dots per unit area are equal in number and increase in diameter in inverse proportion to the distance from the light source and the occupation rate of the light irregular reflecting layers 3 per unit area on the transparent substrate 1 is varied. Light reflected irregularly by the light irregular reflecting layers 3 passes through the light diffusing layer 4 on the surface of the transparent substrate 1, but the light diffusing layer 4 is in a fine spot shape or uneven, so the light is further diffused and emitted out. Consequently, the constitution is thin and lightweight and the excellent uniformity of brightness is obtained even when the area is increased.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、液晶デイスプレィ(LCD)の背面に配設さ
れて、該液晶デイスプレィを照射するバックライト装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a backlight device that is disposed on the back side of a liquid crystal display (LCD) and illuminates the liquid crystal display.

「従来の技術」 近年、液晶デイスプレィは、薄形、軽量、及び低消費電
力などの優れた特徴と有し、この特徴を充分発揮し得る
平面デイスプレィとして各種製品への利用に多大な期待
が寄せられている。しかしながら、液晶デイスプレィは
、現在産業用及び民生用として広く使用されているC 
RT (Cathode RayTube )に比較し
て画質面で劣っており、この画質を改善するためにバッ
クライト形式の液晶デイスプレィが開発されるに至って
いる。
``Prior Art'' In recent years, liquid crystal displays have excellent characteristics such as being thin, lightweight, and low power consumption, and there are great expectations for their use in various products as flat displays that can fully demonstrate these characteristics. It is being However, liquid crystal displays are based on C, which is currently widely used for industrial and consumer purposes.
The image quality is inferior to RT (Cathode RayTube), and a backlight type liquid crystal display has been developed to improve the image quality.

この種のバックライト装置は、薄形でかつ軽量であるこ
とが望まれ、又画面の全領域において輝度が均一である
ことが必要条件とされている。バックライト装置におい
て、輝度の均一性を高める技術としては、既に各種の提
案がされている。例えば、特開昭57−13478号公
報記載のものは、線状光源の上部に乳白色光散乱体を設
け、かつ該乳白色光散乱体の中央部の層厚を厚くし、端
部に至るに従って薄(して、照明むらをなくし、しかも
薄型でかつ小型化を図り得るようにしたものである。更
に、特開昭60−26039号公報記載のものでは、蛇
行状の冷陰極ランプを用い、特開昭61−219980
号公報記載のものでは、紫外線ランプ、及び該紫外線ラ
ンプの周辺に配設した蛍光体塗布層部を活用し、特開昭
62−10621号公報記載のものでは、導光板中に光
源を組み込み、特開昭62−127717号公報記載の
ものでは、複数個の光源の上下面に凹凸レンズを配設し
、特開昭63−125975号公報記載のものではU字
型ランプを用い、それぞれ照明むらをなくして輝度の均
一化を図るようにしである。
This type of backlight device is desired to be thin and lightweight, and is also required to have uniform brightness over the entire screen area. Various proposals have already been made as techniques for improving the uniformity of brightness in backlight devices. For example, in the device described in JP-A-57-13478, a milky white light scattering body is provided above a linear light source, and the layer thickness is thick at the center of the milky white light scattering body, and becomes thinner toward the ends. (Thus, it is possible to eliminate uneven illumination and to achieve a thinner and more compact design.Furthermore, in the method described in JP-A-60-26039, a serpentine cold cathode lamp is used. Kaisho 61-219980
The method described in JP-A-62-10621 utilizes an ultraviolet lamp and a phosphor coating layer disposed around the ultraviolet lamp, and the method described in JP-A-62-10621 incorporates a light source into a light guide plate. In the device described in JP-A No. 62-127717, concave-convex lenses are arranged on the upper and lower surfaces of a plurality of light sources, and in the device described in JP-A-63-125975, U-shaped lamps are used to reduce uneven illumination. The purpose is to eliminate the brightness and make the brightness uniform.

「発明が解決しようとする課題」 しかしながら、上記従来のものは、下記の如き問題があ
る。
"Problems to be Solved by the Invention" However, the above conventional method has the following problems.

(1)光散乱体の下面に光源を配設する場合には、バッ
クライト装置全体の厚みが厚くなり高張るといった問題
がある。
(1) When a light source is disposed on the lower surface of the light scattering body, there is a problem that the entire backlight device becomes thick and expensive.

