JPH039306A - Backlight device - Google Patents
Backlight deviceInfo
- Publication number
- JPH039306A JPH039306A JP1144382A JP14438289A JPH039306A JP H039306 A JPH039306 A JP H039306A JP 1144382 A JP1144382 A JP 1144382A JP 14438289 A JP14438289 A JP 14438289A JP H039306 A JPH039306 A JP H039306A
- Authority
- JP
- Japan
- Prior art keywords
- light
- transparent substrate
- reflection layer
- layer
- light source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 claims abstract description 63
- 238000000149 argon plasma sintering Methods 0.000 claims description 29
- 238000009792 diffusion process Methods 0.000 abstract description 10
- 230000001788 irregular Effects 0.000 abstract 6
- 239000010410 layer Substances 0.000 description 66
- 230000003287 optical effect Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 239000004973 liquid crystal related substance Substances 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000007650 screen-printing Methods 0.000 description 3
- 229920000742 Cotton Polymers 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920006267 polyester film Polymers 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000005338 frosted glass Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0033—Means for improving the coupling-out of light from the light guide
- G02B6/0035—Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
- G02B6/0036—2-D arrangement of prisms, protrusions, indentations or roughened surfaces
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0033—Means for improving the coupling-out of light from the light guide
- G02B6/005—Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0033—Means for improving the coupling-out of light from the light guide
- G02B6/0058—Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide
- G02B6/0061—Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide to provide homogeneous light output intensity
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0066—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
- G02B6/007—Incandescent lamp or gas discharge lamp
- G02B6/0071—Incandescent lamp or gas discharge lamp with elongated shape, e.g. tube
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Light Guides In General And Applications Therefor (AREA)
- Liquid Crystal (AREA)
Abstract
Description
【発明の詳細な説明】
「産業上の利用分野」
本発明は、液晶デイスプレィ(LCD)の背面に配設さ
れて、該液晶デイスプレィを照射するバックライト装置
に関する。DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a backlight device that is disposed on the back side of a liquid crystal display (LCD) and illuminates the liquid crystal display.
「従来の技術」
近年、液晶デイスプレィは、薄形、軽量、及び低消費電
力などの優れた特徴を有し、この特徴を充分発揮し得る
平面デイスプレィとして各種製品への利用に多大な期待
が寄せられている。しかしながら、液晶デイスプレィは
、現在産業用及び民生用として広く使用されているC
RT (Cathode RayTube)に比較して
画質面で劣っており、この画質を改善するためにバック
ライト形式の液晶デイスプレィが開発されるに至ってい
る。"Prior Art" In recent years, liquid crystal displays have excellent characteristics such as being thin, lightweight, and low power consumption, and there are great expectations for their use in various products as flat displays that can fully demonstrate these characteristics. It is being However, liquid crystal displays are based on C, which is currently widely used for industrial and consumer purposes.
It is inferior in image quality compared to RT (Cathode RayTube), and a backlight type liquid crystal display has been developed to improve this image quality.
この種のバックライト装置は、薄形でかつ軽量であるこ
とが望まれ、又画面の全領域において輝度が均一である
ことが必要条件とされている。バックライト装置におい
て、輝度の均一性を高める技術としては、既に各種の提
案がされている。例えば、特開昭57−13478号公
報記載のものは、線状光源の上部に乳白色光散乱体を設
け、かつ該乳白色光散乱体の中央部の層厚を厚くし、端
部に至るに従って薄<シて、照明むらをなくし、しかも
薄型でかつ小型化を図り得るようにしたものである。更
に、特開昭60−264039号公報記載のものでは、
蛇行状の冷陰極ランプを用い、特開昭61−21998
0号公報記載のものでは、紫外線ランプ、及び該紫外線
ランプの周辺に配設した蛍光体塗布層部を活用し、特開
昭61−N。This type of backlight device is desired to be thin and lightweight, and is also required to have uniform brightness over the entire screen area. Various proposals have already been made as techniques for improving the uniformity of brightness in backlight devices. For example, in the device described in JP-A-57-13478, a milky white light scattering body is provided above a linear light source, and the layer thickness is thick at the center of the milky white light scattering body, and becomes thinner toward the ends. This eliminates uneven illumination and allows for a thinner and more compact design. Furthermore, in the one described in JP-A No. 60-264039,
Using a serpentine cold cathode lamp, JP-A-61-21998
The method described in Japanese Patent Application Laid-Open No. 1988-1 utilizes an ultraviolet lamp and a phosphor coating layer disposed around the ultraviolet lamp.
