JPH02258932A - Method for controlling cooling of hot rolled steel sheet - Google Patents

Method for controlling cooling of hot rolled steel sheet

Info

Publication number
JPH02258932A
JPH02258932A JP1318342A JP31834289A JPH02258932A JP H02258932 A JPH02258932 A JP H02258932A JP 1318342 A JP1318342 A JP 1318342A JP 31834289 A JP31834289 A JP 31834289A JP H02258932 A JPH02258932 A JP H02258932A
Authority
JP
Japan
Prior art keywords
heat
temperature
cooling
transformation
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1318342A
Other languages
Japanese (ja)
Other versions
JPH0569886B2 (en
Inventor
Hidenori Shirasawa
白沢 秀則
Yoshiaki Kikawa
木川 佳明
Toshio Yokoi
横井 利雄
Kazuhiko Gunda
郡田 和彦
Takuo Hosoda
細田 卓夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1318342A priority Critical patent/JPH02258932A/en
Publication of JPH02258932A publication Critical patent/JPH02258932A/en
Publication of JPH0569886B2 publication Critical patent/JPH0569886B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Heat Treatment Processes (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To control the temp. at the time of the cooling of the hot rolled steel sheet with good responsiveness, high accuracy and efficiency by calculating heat extraction from the temp. rising rate based on the exothermic heat consisting of magnetic transition and the heat of crystal structure transition and the temp. falling rate by a heat transfer. CONSTITUTION:The hot rolled steel sheet is cooled while the temp. control is executed by calculating the heat extraction. The temp. rising rate by the exothermic heat of the transition and the temp. falling rate by the heat transfer in the calculation equation for the temp. falling rate of the cooling are separately handled in the above-mentioned cooling control method. Further, the quantity of exothermic heat Q in the segment Ts to Tf of the crystal structure transition temp. between the transition start point Ts and the transition finish point Tf is the total sum of the quantity exothermic heat Qm occurring in the magnetic transition and the quantity of exothermic heat Qap occurring in the crystal structure transition and the specific heat C is the specific heat Cgamma of the austenite area. The Qm, Qap mentioned above are determined by equations respectively. The specific heat Cgamma is used in the austenite are exclusive of the structure transition section and the specific heat Calpha is used in the ferrite area and the quantity of exothermic heat is made none. The heat extraction quantity is determined by taking the quantity of exothermic heat generated in the section Ts to Tf into consideration and the cooling control of the steel sheet is executed by the above-mentioned method.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は熱延鋼板の冷却制御方法に係り、より詳しくは
、熱延鋼板全長やロット間にわたって安定した材質を得
るために、或いは所望の材質を得るために、鋼板の冷却
停止温度、冷却速度、或いは冷却パターン、更には巻取
温度などを目標どおりに厳密に制御しながら冷却する方
法に関するものである。 (従来の技術及び解決しようとする課題)熱延ストリッ
プなどの鋼板を、目標とする冷却条件で冷却するために
は、温度計算により必要冷却水量と注水バルブを正確に
決定する必要がある。 このためには、連続冷却途中の各温度における比熱、変
態発熱量、水冷熱伝達率、輻射熱伝達率などの材料物性
値を精度よく予測できていることが前提となる。 従来、この冷却時の温度制御精度に大きな影響を及ぼす
一つの因子である比熱、変態発熱量については、これら
の物性値が鋼板の温度によって刻々と変化するため、そ
の取り扱いが技術的に難しかった。また、#I板の冷却
速度も、材質に大きな影響を及ぼさない程度であったた
め、物性値を厳密に取り扱う必要性は小さく、一定の比
熱を冷却温度区間にわたって用いる場合が多かった。 しかし、一定の等価比熱を用いると、冷却途中では実際
の比熱と計算に用いている比熱が異なっているため、冷
却途中の被冷却材の実際温度を予測することはできない
、そして、これに対応して被冷却材の表面温度の関数で
ある熱伝達率が異なってくるため、冷却停止温度や巻取
温度が目標値から外れ、特に、変態発熱量の大きい高強
度材ではその誤差が大きくなる。更に、冷却過程におけ
る冷却速度の制御が不可能となる。 したがって、このため、一定の比熱では、任意の鋼につ
いて鋼板全長に亘り均一の材質を作り込むとか、複雑な
組織にして特異な特性を安定して得るということがなさ
れ得なかった。 省合金、鋼種統合、在庫削減、コストダウン等を行う目
的で、緩急自在冷却する中で強冷却、低温巻取が行われ
ようとされつつある昨今、所望の材質を得ることを目的
として、このような冷却制御を行うためには、連続冷却
途中の各温度における比熱、変態発熱量などの、材料物
性値に基づいて。 抜熱量を求めるための温度計算をする必要がある。 本発明の目的は、上記従来技術の問題点を解決し、制御
の応答性よく、制御温度精度を損なうことなく極めて有
効に熱延鋼板の冷却時の温度を制御できる方法を提供す
ることにある。 また1本発明の他の目的は、極めて簡単にオンラインで
の巻取温度制御が可能であり、かつ、制御の応答性よく
、制御温度精度を損なうことなく極めて有効に熱延鋼板
の巻取時の温度を制御できる方法を提供することにある
。 (課題を解決するための手段) 前記目的を達成するため、本発明者は、鋼板の冷却制御