(2)輝度の均一化を図るべく、ランプを複数個設ける
場合には、大面積にすればするほど多数のランプが必要
となってコスト高を招(といった問題がある。
(2) When providing a plurality of lamps in order to achieve uniform brightness, there is a problem that the larger the area, the more lamps are required, leading to higher costs.

(3)蛇行状のランプを用いる場合には、大面積化なも
のには量産性に欠けるといった問題がある。
(3) When using a serpentine lamp, there is a problem that large-area lamps lack mass productivity.

そこで、本発明は上記問題点を克服すべ(なされたもの
で、薄型かつ軽量で大面積化によっても輝度の均一性を
保持し得るバンクライト装置を提供せんとするものであ
る。
SUMMARY OF THE INVENTION The present invention has been made to overcome the above-mentioned problems and to provide a bank light device that is thin and lightweight and can maintain uniformity of brightness even when the area is increased.

「課題を解決するための手段」 本発明は、上記目的を達成するために、透明基板の四周
のうち少なくとも一箇所に光源を配設し、透明基板の後
面には光源からの距離に応じて密度が高まるパターンで
光乱反射層を形成し、透明基板の表面には透光性インク
又は塗料で表面が凹凸状の光拡散層を積層させたバック
ライト装置を特徴とするものである。
"Means for Solving the Problems" In order to achieve the above-mentioned object, the present invention provides a light source provided at least in one of the four circumferences of a transparent substrate, and a light source provided on the rear surface of the transparent substrate according to the distance from the light source. The backlight device is characterized by forming a light scattering reflection layer in a pattern of increasing density, and laminating a light diffusion layer with an uneven surface on the surface of a transparent substrate using translucent ink or paint.

「作用」 本発明は、上記構成において、光源からの放射光が透明
基板の端面から内部に入光し、透明基板と空気との界面
の光学的密度差に伴い反射を繰返しながら進行する。こ
の進行の途中で光乱反射層に入射すると、光乱反射層で
乱反射し、透明基板と空気との界面において臨界角以下
になって透明基板の前面の光拡散層を経て外部に放射さ
れる。
"Function" In the present invention, in the above configuration, the emitted light from the light source enters the interior from the end face of the transparent substrate, and progresses while being repeatedly reflected due to the difference in optical density at the interface between the transparent substrate and the air. If the light enters the light-diffusing reflection layer during this progress, it will be diffusely reflected by the light-diffusing reflection layer, and at the interface between the transparent substrate and the air, the angle will be below the critical angle, and the light will be emitted to the outside through the light-diffusion layer on the front surface of the transparent substrate.

光乱反射層は光源から遠ざかる程高密度のパターンにな
っていることから透明基板全領域において均一に外部に
放射される。光拡散層は表面が凹凸状になっているため
に、透明基板内から外部に向う放射光が拡散して、光乱
反射層と光乱反射層間の領域との間の照明むらの発生を
防いでいる。
Since the light scattering reflection layer has a pattern with higher density as it moves away from the light source, the light is emitted uniformly to the outside over the entire area of the transparent substrate. Since the surface of the light diffusion layer is uneven, the emitted light from inside the transparent substrate to the outside is diffused, thereby preventing the occurrence of uneven illumination between the light-diffusing reflection layer and the area between the light-diffusing reflection layers. .

「実施例」 以下に、本発明に係るバックライト装置の実施例を図面
に基づき説明する。第1図及び第2図は第1実施例を示
し、図中1は透明基板である。該透明基板1は、光透過
率の良好な肉厚の薄い板で、材質として例えばガラス板
、アクリル樹脂板、ポリカーボネート樹脂板等、無機質
若しくは合成樹脂製の透明板を使用する。透明基板1の
4周部のうちの一側縁に光源2を配設する。光源2は、
−般に広く用いられている蛍光灯の他、細い管径の冷陰
極管が、バックライト装置全体の薄形化及び液晶デイス
プレィ(LCD)パネルに対する温度の影響を押えるこ
とができて利用上有利である。
"Example" Below, an example of a backlight device according to the present invention will be described based on the drawings. FIGS. 1 and 2 show a first embodiment, and numeral 1 in the figures represents a transparent substrate. The transparent substrate 1 is a thin plate with good light transmittance, and is made of an inorganic or synthetic resin material such as a glass plate, an acrylic resin plate, a polycarbonate resin plate, etc. A light source 2 is disposed on one side edge of the four peripheral parts of the transparent substrate 1. Light source 2 is
- In addition to commonly used fluorescent lamps, cold cathode tubes with a narrow tube diameter are advantageous in terms of usage because they can make the entire backlight device thinner and suppress the influence of temperature on the liquid crystal display (LCD) panel. It is.