621号公報記載のものでは、導光板中に光源を組み込
み、特開昭62−127717号公報記載のものでは、
複数個の光源の上下面に凹凸レンズを配設し、特開昭6
3−1.25975号公報記載のものではU字型ランプ
を用い、又特開昭54105562号公報記載のもので
は透り1基板内乙ご光乱反射体を、光源側で低濃度とし
、光源から遠ざかるに従って高濃度になるように入れ、
これによりそれぞれ照射むらをなくして輝度の均一化を
図るようにしである。In the device described in JP-A No. 621, a light source is incorporated into the light guide plate, and in the device described in JP-A-62-127717,
Concave and convex lenses are arranged on the upper and lower surfaces of multiple light sources, and
The one described in 3-1.25975 uses a U-shaped lamp, and the one described in JP-A-54105562 uses a light scattering reflector in a transparent substrate with a low concentration on the light source side. Put it in such a way that it becomes more concentrated as it gets farther away.
This is intended to eliminate uneven irradiation and make brightness uniform.
「発明が解決しようとする課題」
U2かしながら、上記従来のものは、下記の如き問題が
ある。"Problem to be Solved by the Invention" U2 However, the above conventional method has the following problems.
(1)光散乱体の下面に光源を配設する場合には、バッ
クライト装置全体の厚みが厚くなり高張るといった問題
がある。(1) When a light source is disposed on the lower surface of the light scattering body, there is a problem that the entire backlight device becomes thick and expensive.
(2)輝度の均一化を図るべく、ランプを複数個設ける
場合には、大面積にすればするほど多数のランプが必要
となってコスト高を招くといった問題がある。(2) When a plurality of lamps are provided in order to make the brightness uniform, there is a problem that the larger the area, the more lamps are required, leading to higher costs.
(3)蛇行状のランプを用いる場合には、大面積のもの
に適用すると、量産性に欠けるといった問題がある。(3) When a serpentine lamp is used, there is a problem in that it is not suitable for mass production when applied to a large area.
(4)透明基板内に光散乱体を入れる場合は、輝度の均
一・化を再現性良く製造することが容易でtl:いとい
った問題がある。(4) When a light scattering body is placed in a transparent substrate, there is a problem in that it is difficult to manufacture the light scattering material with good reproducibility to ensure uniform brightness.
そこで、本発明は、1−記問題点を克服4べくなされた
もので、薄型かつ軽塑で大面積(1j 4mよ、ダζ二
も輝度の均一性に優れ、ヌ光の損失が少ないバ・2クラ
イト装置を桿(共・Uんとするものである。Therefore, the present invention has been made to overcome the problems described in 1-4.・The 2-crite device is a rod (both called U).
「課題を解決するだめの手段」
本発明は、上記旧約を達成すべくなされたもので、請求
項(1)では透明基板の四周のうらの少なくとも1箇所
に光源を配設j2、かつ透明基板表面の出光面に光源か
らの距離に応じて高密度化するパターンで光乱反射層を
形成し、透明基板の裏面には、光鏡面反射層を形成し、
かつ」:記光乱反躬層上には光拡散層を設けたバックラ
イト装置を特徴とするものである。請)1項(2)では
、上記透明基板の裏面と光鏡面反射層との間に、光源か
らの距離に応じて高密度化するパターンで光乱反射層を
形成させたバックライト装置を特徴とするものである。"Means for Solving the Problem" The present invention has been made to achieve the above-mentioned Old Testament, and in claim (1), a light source is disposed at at least one place on the back of the four circumferences of the transparent substrate j2, and A light-diffusing reflective layer is formed on the light output surface of the front surface in a pattern that increases in density depending on the distance from the light source, and a light specular reflective layer is formed on the back surface of the transparent substrate.
"And": The backlight device is characterized by having a light diffusing layer provided on the light scattering and reflecting layer. Item 1(2) is characterized by a backlight device in which a light-diffusing reflection layer is formed between the back surface of the transparent substrate and the light specular reflection layer in a pattern that increases in density according to the distance from the light source. It is something to do.
「作用」
本発明は、上記構成において、請求項(1)では、光源
からの放射光が透明基板の端面から内部に入光し、透明
基板と空気との界面の光学的密度差、及び光鏡面反射層
の存在で反射を繰返しながら、該透明基板中を進行する
。この進行中に透明基板表面の光乱反射層に達すると、
該光乱反射層で乱反射をする。透明基板表面の光乱反射
層のパターン以外の部分では、一部の光が反射をし、他
の一部の光が透過してり)部に放射される。上記乱反射
層で乱反射した光は、透明基板裏面の光鏡面反射層で反
射し、て、透明基板表面に達して臨界角以下とな−、て
光乱反射層のパターン以外の箇所からり(部に向って放
射される。光乱反射層のパターンは光源からの距離に応
じて高密度化するように形成させであるから、透明基板
表面から放射される光量を全面に亙って均一にする。更
に、透明基板表面からの放射光は、光拡散層で拡散され
て、光乱反射層と光乱反射層が形成されていないパター
ン以外の箇所との間の籾度むらの発生を防いでいる。"Function" In the above configuration, the present invention provides that in claim (1), the emitted light from the light source enters the inside from the end face of the transparent substrate, and the optical density difference at the interface between the transparent substrate and the air and the light The light travels through the transparent substrate while being repeatedly reflected due to the presence of the specular reflective layer. During this process, when the light scattering layer on the surface of the transparent substrate is reached,
The light diffuse reflection layer causes diffuse reflection. In areas other than the pattern of the light-diffusing reflection layer on the surface of the transparent substrate, part of the light is reflected and the other part of the light is transmitted. The light diffusely reflected by the above-mentioned diffusely reflecting layer is reflected by the specular reflective layer on the back side of the transparent substrate, reaches the surface of the transparent substrate, and becomes below the critical angle. Since the pattern of the light scattering reflection layer is formed to increase in density according to the distance from the light source, the amount of light emitted from the surface of the transparent substrate is made uniform over the entire surface. The light emitted from the surface of the transparent substrate is diffused by the light diffusing layer, thereby preventing the occurrence of uneven graininess between the light-diffusing reflection layer and a portion other than the pattern where the light-diffusing reflection layer is not formed.