に当たり鋼板の抜熱を計算する際の種々の要因並びに対
策について鋭意研究を重ねた。 その結果、断熱、恒温状態で実用鋼の比熱を測定するこ
とにより、平衡状態での各温度における比熱、変態発熱
量を極めて簡単に一般化して求めることができることを
見い出した。更に、この事実を、冷却過程に適用するに
際し、冷却時に生じる組織変態の温度区間において独自
のモデル化を行うことで、冷却途中の温度が精度良く制
御できるように冷却過程の比熱、変態発熱量の物性値を
温度計算式に反映させることに成功し、ここに以下の本
発明をなしたものである。 すなわち、本発明に係る熱延鋼板の冷却制御方法(以下
、「本発明1」という)は、鋼板の抜熱を計算して温度
制御しながら鋼板を冷却するに当たり。 鋼の変態開始点Tsと変態終了点Tfの間で発生する変
態発熱量を考慮して抜熱量を決定する際に、要するに、 ■ 温度降下量の計算式において変態発熱による温度上
昇量と熱伝達による温度降下量とを分離することを前提
にし、 ■ 組織変態温度区間Ts−Tfにおいては、その温度
区間での発熱量と比熱につき1発熱量Qは。 磁気変態に起因する発熱量Qmと組織変態に起因する発
熱量Qapに分け、Qw及びQapを以下の式により求
めた総和とし、その際、比熱Cはオーステナイト域の比
熱Cγとし。 Tf          TQ Tf ここで、 C’f=a、+a、T Ca =a、+a、T +a4T”+a、T’C4=a
、+a、T+a、T” Tq:キューり温度 Ae、:γ≠α変態温度(平衡状態) T:温度 80〜a、:定数 Qap=Qa+Qp ここで、Qa=a、+ato[%C] Q P ” 811 + a L x [%C][%C
]:炭素含有量(wt%) aりNa 12 :定数 ■ 組織変態区間外のオーステナイト状態の高温度域に
おいては比熱Cγを用い、フェライト状態の温度域にお
いては比熱Cαをそれぞれ用い、発熱量は無とする、 以上の■〜■の3点を条件として、鋼板を冷却制御する
ことを特徴とするものである。 また、更には、実ラインにおける変態点を正確に予測し
たり、オンラインでそれを正確に検出することが必ずし
も容易ではない現状では、任意の冷却パターンをとる任
意の鋼種に対して適用することが難しいことに鑑みて、
任意の冷却パターンでの広範囲の成分系鋼に対して、特
に巻取温度を正確に確保できる冷却制御方法も見い出す
べく、更に研究を重ねた結果、以下の本発明をなしたも
のである。 すなわち、他の本発明に係る熱延鋼板の冷却制御方法(
以下、「本発明2」という)は、鋼板の抜熱を計算して
温度制御しながら熱延鋼板を冷却するに当たり、 ■ 鋼板の温度計算式において変態発熱による温度上昇
量と熱伝達による温度降下量とを分離することを前提と
し、 ■ 連続冷却下のもとで、上限値T smax = A
 e3と下限値Tsmin= −250X(%C)+ 
550とで定まる範囲の温度Ts(計算値)に至るまで
は、発熱量Qと比熱Cγにつき、 Q=O Cγ==a、+a□T として抜熱量を計算し。 ■ 温度Ts以降、巻取るまでの時間tにおり)では、
発熱量Qと比熱Cγにつき、次式の設定条件のもとで。 t =t t + t z O≦tx/lz≦7 ここで、t、:未変態時間 t2:発熱時間 七〇までは1次式のもとて抜熱量を決定し、Q=O CY=a、+a1T t□以降、巻取るまでは、次式のもとて抜熱量を決定し
、 Q=Q間+Qa+Qρ q/lz(発熱速度) C7=a0+a1T 但し、 ここで、CT:巻取温度目標値 Q a = a、+ a□。〔%C〕 Q p ” a z、+a1zC%C〕ここで、〔%C
〕:炭素含有量(wt%)aツNa 1 z :定数 以上の■〜■の条件で、熱延鋼板を冷却制御することを
特徴とするものである。 以下に本発明を更に詳細に説明する。 (作用) 前述の如く、本発明においては、鋼板の温度計算式にお
いて変態発熱による温度上昇と被冷却材の表面からの熱
伝達による温度降下量とを分離することを前提としてい
る。このように発熱量と比熱に分ける理由は1発熱量が
大きい鋼での冷却途中の温度上昇を考慮するためである
。したがって、本発明によれば、鋼板の温度計算におい
て、従来より用いられている熱伝達による温度降下量計
算式に、変態発熱による温度上昇(変態発熱量、比熱)
を反映させることになり、より高精度の温度制御が可能
となる。 そして、本発明では、鋼板の抜熱量を計算して温度制御
する手法として、以下に説明するとおり、2通りの手法
を採用している。 (1)第1の手法(本発明1) 第1の手法は、平衡状態の比熱−温度曲線からモデル化
した比熱Cと変態発熱Q(組織変態と磁気変態に基づく
発熱)を、γ→α変態開始まで、変態中、そして変態終
了以降のそれぞれの温度領域においてC,Qを使い分け
て、温度計算式に付与する方式である。これにより、特
定の冷却パターンと幾つかの鋼種において極めて精度よ
く温度制御ができる。 すなわち、まず1発熱量に関し、更に組織変態温度区間
(Ts”Tf)内における発熱量Qを、磁気RMに起因
する発熱量QrmとliiJ1m変態に起因する発熱量
Qapに分けて求めるが、その理由は、変態発熱量が化
学成分だけの簡単な関数で極めて精度よく求められるこ
とに基づくものである。 磁気変態に起因する発熱量Qmは、温度の高々3次の関
数とした比熱Cを1組織変態区間中度TfからAs、ま
でをキューり温度T9を境に区分して積分することによ
り、任意の実用鋼の組織変態区間中の磁気だけに起因す
る発熱量を正確に求められるものである。 具体的には1次式により求めることができる。 ここで、 C?=a、+a1T Ca =a、 +a、 T +a4T” +a、 T2
O,=a、 +a7T +a、 T2 T9:キューり温度 As、:γ≠α変態温度(平衡状S) T:温度 ao″aI!:定数 また5組織変態に起因する発熱量Qapは、恒温状態で
のフェライト変態とパーライト変態の組織変態による変
態発熱量である。実用鋼のこれらの値は、変態量のみに
比例するため、炭素以外の合金元素の影響を殆ど受けな
い。したがって、炭素含有量の関数とする。 具体的には、次式により求めることができる。 Qap=Qa+Qp ここで、QB=a、+a工、[%C] QP=att+aig[%C] [%C]:炭素含有量(wt%) agNal、:定数 また、組織変態区間内における比熱Cをオーステナイト
域の比熱Cγとする理由は、発熱量を上記のように考え
ると必然的に決まることである。 一方、組織変態区間外のオーステナイト状態の高温度域
においては、比熱Cとして比熱Cγを用い、フェライト
状態の温度域においては比熱Cとして比熱Cαをそれぞ
れ用い、発熱量は無とする理由は、冷却過程の変態が関
与しない領域のある温度での物性値は、平衡状態のその
値で一義的に決まることに基づくものである。 なお、本発明1における温度降下量の計算式において、
熱伝達による温度降下量の計算は従来と同様でよく、−
例を示すと以下のとおりである。 dt    ρ・c−h ここで、α:熱伝達率 C:比熱 h:板厚 ρ:密度 Tw:水温(空冷の場合はair温度)T:温度 t:時間 また、本発明1における温度降下量の計算式としては、
従来の熱伝達による温度降下量計算式に上述の如く変態
発熱量QT、比熱Cjを考慮すればよい。例えば、次の
式を用いる。 ここで、QT:変態発熱量(=Qm+Qap)tT:変
態時間 Cγニオ−ステナイト域の比熱 Cj:Cα(フェライト域の比熱) 又はCγ (2)第2の手法(本発明2) 実ラインにおける変態点を正確に予測したり、オンライ
ンでそれを正確に検出することが必ずしも容易ではない
現状では、任意の冷却パターンをとる任意の鋼種に対し
て適用することが難しいことに鑑みて、任意の冷却パタ
ーンでの広範囲の成分系鋼に対して、特に巻取温度を正
確に確保できる冷却制御方法(第2の手法)を開発した
。 第2の手法は、「%C」で規定される温度Tsまで、発
熱量Q=O1比熱CY=a、+a1Tで抜熱量を計算し
て温度制御し1巻取までの時間を内においては、未変態
時間をtx(7/8)以下に抑え、以降は巻取るまでの
間にモデル式に基づいて求められる総発熱量(Q M 
+ Qa+ Qp)を付与することにより、抜熱量を決
定して温度制御する方式である。これにより、第1の手
法による効果のほか。 更に、極めて簡単にオンラインでの巻取温度制御が可能
となる。 まず、連続冷却のもとで、上限値T 5rsax = 
A ex(平衡状態でのγ=変態温度)と下限値Ts+
win= −250X(%C)+ 550で定まる範囲
の温度Ts(計算値)までを発熱量Q=0.比熱Cγ=
a、+a1Tとして抜熱量を計算して温度制御する理由
は、実ラインにおいては、熱延鋼板の冷却速度や〔C〕
以外の合金元素が添加されていることを考慮しても、γ
→α変態は完了しない領域にあるため、この範囲におい
てはQ=O,Cγ=a、+a工Tとすることで、大きな
影響を及ぼさないためである。 ここで、温度Tsの範囲は、第1図に示すように〔%C