又光源2としては、アパーチャー型のランプを用いても
よい。上記透明基板lの裏面には、光源2からの放射光
を乱反射する光乱反射層3を、光源2からの距離に比例
して高密度化するパターンで描写させである。光乱反射
層3は、反射微粒子としての酸化チタンを含有する揮発
硬化型の、若しくは紫外線硬化型の白色インクを用い、
又は利用する者の希望に応じた色彩の着色インクを使用
する。透明基板1の裏面に光乱反射層3を形成する方法
としては、スクリーン印刷やその他の公知の技術を用い
て描写する。該光乱反射層3を透明基板1の裏面に形成
するに際しては、第2図に示す如く、単位面積当たりの
点の数を同一にし、光源から距離を隔てるに従って反比
例して点(ドツト)を径大に描写し、透明基板1の単位
面積当たりの光乱反射層3の占有率を変えるようにしで
ある。
Further, as the light source 2, an aperture type lamp may be used. On the back surface of the transparent substrate 1, a light-diffusing reflection layer 3 that diffusely reflects the light emitted from the light source 2 is drawn in a pattern whose density increases in proportion to the distance from the light source 2. The light scattering reflection layer 3 uses a volatile curing type or ultraviolet curing type white ink containing titanium oxide as reflective particles,
Or use colored ink in a color according to the wishes of the user. As a method for forming the light-scattering reflective layer 3 on the back surface of the transparent substrate 1, screen printing or other known techniques are used. When forming the light scattering reflection layer 3 on the back surface of the transparent substrate 1, as shown in FIG. The occupancy rate of the light-scattering reflective layer 3 per unit area of the transparent substrate 1 is changed.

光乱反射層3の点の直径は、1〜3000μ、好ましく
は10〜1000μに設定する。一方、透明基板10表
面には、光拡散層4を形成する。光拡散層4は、透明基
板1の表面に、透明若しくは半透明のつまり透光性のあ
るインク又は塗料で微小点状にスクリーン印刷するか、
塗布することによって積層する。又、別の透明板の表面
に上記と同一の処理を施し、この透明板を上記光拡散層
4に代えて光拡散板として上記透明基板1の表面に添着
することも可能である。上記光乱反射層3及び光拡散層
4が形成された透明基vi1と光源2とは、前面側を除
いてハウジング5により囲繞させである。
The diameter of the points on the light-scattering reflective layer 3 is set to 1 to 3000 microns, preferably 10 to 1000 microns. On the other hand, a light diffusion layer 4 is formed on the surface of the transparent substrate 10. The light diffusion layer 4 may be formed by screen printing minute dots on the surface of the transparent substrate 1 with transparent or translucent ink or paint, or
Laminated by coating. It is also possible to apply the same treatment as above to the surface of another transparent plate and attach this transparent plate to the surface of the transparent substrate 1 as a light diffusion plate instead of the light diffusion layer 4. The transparent base vi1 on which the light scattering reflection layer 3 and the light diffusion layer 4 are formed and the light source 2 are surrounded by a housing 5 except for the front side.

ハウジング5は、透明基板り若しくは光源2から漏洩す
る光を透明基板1に戻す機能と、前面以外からの光の漏
洩を防ぐべく遮光する機能と、光源から発生する熱を外
部に放散させる放熱機能とを持たせるためのもので内面
に光反射率の高い処理を施した金属あるいはプラスチッ
クよりなっている。例えば、ハウジング5として、光反
射率の高い白色塗料を塗布したアルミケースや、高反射
率の金属蒸着を施したアルミケースが好適である。
The housing 5 has a function of returning light leaking from the transparent substrate or the light source 2 to the transparent substrate 1, a function of blocking light to prevent leakage of light from other than the front surface, and a heat radiation function of dissipating heat generated from the light source to the outside. It is made of metal or plastic that has been treated to have a high light reflectance on its inner surface. For example, as the housing 5, an aluminum case coated with a white paint with high light reflectance or an aluminum case coated with metal vapor deposition with high reflectance is suitable.