請求項(2)では、透明基板裏面と光鏡面反射層との間
にも光源からの距離に応じて高密度化するパターンで光
乱反射層を形成(21、該光乱反射層においても透明基
板内に導入された光を乱反射さ−(キて、光の利用効率
を増大させるようにしたものである。In claim (2), a light-diffusing reflection layer is also formed between the back surface of the transparent substrate and the light specular reflection layer in a pattern that increases in density according to the distance from the light source (21, the light-diffusing reflection layer also has a pattern that increases the density within the transparent substrate). The system diffusely reflects the light introduced into the system, thereby increasing the efficiency of light utilization.
「実施例」
以下に、本発明に係るハックライ!・装置の実施例を図
1iに基づき説明する。第1図及び第2図は、第1実施
例を示し、図中1は透明基板である。該透明基板1は、
光透過率の良好な肉厚の薄い板で材質として例えばガラ
ス板、アクリル樹脂板、ポリカーボネー1樹脂板等、烈
機質若しくは合成樹脂製の透明板を使用する。透明基板
1の4周部のうちの一側部に光源2を配設するようにな
っている。上記透明基板1の表面には、光源からの放射
光を乱反射するための光乱反射層3を、光源2からの距
離に比例して高密度化するパターンで描写させである。"Example" Below, a hack-cry! according to the present invention will be described. - An embodiment of the device will be described based on FIG. 1i. 1 and 2 show a first embodiment, and numeral 1 in the figures represents a transparent substrate. The transparent substrate 1 is
The thin plate with good light transmittance is made of a transparent plate made of a transparent material or synthetic resin, such as a glass plate, an acrylic resin plate, a polycarbonate resin plate, etc., for example. A light source 2 is disposed on one side of the four circumferences of the transparent substrate 1. On the surface of the transparent substrate 1, a light scattering reflection layer 3 for diffusely reflecting the light emitted from the light source is drawn in a pattern whose density increases in proportion to the distance from the light source 2.
光乱反射N3は、反射微粒子としての酸化チタンや酸化
亜鉛等の白色顔料等を含有する揮発硬化型の、若しくは
紫外線硬化型の白色インクを用い、又は利用する者の希
望に応じた色彩の着色インクを使用する。透明基板1の
表面に光乱反射N3を形成する方法としては、スクリー
ン印刷やスクンブ方式等の公知の技術手段を用いて描写
する。該光乱反射層3を透明基板1の表面に形成する際
は、第2図に示す如く、単位面積当たりの点の数を同一
にし、光源から距離を隔てるに従って点(ドツト)を径
大に描写し、透明基板1の単位面積当たりの光乱反射N
3の占有率を変えるようにしである。光乱反射層3の点
の直径は、1〜3000μ、好ましくは10〜1000
μに設定する。Light scattering reflection N3 uses a volatile curing type or ultraviolet curing type white ink containing white pigments such as titanium oxide and zinc oxide as reflective particles, or colored ink in a color according to the wishes of the user. use. As a method of forming the light scattering reflection N3 on the surface of the transparent substrate 1, known technical means such as screen printing and the Scumbu method are used. When forming the light scattering reflection layer 3 on the surface of the transparent substrate 1, as shown in FIG. 2, the number of dots per unit area is the same, and the diameter of the dots increases as the distance from the light source increases. Then, the diffuse reflection N per unit area of the transparent substrate 1
The occupancy rate of 3 is to be changed. The diameter of the points of the light scattering reflection layer 3 is 1 to 3000μ, preferably 10 to 1000μ.
Set to μ.