〕に応じて計算される範囲であり、上限値T 5taa
xであるAa=に関しては、例えば、〔%C〕≦0.7
65%の場合は、Ae、”1115−150゜3〔%C
)+216(0,765−(%C〕)4・tl−273
とし、〔%C)>0.765%の場合は、Ae。 =723とすることができる。 このTs以降、巻取りまでの間に変態が完了するという
条件のもとで、Tsに達した以降、巻取るまでの時間t
において、未変態時間(1,)をtの778以下とする
理由は、第2図に示すように、それ以上では実績値と計
算値との解離が顕著になるためである。これは、巻取る
までの変態総発熱量(Q M + Qa+ Qp)を正
確に求めたうえで、変態発熱時間(t2)を、Ts以降
、巻取るまでの間でできるだけ長く見積って温度予測し
制御することが良いということを意味している。 具体的には、未変態時間(ti)までは、Q=O1Cγ
=a0+a工Tとして抜熱量を決定する。 そして、この未変態時間(t□)以降1巻取るまでは、
次式のもとて抜熱量を決定し、温度制御する。 Q=QM+Qa+QP Q/lz (発熱速度) Cy=a0+a、T 但し。 ここで、CT:巻取温度目標値 QB=a、+a□。〔%C〕 Qp= a xx + a xx (%C〕ここで、〔
%C〕:炭素含有量(wt%)a g ”’ 812 
:定数 なお、本発明2における温度降下量の計算において、熱
伝達による温度降下量の計算は従来と同様でよく1例え
ば1本発明1の説明で例示した次式を用いる。 dt    ρ・c−h ここで、α:熱伝達率 C:比熱 h:板厚 ρ:密度 T−二水温(空冷の場合はair温度)T:温度 を二時間 また、本発明2における温度降下量の計算式としては、
上述の如く変態発熱量QT、比熱cjを考慮すればよく
、例えば、次式を用いる。 dt   ρ・C,rh        tT ρ・C
jここで、QT:変態発熱量 (0又はQ M + Ta+ Qp) tT:変態時間 Cj:CT(オーステナイト域の比熱)又はB、+a1
T つまり、従来の熱伝達による温度降下量計算式において
、物性値Cj、 QT、 tTに、連続冷却下でのその
値を反映させるのである。 なお、上述の本発明1,2は51段冷却(水冷)、2段
冷却(水冷、空冷)のいずれの場合にも適用できること
は云うまでもなく、2段冷却の場合には、前述の温度降
下量計算式中の熱伝達率αについて水冷の場合(αV)
と空冷の場合(αair)とで使い分ける。 具体的な温度制御方法の一例について説明すれば1本発
明2の場合、第3図に示すように、 Ts及びtlまで
温度降下量を計算した時点で、t2後の水冷バンク#2
4の出側温度T。を計算し、このT、4と目標温度CT
とが所定の温度差(例、3℃)よりも大きい時はバンク
#24を追加する。 このバンク追加により計算される出側温度Tt4を求め
る。それでも出側温度T□′と目標温度CTとが所定の
温度差よりも大きい時は、更にバンク#23を追加し、
同様にして出側温度T2.′を求める。温度差が所定の
差内になるまで後段の水冷バンクを追加していき、コイ
ル全長にわたるダイナミックな水冷バンクの設定を行う
ことにより。 オンラインで正確な温度制御ができる。
(Industrial Application Field) The present invention relates to a cooling control method for hot-rolled steel sheets, and more specifically, in order to obtain stable material properties over the entire length of hot-rolled steel sheets or between lots, or to obtain desired material properties, the present invention relates to a cooling control method for hot-rolled steel sheets. The present invention relates to a method for cooling while strictly controlling the cooling stop temperature, cooling rate, cooling pattern, winding temperature, etc., according to the target. (Prior Art and Problems to Be Solved) In order to cool a steel plate such as a hot rolled strip under targeted cooling conditions, it is necessary to accurately determine the required amount of cooling water and the water injection valve by temperature calculation. For this purpose, it is a prerequisite that material property values such as specific heat, transformation calorific value, water-cooling heat transfer coefficient, and radiation heat transfer coefficient at each temperature during continuous cooling can be accurately predicted. Conventionally, specific heat and transformation calorific value, which are factors that have a large effect on temperature control accuracy during cooling, have been technically difficult to handle because these physical property values change moment by moment depending on the temperature of the steel plate. . In addition, since the cooling rate of the #I plate did not significantly affect the material quality, there was little need to strictly handle physical property values, and a constant specific heat was often used over the cooling temperature range. However, if a fixed equivalent specific heat is used, the actual specific heat during cooling and the specific heat used in the calculation are different, so it is not possible to predict the actual temperature of the cooled material during cooling. As a result, the heat transfer coefficient, which is a function of the surface temperature of the cooled material, differs, so the cooling stop temperature and coiling temperature deviate from the target values, and the error becomes particularly large for high-strength materials with a large transformation heat value. . Furthermore, it becomes impossible to control the cooling rate during the cooling process. Therefore, with a constant specific heat, it has not been possible to create a uniform material over the entire length of a steel plate or to stably obtain unique properties with