又、上記透明基板1の光源2の光が入光する端面以外に
反射テープ6を貼着して、透明基板1の周縁からの光の
漏洩を防くようにすることもできる。
Further, a reflective tape 6 may be attached to an area other than the end face of the transparent substrate 1 through which the light from the light source 2 enters, to prevent light from leaking from the periphery of the transparent substrate 1.

上記第1実施例のバックライト装置では、まず光源2か
らの放射光が透明基板1の一端面からの入光する。透明
基板1内に入光した光源2からの放射光は、透明基板1
と空気との界面での光学的密度差により入光角に依存し
た反射を繰返しながら進行する。この進行に伴い、光乱
反射層3に達して入光すると、内部に含有する酸化チタ
ンで乱反射し、この結果、乱反射光は透明基板1の表面
と空気との界面に対して臨界角以下となって、該透明基
板lの表面から外部に放射する。この時、光乱反射層3
で乱反射した光は、透明基板1の表面の光拡散層4を通
過するが、光拡散層4が微小な点状又は凹凸になってい
ることから、光が更に拡散されて外部に放射する。つま
り、まず光乱反射層3は、透明基板1の単位面積当たり
の占有率が光源2から距離を隔たるに従い増加させであ
るから、光源2からの距離による光の不均一を防止して
、光量の多い光源2の付近から光mの少ない距離の隔っ
た箇所まで前面に亙って均一な乱反射光量を得ることが
できる。しかも、光拡散層4は、光乱反射層3と、光乱
反射層3のパターン間の領域とでの光量変化、所謂「影
の発生」をなくし、均一な輝度が得られるようにする。
In the backlight device of the first embodiment, first, the emitted light from the light source 2 enters from one end surface of the transparent substrate 1. The emitted light from the light source 2 that enters the transparent substrate 1
Due to the difference in optical density at the interface between the light and the air, the light propagates through repeated reflections depending on the angle of incidence. As this progresses, when the light reaches the diffuse reflection layer 3 and enters it, it is diffusely reflected by the titanium oxide contained inside, and as a result, the diffusely reflected light becomes less than the critical angle with respect to the interface between the surface of the transparent substrate 1 and the air. The light is then radiated to the outside from the surface of the transparent substrate l. At this time, the light scattering reflection layer 3
The diffusely reflected light passes through the light diffusion layer 4 on the surface of the transparent substrate 1, but since the light diffusion layer 4 has minute dots or irregularities, the light is further diffused and radiated to the outside. In other words, first, the light scattering reflection layer 3 increases the occupancy rate per unit area of the transparent substrate 1 as the distance from the light source 2 increases, so it prevents unevenness of light depending on the distance from the light source 2 and prevents the amount of light. A uniform quantity of diffusely reflected light can be obtained over the front surface from the vicinity of the light source 2 where there is a lot of light m to a distant place where there is little light m. Moreover, the light diffusing layer 4 eliminates a change in the amount of light between the light-diffusing reflection layer 3 and the area between the patterns of the light-diffusing reflection layer 3, that is, the so-called "occurrence of shadows", and makes it possible to obtain uniform brightness.

透明基板1より洩れた光は、特に光乱反射層3の間隔よ
り洩れた光は、ハウジング5の内面で反射されて再び透
明基板1内に戻り、透明基板1内で反射を繰返すうちに
上記と同様に光乱反射層3で乱反射し光拡散N4を経て
外部に放射される。光源2から発生する熱は、ハウジン
グ5を通じて外部に放散する。
The light leaking from the transparent substrate 1, especially the light leaking from the spacing between the light-scattering reflective layers 3, is reflected on the inner surface of the housing 5 and returns to the transparent substrate 1, and as it is repeatedly reflected within the transparent substrate 1, it is reflected as described above. Similarly, the light is diffusely reflected by the light scattering reflection layer 3 and radiated to the outside through light diffusion N4. Heat generated from the light source 2 is dissipated to the outside through the housing 5.

第3図及び第4図は、本発明に係るバックライト装置の
第2実施例を示し、光a2a、2bを透明基板1の左右
両端側に2個配設させである。更に、透明基板1の裏面
には、光乱反射層7として、点(ドツト)の径を変える
ことなく、光源2a。
3 and 4 show a second embodiment of the backlight device according to the present invention, in which two lights a2a and 2b are arranged on both left and right ends of the transparent substrate 1. Further, on the back surface of the transparent substrate 1, a light source 2a is provided as a light scattering reflection layer 7 without changing the diameter of the dot.