一方、透明基板1の裏面全域には光鏡面反射N4を積層
する。光鏡面反射層4は、反射率の高い鏡面にするもの
で、例えば銀やアルミニューム等の金属を蒸着やスパッ
タリング等によって付着させる方法、その他にアルミニ
ューム蒸着したポリエステルフィルム等高反射率のフィ
ルムを添着しあるいは貼着することもできる。又光鏡面
反射層4の経時劣化を防ぐべく光鏡面反射層4に防湿コ
ートを施し、又は防湿フィルムを貼着することも可能で
ある。上記透明基板lの光乱反射層3上には光拡散N5
を設ける。該光拡散層5は、所謂くもりガラス、若しく
は表面を、粗面化したプラスチックフィルムが用いられ
、コストや耐久性等から表面を粗面化した光拡散層を有
するポリエステルフイムルが好適である。更に、上記光
源2は、−般に広く用いられている蛍光灯の他、細い管
径の冷陰極管が、バックライト装置全体の薄形化及び液
晶デイスプレィ(LCD)パネルに対する温度の影響を
押えることができて利用上有利である。On the other hand, a light specular reflection layer N4 is laminated on the entire back surface of the transparent substrate 1. The optical specular reflection layer 4 is made to have a mirror surface with high reflectance.For example, metal such as silver or aluminum may be deposited by vapor deposition or sputtering, or a film with high reflectance such as a polyester film with aluminum vapor deposited may be used. It can also be attached or pasted. Further, in order to prevent the optical specular reflection layer 4 from deteriorating over time, it is also possible to apply a moisture-proof coating to the optical specular reflection layer 4 or to attach a moisture-proof film to the optical specular reflection layer 4. On the light scattering reflection layer 3 of the transparent substrate l, there is a light diffusion layer N5.
will be established. For the light diffusion layer 5, so-called frosted glass or a plastic film with a roughened surface is used, and a polyester film having a light diffusion layer with a roughened surface is preferable from the viewpoint of cost and durability. Furthermore, the light source 2 is a cold cathode tube with a narrow tube diameter, in addition to the generally widely used fluorescent lamp, which reduces the thickness of the entire backlight device and suppresses the influence of temperature on the liquid crystal display (LCD) panel. It is advantageous for use.
又、光源2としては、アパーチャー型のランプを用いて
もよい。上記光乱反射N3や光鏡面反射層4が形成され
てかつ表面に光乱反射層5が添着された透明基板1の出
光面側を除く箇所、及び光源2は、ハウジング6で囲繞
する。ハウジング6は、内面に光反射率の高い処理を施
した金属、あるいは樹脂より形成し、透明基板1や光源
2から洩れ出た光を該透明基板1内に戻す機能と、出光
面以外からの光の漏洩を防ぐ機能と、光源2から発生す
る熱を放散させる機能とを呈するものである。Further, as the light source 2, an aperture type lamp may be used. A housing 6 surrounds the light source 2 and a portion other than the light-emitting surface side of the transparent substrate 1 on which the light-diffusing reflection N3 and the light specular reflection layer 4 are formed and the light-diffusing reflection layer 5 is attached to the surface. The housing 6 is made of metal or resin with a high light reflectance treatment on its inner surface, and has the function of returning light leaked from the transparent substrate 1 and light source 2 into the transparent substrate 1, and preventing light from coming from other than the light emitting surface. It has a function of preventing light leakage and a function of dissipating heat generated from the light source 2.
斯様な機能を効果的に発揮させるために、ハウジング6
は、内面に光反射率の高い白色塗料を塗布したアルミケ
ースや反射効率の高い蒸着処理を施したアルミケースが
好適である。In order to effectively perform such functions, the housing 6
An aluminum case whose inner surface is coated with a white paint with high light reflectance or an aluminum case which has been subjected to vapor deposition treatment with high reflection efficiency is suitable.
尚、透明基板1の光源2側以外の周縁は、その周縁から
の光の漏洩を防ぐべく反射テープ7等で被覆することも
有益な手段である。It is also useful to cover the periphery of the transparent substrate 1 other than the light source 2 side with a reflective tape 7 or the like to prevent light from leaking from the periphery.