a complex structure. In order to save alloys, consolidate steel types, reduce inventory, reduce costs, etc., strong cooling and low-temperature winding are being used in variable cooling. In order to perform such cooling control, it is based on material property values such as specific heat and transformation calorific value at each temperature during continuous cooling. It is necessary to calculate the temperature to determine the amount of heat removed. An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a method that can control the temperature during cooling of a hot-rolled steel sheet extremely effectively with good control responsiveness and without impairing control temperature accuracy. . Another object of the present invention is to make it possible to control the coiling temperature on-line extremely easily, to have good control responsiveness, and to be able to extremely effectively control the coiling temperature of hot rolled steel sheets without impairing the control temperature accuracy. The objective is to provide a method for controlling the temperature of (Means for Solving the Problems) In order to achieve the above object, the present inventor has conducted extensive research on various factors and countermeasures when calculating heat removal from a steel plate during cooling control of the steel plate. As a result, we found that by measuring the specific heat of practical steel in an adiabatic, constant-temperature state, the specific heat and transformation calorific value at each temperature in an equilibrium state can be very easily generalized. Furthermore, when applying this fact to the cooling process, by creating a unique model in the temperature range of the structural transformation that occurs during cooling, we can calculate the specific heat of the cooling process and the transformation calorific value so that the temperature during cooling can be accurately controlled. We have succeeded in reflecting the physical property values in the temperature calculation formula, and have hereby accomplished the following invention. That is, the hot-rolled steel sheet cooling control method according to the present invention (hereinafter referred to as "invention 1") calculates heat removal from the steel sheet and cools the steel sheet while controlling the temperature. When determining the amount of heat removed by taking into account the amount of heat generated by transformation between the transformation start point Ts and the end point Tf of the steel, in short: ■ In the calculation formula for the amount of temperature drop, the amount of temperature rise due to heat transfer due to transformation and heat transfer (1) In the structural transformation temperature interval Ts-Tf, the calorific value Q per unit of calorific value and specific heat in that temperature interval is based on the assumption that the amount of temperature drop due to Separate the calorific value Qm due to magnetic transformation and the calorific value Qap due to structural transformation, and let Qw and Qap be the sum determined by the following formula, where the specific heat C is the specific heat Cγ of the austenite region. Tf TQ Tf Here, C'f=a, +a, T Ca =a, +a, T +a4T"+a, T'C4=a
, +a, T+a, T'' Tq: Curing temperature Ae,: γ≠α transformation temperature (equilibrium state) T: Temperature 80~a,: Constant Qap=Qa+Qp Here, Qa=a, +ato[%C] Q P ” 811 + a L x [%C] [%C
]: Carbon content (wt%) ariNa 12 : Constant■ Specific heat Cγ is used in the high temperature range of the austenite state outside the structural transformation zone, and specific heat Cα is used in the temperature range of the ferrite state, and the calorific value is It is characterized by controlling the cooling of the steel plate under the conditions of the above three points (1) to (3). Furthermore, in the current situation where it is not always easy to accurately predict the transformation point in an actual production line or to accurately detect it online, it is not possible to apply it to any type of steel with any cooling pattern. In view of the difficulty,