2bからの距に1を隔てる従い透明基板1の単位面積当
たりの点の数を増加させて形成させたものである。この
結果、光乱反射層7は、光源2a、2bの中間で、最も
密度が高く、光源2a、2b付近に至るに従って粗い密
度に形成されている。光乱反射層7は、上記第1実施例
の光乱反射層3と同一の組成を用いている。透明基板1
の光乱反射層7が形成された裏面には反射シート8を添
着する。反射シート8は、ガラスはもとよりプラスチッ
クフィルムに反射率の高い金属蒸着を施したものの使用
が可能である。各光源2a、2bは、ランプハウジンク
9で囲繞させである。ランプハウジング9は、上記第1
実施例のハウジング5と同様に内面に高反射率の高い処
理を施したアルミケースを用いるのが好適である。その
他は、上記第1実施例と同一である。
The number of points per unit area of the transparent substrate 1 increases as the distance from the transparent substrate 1 increases by 1. As a result, the light scattering reflection layer 7 has the highest density between the light sources 2a and 2b, and has a coarser density as it approaches the light sources 2a and 2b. The light-scattering reflection layer 7 has the same composition as the light-scattering reflection layer 3 of the first embodiment. Transparent substrate 1
A reflective sheet 8 is attached to the back surface on which the light scattering reflective layer 7 is formed. As the reflective sheet 8, it is possible to use not only glass but also a plastic film coated with a highly reflective metal. Each light source 2a, 2b is surrounded by a lamp housing 9. The lamp housing 9 includes the first
As with the housing 5 of the embodiment, it is preferable to use an aluminum case whose inner surface is treated to have a high reflectance. The rest is the same as the first embodiment.

第2実施例のバンクライト装置においても、上記第1実
施例と同様に、光源2a、2bからの放射光が透明基板
1の左右両端面から内部に入射して反射を繰返しながら
進行し、光乱反射層7に達すると、ここで乱反射をして
透明基板1から光拡散層4を経て外部に放散する。光乱
反射層7は、光源2a、2bから距離を隔てるに従い高
密度に形成しであるから、上記第1実施例と同様に前面
に亙って均一の輝度の放射光が得られる。光乱反射層7
のパターン間隔を透過した光は、反射シート8で反射し
て、第1実施例と同様に再び透明基板1内に戻る。
In the bank light device of the second embodiment, similarly to the first embodiment, the emitted light from the light sources 2a and 2b enters the interior from both the left and right end surfaces of the transparent substrate 1, and propagates while being repeatedly reflected. When the light reaches the diffuse reflection layer 7, it is diffusely reflected there and is diffused from the transparent substrate 1 through the light diffusion layer 4 to the outside. Since the light scattering reflection layer 7 is formed at a higher density as the distance from the light sources 2a and 2b increases, it is possible to obtain emitted light with uniform brightness over the front surface as in the first embodiment. Light scattering reflective layer 7
The light that has passed through the pattern spacing is reflected by the reflective sheet 8 and returns to the transparent substrate 1 as in the first embodiment.

尚、本発明において、上記光乱反射層として、第1実施
例及び第2実施例の他に、光源からの距離に比例させて
点の径と単位面積当たりの数の両者を変えることもでき
、又、点に限らず、線を用いて、その線の大さや線相互
間の間隔を変える形式をも採用できる。
In addition, in the present invention, in addition to the first and second embodiments, as the light scattering reflection layer, both the diameter of the points and the number per unit area may be changed in proportion to the distance from the light source, Furthermore, instead of using points, it is also possible to use lines and change the size of the lines and the spacing between the lines.