そして、上記第1実施例では、光源2からの放射光が透
明基板1の端面から内部に入光すると、透明基板の表面
と空気との界面の光学的密度差により大光角度に依存し
た反射をし、又光鏡面反射層4で鏡面反射を順次繰返し
ながら透明基板1内を進行する。この進行の途中で光が
光乱反射層3に達すると、光乱反射層3内の反射微粒子
で乱反射し、この乱反射光が一旦光鏡面反射層4に鏡面
反射するが透明基板1の表面に対しては臨界角以下とな
って、光乱反射層3のパターン以外の隙間から上記乱反
射光の一部が外部に放射する。この放射光は、光乱反射
層3が光源2から距離が隔たるに従って高密度になるよ
うなパターンで描写されていることから、透明基板1の
表面の出光面全域に亙って均一な輝度になる。つまり、
光源2の付近はもとより、光源2から最も距離が隔った
位置、更にその中間位置の何れにあっても、均一な輝度
の放射光を得ることができる。該放射光は光拡散N5に
入光して拡散された後、LCDパネル内に入射するが、
光拡散層5は、光乱反射層3と光乱反射N3のパターン
以外の領域との間に生ずる光量変化所謂光乱反射N3の
存在による「影の発生」をなくし、輝度むらのない照明
光を得る。In the first embodiment, when the emitted light from the light source 2 enters the inside of the transparent substrate 1 from the end surface, it is reflected depending on the large optical angle due to the optical density difference at the interface between the surface of the transparent substrate and the air. The light travels through the transparent substrate 1 while being sequentially subjected to specular reflection by the light specular reflection layer 4. When the light reaches the light-diffusing reflection layer 3 in the middle of this progress, it is diffusely reflected by the reflective particles in the light-diffusing reflection layer 3, and this diffusely reflected light is once specularly reflected on the light specular reflection layer 4, but it does not reach the surface of the transparent substrate 1. becomes less than the critical angle, and a part of the diffusely reflected light is radiated to the outside from gaps other than the pattern of the diffusely reflected layer 3. Since the light scattering reflection layer 3 is drawn in a pattern that becomes denser as the distance from the light source 2 increases, this emitted light has uniform brightness over the entire light emitting surface of the surface of the transparent substrate 1. Become. In other words,
Emitted light with uniform brightness can be obtained not only in the vicinity of the light source 2, but also in the farthest position from the light source 2, and even in intermediate positions. The emitted light enters the light diffusion N5 and is diffused, and then enters the LCD panel,
The light diffusing layer 5 eliminates a change in the amount of light that occurs between the light-diffusing reflection layer 3 and an area other than the pattern of the light-diffuse reflection N3, that is, "occurrence of shadows" due to the presence of the light-diffuse reflection N3, and obtains illumination light without uneven brightness.
第3図及び第4図は、第2実施例を示すもので、透明基
板1の左右両部に光源2a、2bを配設しである。一方
、透明基板1の表裏両面に光乱反射層8a、8bを形成
させである。光乱反射FIR3゜8bは、上記第1実施
例と同様に酸化チタン等の反射微粒子が含有された白色
インクや着色インクをスクリーン印刷やヌクンブ印刷に
より形成したものであり、この形成に当たり第4図に示
す如く、点の直径を変えずに、点の数のみを光源23.
21)からの距離に比例して増加するパターンで描写す
る。つまり、光乱反射層8a、8bは、光源2a、2b
から最も距離のある透明基板1の中央部で最も密度が高
く、光源2a、2bに近づくにつれて低密度のパターン
に形成する。透明基板1の裏面全域には、光乱反射層8
aに重層さセて光鏡面反射層4を形成さゼである。光鏡
面反射層4は上記第1実施例と同じ材質及び同じ方法で
形成する。透明基板1の表面の出光領域には上記第1実
施例の如き光拡散層5を設けである。又、光源2a、2
bは内面が高反射率に処理されたランプハウジング9で
囲繞する。ランプハウジング9は、光源2a、2bの放
射光の反射と放熱とを行わせしめるもので、上記第1実
施例のハウ::2ング5(7)如き高反射率が施された
材質のものが好適である。3 and 4 show a second embodiment, in which light sources 2a and 2b are provided on both the left and right sides of a transparent substrate 1. On the other hand, light scattering reflective layers 8a and 8b are formed on both the front and back surfaces of the transparent substrate 1. The light scattering reflection FIR3°8b is formed by screen printing or Nukumbu printing using white ink or colored ink containing reflective fine particles such as titanium oxide, as in the first embodiment. As shown, only the number of points is changed by the light source 23. without changing the diameter of the points.
21) is depicted in a pattern that increases in proportion to the distance from In other words, the light scattering reflection layers 8a and 8b are the light sources 2a and 2b.
The pattern is formed such that the density is highest at the center of the transparent substrate 1, which is farthest from the light sources 2a and 2b, and the density becomes lower as it approaches the light sources 2a and 2b. A light scattering reflection layer 8 is provided on the entire back surface of the transparent substrate 1.
A light specular reflection layer 4 is formed by overlaying the layer a. The optical specular reflection layer 4 is formed of the same material and by the same method as in the first embodiment. A light diffusing layer 5 as in the first embodiment is provided in the light emitting region of the surface of the transparent substrate 1. Moreover, the light sources 2a, 2
b is surrounded by a lamp housing 9 whose inner surface is treated to have high reflectance. The lamp housing 9 reflects the emitted light from the light sources 2a and 2b and radiates heat, and is made of a material with a high reflectance, such as the Hau::2 ring 5(7) of the first embodiment. suitable.