As a result of further research in order to find a cooling control method that can particularly accurately ensure the coiling temperature for a wide range of component steels with arbitrary cooling patterns, the following present invention was achieved. That is, the method for controlling cooling of a hot rolled steel sheet according to another aspect of the present invention (
Hereinafter referred to as "Invention 2"), when cooling a hot-rolled steel sheet while controlling the temperature by calculating the heat removal of the steel sheet, ■ The amount of temperature rise due to transformation heat generation and the temperature drop due to heat transfer in the temperature calculation formula of the steel sheet. ■ Under continuous cooling, the upper limit T smax = A
e3 and lower limit Tsmin=-250X(%C)+
Until the temperature Ts (calculated value) in the range determined by 550 is reached, the amount of heat removed is calculated as Q=O Cγ==a, +a□T for the calorific value Q and specific heat Cγ. ■ From the temperature Ts onward to the time t until winding),
Regarding the calorific value Q and specific heat Cγ, under the setting conditions of the following formula. t = t t + t z O≦tx/lz≦7 Here, t: Untransformed time t2: Heat generation time Up to 70, the amount of heat removed is determined based on the linear equation, Q=O CY=a , +a1T From t□ onwards, until winding, determine the amount of heat removed based on the following formula: Q a = a, + a□. [%C] Q p ” a z, +a1zC%C] Here, [%C
]: Carbon content (wt%) az Na 1 z : It is characterized by controlling the cooling of the hot rolled steel sheet under the conditions of (1) to (2) above a constant. The present invention will be explained in more detail below. (Function) As described above, the present invention is based on the premise that the temperature rise due to transformation heat generation and the temperature drop due to heat transfer from the surface of the material to be cooled are separated in the steel plate temperature calculation formula. The reason for dividing into calorific value and specific heat in this way is to take into account the temperature rise during cooling in steel, which has a large calorific value per unit. Therefore, according to the present invention, when calculating the temperature of a steel plate, the temperature rise due to transformation heat generation (transformation heat value, specific heat) is added to the conventionally used formula for calculating the temperature drop due to heat transfer.
This allows for more accurate temperature control. In the present invention, as a method for calculating the amount of heat removed from the steel plate and controlling the temperature, two methods are adopted as described below. (1) First method (invention 1) The first method is to convert the specific heat C modeled from the specific heat-temperature curve in the equilibrium state and the transformation heat generation Q (heat generation based on structural transformation and magnetic transformation) from γ→α This is a method in which C and Q are used separately in each temperature range until the start of transformation, during transformation, and after the end of transformation, and are added to the temperature calculation formula. This allows extremely accurate temperature control for specific cooling patterns and several steel types. That is, regarding one calorific value, the calorific value Q within the structural transformation temperature interval (Ts''Tf) is calculated by dividing it into the calorific value Qrm due to magnetic RM and the calorific value Qap due to liiJ1m transformation, and the reason is This is based on the fact that the heat value of transformation can be obtained with extremely high accuracy using a simple function of only the chemical components. By dividing and integrating the transformation zone from moderate Tf to As with the cue temperature T9 as the boundary, the amount of heat generated only by magnetism in the structural transformation zone of any practical steel can be accurately determined. Specifically, it can be determined by a linear equation. Here, C?=a, +a1T Ca =a, +a, T +a4T" +a, T2