「発明の効果」 上記の如く、本発明に係るバックライト装置によれば、
光源を透明基板の厚み方向ではなく周縁側に配設するこ
とから、バックライト装置としての全体の厚みが、光源
の径を含む透明基板の厚み、これをハウジングに組着す
る際の若干のクリアランス、その他必要とするハウジン
グ等の部材の厚みの合計値で済み、しかも輝度の均一性
に優れ、従って従来の技術では困難であった薄形でかつ
軽量であり、更に大面積化を図っても優れた輝度の均一
性を得ることができるバックライト装置を本発明におい
て提供し得るものである。以上の如き本発明のバックラ
イト装置は、液晶デイスプレィ(LCD)の背後に設置
することにより、薄形でしかも輝度むらのない見易い画
面を実現し得て、液晶デイスプレィ(LCD)の機能の
向上に多大に貢献でき、その他の各種バックライト装置
としても利用できるものである。
"Effects of the Invention" As described above, according to the backlight device according to the present invention,
Since the light source is placed on the periphery of the transparent substrate rather than in the thickness direction, the total thickness of the backlight device is the same as the thickness of the transparent substrate including the diameter of the light source, and the slight clearance when assembling this into the housing. , the total thickness of other necessary parts such as the housing, and it has excellent uniformity of brightness. Therefore, it is thin and lightweight, which was difficult to do with conventional technology, and even when trying to increase the area. The present invention can provide a backlight device that can obtain excellent brightness uniformity. By installing the backlight device of the present invention as described above behind a liquid crystal display (LCD), it is possible to realize a thin and easy-to-see screen with no uneven brightness, thereby improving the functions of the liquid crystal display (LCD). It can contribute greatly and can also be used as various other backlight devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るバックライト装置の第1実施例を
示す構成図、第2図は第1図の透明基板を裏面側から見
た光乱反射層の形成状態を示す説明図、第3図は第2実
施例のバックライト装置の構成図、第4図は第3図の透
明基板を裏面側から見た光乱反射層の形成状態を示す説
明図である。
FIG. 1 is a configuration diagram showing a first embodiment of a backlight device according to the present invention, FIG. 2 is an explanatory diagram showing the formation state of a light scattering reflection layer when the transparent substrate of FIG. 1 is viewed from the back side, and FIG. The figure is a configuration diagram of the backlight device of the second embodiment, and FIG. 4 is an explanatory diagram showing the formation state of the light scattering reflection layer when the transparent substrate of FIG. 3 is viewed from the back surface side.

Claims (1)

【特許請求の範囲】[Claims] 透明基板の四周のうち少なくとも一箇所に光源を配設し
、透明基板の後面には光源からの距離に応じて密度が高
まるパターンで光乱反射層を形成し、透明基板の表面に
は透光性インク又は塗料で表面が凹凸状の光拡散部を積
層させたことを特徴とするバックライト装置。
A light source is arranged at least in one of the four circumferences of the transparent substrate, and a light-scattering reflective layer is formed on the rear surface of the transparent substrate in a pattern whose density increases according to the distance from the light source, and a light-transmitting layer is formed on the surface of the transparent substrate. A backlight device characterized in that a light diffusing portion with an uneven surface is laminated with ink or paint.
JP1140319A 1989-06-02 1989-06-02 Backlighting device Pending JPH035726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1140319A JPH035726A (en) 1989-06-02 1989-06-02 Backlighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1140319A JPH035726A (en) 1989-06-02 1989-06-02 Backlighting device

Publications (1)

Publication Number Publication Date
JPH035726A true JPH035726A (en) 1991-01-11

Family

ID=15266047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1140319A Pending JPH035726A (en) 1989-06-02 1989-06-02 Backlighting device

Country Status (1)

Country Link
JP (1) JPH035726A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03214191A (en) * 1990-01-18 1991-09-19 Nissha Printing Co Ltd Plane light emitting device
JPH0533131U (en) * 1991-10-08 1993-04-30 株式会社エンプラス Surface light source
US5394308A (en) * 1993-03-03 1995-02-28 Nec Corporation Lighting apparatus having asymmetric light intensity distribution of compensating for low contrast ratios of LCD panel
EP1113308A1 (en) * 1999-07-07 2001-07-04 Matsushita Electric Industrial Co., Ltd. Translucent liquid crystal display device
CN1307438C (en) * 2002-12-20 2007-03-28 鸿富锦精密工业(深圳)有限公司 Light board and planar light-emitting device
CN100426009C (en) * 2002-12-25 2008-10-15 鸿富锦精密工业(深圳)有限公司 Light conducting board and background device
US7478942B2 (en) 2003-01-23 2009-01-20 Samsung Electronics Co., Ltd. Light guide plate with light reflection pattern
JP2009251682A (en) * 2008-04-01 2009-10-29 Glory Ltd Commodity sample holding device of vending machine
WO2013037159A1 (en) * 2011-09-14 2013-03-21 深圳市华星光电技术有限公司 Light guide plate and backlight module