そして、本実施例は、光源2a、2bからの放射光が透
明基板lの両端から内部に入射し、透明基板1の表面と
空気との界面の光学的密度差1、及び光鏡面反射層4に
よりぞわぞれ反射を17ながら透明基板1内を進行する
。この進行の途中で透明基板1の裏面側の光乱反射層8
aに達した光は、透明基板1の表面に対してpn界角以
下となって光乱反射層81)のバクーン以夕)の隔間か
ら外部に放射する。光乱反射層Bbtこ達した先は、上
記第1実施例と同様に一旦光鏡面反射層4に鏡面反射j
、また後、元旦1反射層8bのパターン以外の隙間より
外部に反射する。透明基板1から夕(部に放射された光
は、第1実施例と同様に光拡散層5で拡散されてLCD
パネルに供与される、
第2実施例では、透明基板1の表裏両面に光乱反射N8
a、8bを形成し7たことから、第1実h1)2例のも
のに比較して更に輝度の均一化を図り得ると共に、2個
の光源2a、2bを使用することから、輝度の絶対値を
高め得るものものである。しかも透明基板1の両面に光
乱反射層8a、8bを設けると、各光乱反射層8a、8
bのパターン密度を第1実施例の片面だけの光乱反射層
3に比べて低く押えることができ、低く押えれば、高密
度パターンより更に印刷時の再現性が向上し7、例えば
スクリーン印刷時の所謂「ダレ」による点相互間の接触
などといった不都合を防ぎ得て、歩留りの向上を図り得
る。In this embodiment, the emitted light from the light sources 2a and 2b enters the interior from both ends of the transparent substrate 1, and there is an optical density difference 1 at the interface between the surface of the transparent substrate 1 and the air, and a light specular reflection layer 4. As a result, the light travels through the transparent substrate 1 while being reflected 17 times. During this process, the light scattering reflection layer 8 on the back side of the transparent substrate 1
The light that has reached point a becomes less than or equal to the pn boundary angle with respect to the surface of the transparent substrate 1, and is radiated to the outside through the interval between the light scattering and reflection layers 81). After reaching the light scattering reflection layer Bbt, specular reflection is applied to the light specular reflection layer 4 as in the first embodiment.
, and later reflected to the outside through gaps other than the pattern of the New Year's Day 1 reflective layer 8b. The light emitted from the transparent substrate 1 is diffused by the light diffusion layer 5 as in the first embodiment, and the light is emitted to the LCD.
In the second embodiment, diffused reflection N8 is provided to the panel on both the front and back surfaces of the transparent substrate 1.
a, 8b and 7, the brightness can be made more uniform compared to the first example h1), and since two light sources 2a and 2b are used, the absolute brightness can be improved. It is something that can increase its value. Moreover, if the light-diffusing reflection layers 8a, 8b are provided on both sides of the transparent substrate 1, each of the light-diffusing reflection layers 8a, 8
The pattern density of b can be kept low compared to the light scattering reflection layer 3 on only one side of the first embodiment, and if kept low, the reproducibility during printing is further improved than that of a high-density pattern7, for example when screen printing. Inconveniences such as contact between points due to so-called "sag" can be prevented, and yield can be improved.
尚1、本発明においては、光乱反射層3.8a。1. In the present invention, the light scattering reflection layer 3.8a.
8bの描写形態として、第1実施例及び第2実施例の他
に、点の径と単位面積当たりの点の数を変える方法や、
線を用いて、その綿の太さや綿相互間の間隔を変える形
式も採用できる。8b, in addition to the first and second embodiments, there are methods of changing the diameter of the points and the number of points per unit area,
It is also possible to adopt a format in which lines are used to change the thickness of the cotton and the spacing between the cotton.
「発明の効果J
上記の如く、本発明に係るバックライト装置によれば、
光源を透明基板の厚み方向ではなく周縁側に配設するこ
とから、バックライト装置としての全体の厚みが、光源
の径を含む透明基板の厚み、光拡散層、光乱反射層等の
重iff、これをハウジングC4n着する際の若干のク
リアラ゛、・ス、その他必要とするハウジング等の部材
の厚みの合計値で済の、しかも輝度の均−性乙J優れ、
従って従来の技術では困難であった薄形でかつ軽聞であ
り、更に大面積化を図っても優れた輝度の均一・性を得
ることができるばかりか、透明基板裏面の光鏡面反射層
を形成させたことから、その後面側への光の漏れを防く
ことができると共に、光の利用効率が高イハックライト
装置を本発明において提供し得るものである。以上の如
き本発明のバックライ1−装置は、液晶j!イスプレイ
(LCD)の背後に設置すること?、二より、薄形でし
7かも輝度むらのない見易い画面をア現し得て、液晶デ
イスジ1/イ (1゜CD)の機能の向上に多大に貢献
eき、その他の各種バックライト装置とし7ても利用で
きるものである。“Effect of the invention J As described above, according to the backlight device according to the present invention,
Since the light source is arranged not in the thickness direction of the transparent substrate but on the peripheral edge side, the total thickness of the backlight device depends on the thickness of the transparent substrate including the diameter of the light source, the light diffusion layer, the light scattering reflection layer, etc. When attaching this to the housing C4n, there is only a slight amount of clearance, space, and the total thickness of other necessary components such as the housing, and the uniformity of brightness is excellent.