O, = a, +a7T +a, T2 T9: Curing temperature As,: γ≠α transformation temperature (equilibrium state S) T: temperature ao''aI!: constant and 5 The calorific value Qap due to tissue transformation is constant temperature state This is the transformation calorific value due to the structural transformation of ferrite transformation and pearlite transformation at Specifically, it can be determined by the following formula: Qap=Qa+Qp Here, QB=a, +a, [%C] QP=att+aig[%C] [%C]: Carbon content (wt%) agNal, : Constant Also, the reason why the specific heat C in the structural transformation zone is set as the specific heat Cγ of the austenite region is that it is inevitably determined when the calorific value is considered as above. In the high temperature range of the outer austenitic state, the specific heat Cγ is used as the specific heat C, and in the temperature range of the ferrite state, the specific heat Cα is used as the specific heat C, and the reason why the calorific value is nil is due to the transformation during the cooling process. This is based on the fact that the physical property value at a certain temperature in a region in which no
Calculation of the temperature drop due to heat transfer can be done in the same way as before, −
An example is shown below. dt ρ・c−h Here, α: Heat transfer coefficient C: Specific heat h: Plate thickness ρ: Density Tw: Water temperature (air temperature in the case of air cooling) T: Temperature t: Time Also, the amount of temperature drop in Invention 1 The calculation formula is:
As mentioned above, the transformation calorific value QT and the specific heat Cj may be taken into consideration in the conventional formula for calculating the amount of temperature drop due to heat transfer. For example, use the following equation. Here, QT: Transformation calorific value (=Qm+Qap) tT: Transformation time Cγ Specific heat of niostenite region Cj: Cα (specific heat of ferrite region) or Cγ (2) Second method (Invention 2) Transformation in actual line Given the current situation where it is not always easy to accurately predict the point or detect it online, it is difficult to apply it to any steel type with an arbitrary cooling pattern. We have developed a cooling control method (second method) that can particularly accurately ensure the coiling temperature for a wide range of steel compositions in patterns. The second method is to control the temperature by calculating the amount of heat removed by the calorific value Q = O1 specific heat CY = a, +a1T until the temperature Ts specified by "%C", and within the time until one winding, After suppressing the untransformed time to tx (7/8) or less, the total calorific value (Q M
+Qa+Qp), the amount of heat removed is determined and the temperature is controlled. As a result, in addition to the effects of the first method. Furthermore, it becomes possible to control the winding temperature on-line extremely easily. First, under continuous cooling, the upper limit T 5rsax =
A ex (γ=transformation temperature in equilibrium state) and lower limit Ts+
The calorific value Q = 0. Specific heat Cγ=
The reason why the temperature is controlled by calculating the heat removal amount as a, +a1T is that in the actual line, the cooling rate of the hot rolled steel sheet and [C]
Even considering the addition of alloying elements other than γ
This is because the α transformation is in a region where it is not completed, so by setting Q=O, Cγ=a, and +a-T in this range, it does not have a large effect. Here, the range of temperature Ts is [%C