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5750538A (en) * 1980-09-12 1982-03-25 Mitsui Eng & Shipbuild Co Ltd Method and device for granulation in liquid
JPS6029425A (en) * 1983-07-29 1985-02-14 Nippon Steel Corp Adjusting method of quality of hot rolled steel material
JPS6111780A (en) * 1984-06-26 1986-01-20 アルプス電気株式会社 Antiglare construction of display
JPS62169192A (en) * 1986-01-22 1987-07-25 大日本印刷株式会社 Surface light source
JPS62278505A (en) * 1986-05-27 1987-12-03 Dainippon Printing Co Ltd Plane light source
JPS6362104A (en) * 1986-09-01 1988-03-18 株式会社明拓システム Light source apparatus for decorative illumination
JPS63309918A (en) * 1988-04-25 1988-12-19 Tatsuji Mizobe Back light device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5750538A (en) * 1980-09-12 1982-03-25 Mitsui Eng & Shipbuild Co Ltd Method and device for granulation in liquid
JPS6029425A (en) * 1983-07-29 1985-02-14 Nippon Steel Corp Adjusting method of quality of hot rolled steel material
JPS6111780A (en) * 1984-06-26 1986-01-20 アルプス電気株式会社 Antiglare construction of display
JPS62169192A (en) * 1986-01-22 1987-07-25 大日本印刷株式会社 Surface light source
JPS62278505A (en) * 1986-05-27 1987-12-03 Dainippon Printing Co Ltd Plane light source
JPS6362104A (en) * 1986-09-01 1988-03-18 株式会社明拓システム Light source apparatus for decorative illumination
JPS63309918A (en) * 1988-04-25 1988-12-19 Tatsuji Mizobe Back light device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03214191A (en) * 1990-01-18 1991-09-19 Nissha Printing Co Ltd Plane light emitting device
JPH0533131U (en) * 1991-10-08 1993-04-30 株式会社エンプラス Surface light source
US5394308A (en) * 1993-03-03 1995-02-28 Nec Corporation Lighting apparatus having asymmetric light intensity distribution of compensating for low contrast ratios of LCD panel
EP1113308A1 (en) * 1999-07-07 2001-07-04 Matsushita Electric Industrial Co., Ltd. Translucent liquid crystal display device
EP1113308A4 (en) * 1999-07-07 2006-07-05 Matsushita Electric Ind Co Ltd Translucent liquid crystal display device
CN1307438C (en) * 2002-12-20 2007-03-28 鸿富锦精密工业(深圳)有限公司 Light board and planar light-emitting device
CN100426009C (en) * 2002-12-25 2008-10-15 鸿富锦精密工业(深圳)有限公司 Light conducting board and background device
US7478942B2 (en) 2003-01-23 2009-01-20 Samsung Electronics Co., Ltd. Light guide plate with light reflection pattern
JP2009251682A (en) * 2008-04-01 2009-10-29 Glory Ltd Commodity sample holding device of vending machine
WO2013037159A1 (en) * 2011-09-14 2013-03-21 深圳市华星光电技术有限公司 Light guide plate and backlight module

Similar Documents

Publication Publication Date Title
US5550676A (en) Surface light source element
JPH035725A (en) Backlighting device
JP3077907B2 (en) Backlight device
JPS63309918A (en) Back light device
JP2974400B2 (en) Surface emitting device and method of manufacturing the same
JPH036525A (en) Backlighting device
JPH039306A (en) Backlight device
JPH035726A (en) Backlighting device
JP3064006B2 (en) Surface emitting device
JPH07110408A (en) Light transmission plate for edge light source type plane lamp
JP2780046B2 (en) Backlight device
JPH08146230A (en) Surface light emitting device
JPH10197725A (en) Plane light source device
JP3298979B2 (en) Substrate for surface light source device
JPH1164645A (en) Plane illuminant
JPH04278922A (en) Panel light source device
JPH09211230A (en) Surface light source device
JP3180843B2 (en) Surface emitting device
JPH08146232A (en) Backlight
JP3023363U (en) Surface emitting device
JP3300488B2 (en) L-shaped line light source type surface emitting device
JPH08110413A (en) Surface light emitting device
JP2851239B2 (en) Surface emitting device
JPH08122535A (en) Surface light emitting device
KR100389058B1 (en) Back light