Therefore, it is possible to achieve a thin and lightweight design that was difficult to achieve with conventional technology, and even with a larger area, it is possible to obtain excellent brightness uniformity and property. Since this is formed, it is possible to prevent light from leaking to the rear surface side, and the present invention can provide an ihac light device with high light utilization efficiency. The backlight 1-device of the present invention as described above is a liquid crystal j! Should I install it behind the display (LCD)? Secondly, it is possible to create a thin and easy-to-read screen with no uneven brightness, which greatly contributes to improving the functionality of LCD discs (1°CD) and is useful for various other backlight devices. 7 can also be used.
第1図は、本発明に係る八ツクライト装置の第1実施例
を示す構成図、第2〕図は、第1図のバンクライト装置
の光乱反射層の描写形態を示す要部説明図、第3図は第
2実施例のバックライト装置の構成図、第4図は第3図
の光乱反射層の描写形態を示す要部説明図である。
1・・・透明基板
2.2a、2b・・・・・・光源
3.8a、8b・・・光乱反射層
4・・・光鏡面反射層 5・・・光拡散層第1図FIG. 1 is a block diagram showing a first embodiment of the bank light device according to the present invention, and FIG. FIG. 3 is a configuration diagram of a backlight device of the second embodiment, and FIG. 4 is an explanatory diagram of main parts showing a depiction form of the light-scattering reflective layer of FIG. 3. 1...Transparent substrate 2.2a, 2b...Light source 3.8a, 8b...Light scattering reflection layer 4...Light specular reflection layer 5...Light diffusion layer FIG.
Claims (2)
を配設し、かつ透明基板表面の出光面に、光源からの距
離に応じて高密度化するパターンで光乱反射層を形成し
、透明基板の裏面には、光鏡面反射層を形成し、かつ上
記光乱反射層上には光拡散層を設けたことを特徴とする
バックライト装置。(1) A light source is disposed in at least one of the four circumferences of the transparent substrate, and a light-diffusing reflective layer is formed on the light exit surface of the transparent substrate in a pattern that increases in density depending on the distance from the light source, making the transparent substrate transparent. 1. A backlight device comprising: a mirror reflective layer formed on the back surface of a substrate; and a light diffusing layer provided on the diffuse reflective layer.
源からの距離に応じて高密度化するパターンで光乱反射
層を形成させたことを特徴とする請求項(1)記載のバ
ックライト装置。(2) A light scattering reflection layer is formed between the back surface of the transparent substrate and the light specular reflection layer in a pattern that becomes denser depending on the distance from the light source. Backlight device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1144382A JPH039306A (en) | 1989-06-07 | 1989-06-07 | Backlight device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1144382A JPH039306A (en) | 1989-06-07 | 1989-06-07 | Backlight device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH039306A true JPH039306A (en) | 1991-01-17 |
Family
ID=15360833
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1144382A Pending JPH039306A (en) | 1989-06-07 | 1989-06-07 | Backlight device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH039306A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04369619A (en) * | 1991-06-18 | 1992-12-22 | Nissha Printing Co Ltd | Face light source device |
JPH05307177A (en) * | 1992-04-30 | 1993-11-19 | Riyoosan:Kk | Back light device |
EP0571173A2 (en) * | 1992-05-22 | 1993-11-24 | Nokia Mobile Phones Ltd. | Illuminated LCD apparatus |
JPH05333332A (en) * | 1992-03-11 | 1993-12-17 | Kaiser Aerospace & Electron Corp | Lcd lighting system |
JPH06194525A (en) * | 1992-05-11 | 1994-07-15 | Meitaku Syst:Kk | Lightconductor and its production |
EP0609816A2 (en) * | 1993-02-01 | 1994-08-10 | Tosoh Corporation | Backlighting device |
WO1999020738A1 (en) * | 1997-10-17 | 1999-04-29 | Matsushita Electric Industrial Co., Ltd. | Photosynthesis culture apparatus and group of photosynthesis culture apparatuses |
US5944405A (en) * | 1994-08-12 | 1999-08-31 | Dai Nippon Printing Co., Ltd. | Flat light source using light-diffusing sheet with projections thereon |
JP2004514614A (en) * | 2000-12-01 | 2004-05-20 | オルセン、ベント、ヨルト | Can drinking and pouring device |
EP1645798A1 (en) * | 2004-09-15 | 2006-04-12 | Research In Motion Limited | A method and device to improve backlight uniformity |
US7113670B2 (en) | 2004-09-15 | 2006-09-26 | Research In Motion Limited | Method and device to improve backlight uniformity |