] is the range calculated according to the upper limit T 5taa
For Aa=x, for example, [%C]≦0.7
In the case of 65%, Ae, "1115-150°3 [%C
)+216(0,765-(%C))4・tl-273
and if [%C)>0.765%, Ae. =723. Under the condition that the transformation is completed after this Ts until winding, the time t after reaching Ts until winding is
The reason why the untransformed time (1,) is set to 778 or less of t is that, as shown in FIG. 2, if it is longer than that, the dissociation between the actual value and the calculated value becomes significant. This is done by accurately determining the total heat value of transformation (Q M + Qa + Qp) until winding, and then estimating the heat generation time of transformation (t2) as long as possible from Ts until winding to predict the temperature. It means that it is good to be in control. Specifically, until the non-transformation time (ti), Q=O1Cγ
The amount of heat removed is determined as =a0+a-workT. And, from this untransformed time (t□) until you take one roll,
The amount of heat removed is determined using the following formula, and the temperature is controlled. Q=QM+Qa+QP Q/lz (heat generation rate) Cy=a0+a, T However. Here, CT: winding temperature target value QB=a, +a□. [%C] Qp= a xx + a xx (%C) where, [
%C]: Carbon content (wt%) a g”' 812
:Constant Note that in calculating the amount of temperature drop due to heat transfer in the second invention, the calculation of the amount of temperature drop due to heat transfer may be the same as in the conventional method.For example, the following equation exemplified in the description of the first invention may be used. dt ρ・c−h Here, α: Heat transfer coefficient C: Specific heat h: Plate thickness ρ: Density T−2 Water temperature (air temperature in the case of air cooling) T: Temperature for 2 hours Also, the temperature drop in Invention 2 The formula for calculating the amount is
As described above, the transformation calorific value QT and the specific heat cj may be taken into consideration, and for example, the following equation may be used. dt ρ・C, rh tT ρ・C
j Here, QT: Transformation calorific value (0 or Q M + Ta + Qp) tT: Transformation time Cj: CT (specific heat of austenite region) or B, +a1
In other words, in the conventional formula for calculating the amount of temperature drop due to heat transfer, the values under continuous cooling are reflected in the physical property values Cj, QT, and tT. It goes without saying that the present inventions 1 and 2 described above can be applied to both 51-stage cooling (water cooling) and 2-stage cooling (water cooling, air cooling), and in the case of 2-stage cooling, the above-mentioned temperature Regarding the heat transfer coefficient α in the drop calculation formula, in the case of water cooling (αV)
and for air cooling (αair). To explain an example of a specific temperature control method, 1. In the case of the present invention 2, as shown in FIG.
4 outlet temperature T. Calculate this T,4 and target temperature CT
Bank #24 is added when the temperature difference is larger than a predetermined temperature difference (for example, 3° C.). The outlet temperature Tt4 calculated by this bank addition is determined. If the outlet temperature T□′ and the target temperature CT are still larger than the predetermined temperature difference, bank #23 is further added,
Similarly, the outlet temperature T2. Find ′. By adding subsequent water cooling banks until the temperature difference is within a predetermined range, we set up a dynamic water cooling bank that spans the entire length of the coil. Accurate temperature control is possible online.

【以下余白】[Left below]

(実施例) 次に本発明の実施例を示す。 失産五よ 本例は本発明1の実施例である。 2種類の供試鋼A(C50,05vt%、MnS2゜8
0wt%)、B(0,05tzt%≦C≦0.80wt
%、Mn≧0.80wt%)を用い、実圧延ラインにお
いて自動冷却制御実験を実施した。その際、巻取温度C
Tの目標温度=650℃とし、冷却途中の温度CTMの
目標温度=500℃とした。 具体的には、比較例では、巻取温度CTまで比熱を0.