JP2008268982A (en) * | 2008-07-30 | 2008-11-06 | Nippon Leiz Co Ltd | Light guide plate and planar lighting device |
JP2010225450A (en) * | 2009-03-24 | 2010-10-07 | Victor Co Of Japan Ltd | Lighting system and liquid crystal display |
-
1989
- 1989-06-07 JP JP1144382A patent/JPH039306A/en active Pending
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04369619A (en) * | 1991-06-18 | 1992-12-22 | Nissha Printing Co Ltd | Face light source device |
JPH05333332A (en) * | 1992-03-11 | 1993-12-17 | Kaiser Aerospace & Electron Corp | Lcd lighting system |
JP2889949B2 (en) * | 1992-03-11 | 1999-05-10 | カイザー エアロスペース アンド エレクトロニクス コーポレイション | LCD lighting system |
JPH05307177A (en) * | 1992-04-30 | 1993-11-19 | Riyoosan:Kk | Back light device |
JPH06194525A (en) * | 1992-05-11 | 1994-07-15 | Meitaku Syst:Kk | Lightconductor and its production |
JP2709776B2 (en) * | 1992-05-11 | 1998-02-04 | 株式会社明拓システム | Light guide and method of manufacturing the same |
EP0571173A2 (en) * | 1992-05-22 | 1993-11-24 | Nokia Mobile Phones Ltd. | Illuminated LCD apparatus |
EP0571173A3 (en) * | 1992-05-22 | 1994-03-30 | Nokia Mobile Phones Ltd | Illuminated lcd apparatus |
US5477422A (en) * | 1992-05-22 | 1995-12-19 | Nokia Mobile Phones Limited | Illuminated LCD apparatus |
EP0609816A2 (en) * | 1993-02-01 | 1994-08-10 | Tosoh Corporation | Backlighting device |
EP0609816A3 (en) * | 1993-02-01 | 1995-05-24 | Tosoh Corp | Backlighting device. |
US5944405A (en) * | 1994-08-12 | 1999-08-31 | Dai Nippon Printing Co., Ltd. | Flat light source using light-diffusing sheet with projections thereon |
WO1999020738A1 (en) * | 1997-10-17 | 1999-04-29 | Matsushita Electric Industrial Co., Ltd. | Photosynthesis culture apparatus and group of photosynthesis culture apparatuses |
US6287852B1 (en) | 1997-10-17 | 2001-09-11 | Matsushita Electric Industrial Co., Ltd. | Photosynthetic culture apparatus and group of photosynthesis culture apparatuses |
JP2004514614A (en) * | 2000-12-01 | 2004-05-20 | オルセン、ベント、ヨルト | Can drinking and pouring device |
EP1645798A1 (en) * | 2004-09-15 | 2006-04-12 | Research In Motion Limited | A method and device to improve backlight uniformity |
US7113670B2 (en) | 2004-09-15 | 2006-09-26 | Research In Motion Limited | Method and device to improve backlight uniformity |
US7445367B2 (en) | 2004-09-15 | 2008-11-04 | Research In Motion Limited | Method and device to improve backlight uniformity |
US7646448B2 (en) | 2004-09-15 | 2010-01-12 | Research In Motion Limited | Method and device to improve backlight uniformity |
US7978942B2 (en) | 2004-09-15 | 2011-07-12 | Research In Motion Limited | Method and device to improve backlight uniformity |
JP2008268982A (en) * | 2008-07-30 | 2008-11-06 | Nippon Leiz Co Ltd | Light guide plate and planar lighting device |
JP2010225450A (en) * | 2009-03-24 | 2010-10-07 | Victor Co Of Japan Ltd | Lighting system and liquid crystal display |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3379043B2 (en) | Planar lighting device | |
JPH039306A (en) | Backlight device | |
JPH035725A (en) | Backlighting device | |
TW531666B (en) | Reflective screen lighting device | |
JPS63309918A (en) | Back light device | |
JP3077907B2 (en) | Backlight device | |
JPH036525A (en) | Backlighting device | |
JPH04191704A (en) | Surface luminous device and its manufacture | |
JPH035726A (en) | Backlighting device | |
JP3064006B2 (en) | Surface emitting device | |
JP2004045645A (en) | Surface light source device and liquid crystal display device | |
JP2780046B2 (en) | Backlight device | |
JPH08146230A (en) | Surface light emitting device | |
JP2652009B2 (en) | Surface light source | |
JPH10208529A (en) | Sheet type light source device | |
JPH06110057A (en) | Liquid crystal display device | |
JPH1164645A (en) | Plane illuminant | |
JPH07234305A (en) | Film lens for surface light source and surface light source using same | |
JP3180843B2 (en) | Surface emitting device | |
JP3023363U (en) | Surface emitting device | |
JP2002140913A (en) | Face light emitting device and liquid crystal display device | |
JPH08146228A (en) | Liquid crystal display device | |
JPS62169105A (en) | Planar light source | |
JP2001174812A (en) | Liquid crystal display device | |
JPH08122535A (en) | Surface light emitting device |