192の一定値とし、発熱量は無として温度降下量を求
めた。 一方、本発明例では、以下の点を考慮して、前述の各式
を用いて温度降下量を求めた。 まず、組織変態区間内における発熱速度は一定とし、ま
た、変態開始点Tsは化学成分、残留歪、γ粒径の簡単
な関係で定式化した次式により計算した値を用いた。 Ts= A E、 −(a −−)axp(−Cεr)
dγ ここで、AE、:1115−150.3[%Cコ+21
6X(0,765−[%Cコ)4 ・26−273  
(KirKaldyの式)dγゴニオステナイト粒径 εr:残留歪 a:1.87X10” b:  0.3 C: 2.7 また、変態終了点Tfも1便宜的に、一定の値(CT+
20℃)を与えた。 なお、本例に用いた温度計算式に組み入れた比熱、変態
発熱量の計算式の係数の値を以下に示す。 an : O−140− a□:1.518 X 10−s a、:9.367 X 10″″2 a、:3.623 X−’ a4ニー1.153 X 10−’ a=:1.299X10−’ a、:10.943 a、ニー2.530X10″″! a、:1.483 X 10−’ a、:4.2 al。ニー7.37 a1□:0.0 a1□:22.86 第1表は、上記自動冷却制御において目標温度(巻取温
度CTの目標値=650℃、冷却途中の中間温度CTM
の目標値=500℃)に対するそれぞれの温度実績の精
度(偏差値)を示したものである8 同表より1本発明方法によると、鋼種によらずに、巻取
温度CTのみならず冷却途中の中間温度CTMも、比較
例に比べて目標値に対して良い実績が得られていること
がわかる。
(Example) Next, an example of the present invention will be shown. This example is an embodiment of the first invention. Two types of test steel A (C50.05vt%, MnS2゜8
0wt%), B(0,05tzt%≦C≦0.80wt
%, Mn≧0.80wt%), an automatic cooling control experiment was conducted on an actual rolling line. At that time, the winding temperature C
The target temperature of T was set at 650°C, and the target temperature of temperature CTM during cooling was set at 500°C. Specifically, in the comparative example, the specific heat was reduced to 0.
The amount of temperature drop was determined with a constant value of 192 and no calorific value. On the other hand, in the example of the present invention, the amount of temperature drop was determined using each of the above-mentioned formulas, taking into consideration the following points. First, the heat generation rate within the structural transformation zone was set constant, and the transformation starting point Ts was calculated using the following formula, which was formulated using a simple relationship among chemical components, residual strain, and γ grain size. Ts=A E, −(a −−)axp(−Cεr)
dγ Here, AE, : 1115-150.3[%C+21
6X (0,765-[%C)4 ・26-273
(KirKaldy's formula) dγ Goniostenite grain size εr: Residual strain a: 1.87
20°C). The values of the coefficients of the specific heat and transformation calorific value calculation formulas incorporated into the temperature calculation formula used in this example are shown below. an: O-140-a□:1.518 X 10-s a,:9.367 299X10-' a, :10.943 a, knee 2.530X10''''! a, : 1.483 X 10-' a, : 4.2 al. Knee 7.37 a1□: 0.0 a1□: 22.86 Table 1 shows the target temperature (target value of winding temperature CT = 650°C, intermediate temperature CTM during cooling) in the automatic cooling control described above.
It shows the accuracy (deviation value) of each actual temperature with respect to the target value of 500℃) 8 From the same table 1 According to the method of the present invention, regardless of the steel type, It can be seen that the intermediate temperature CTM of 1 has also achieved better results with respect to the target value than the comparative example.

【以下余白】[Left below]

第1表 自動冷却制御による実績温度の目標温度CTの
目標温度二500℃ 去】1」乳 本例は本発明2の実施例である。 4種類の供試鋼A(C:0.14wt%、Mn:1.0
wt%)、B(C:0.4wt%、Mn:0.75wt
%1MO:0 、2 wt%)、C(C:0.65wt
%、Mn:0.45wt%、 C:r:0.3vt%)
、D(C:0,90+t%1Mn:0.65tzt%)
を用いて、実圧延ラインにおいて自動冷却制御実験を実
施した。その際1巻取温度の実績値は、450〜680
℃の範囲である。 本発明例では、Ts(Q=O,CY:aa+a、Tとし
て温度計算して制御する温度範囲)は、第1図に斜線で
示した範囲内とし、t工/1x(Ts以降巻取までの時
間に占める変態時間の比)は7以下の条件のもとで、ま
た比較例ではそれらの範囲外の条件のもとで、それぞれ
、実ラインにおいて冷却制御を行った。 なお、計算式は本発明2の説明で示した式を用い、その
際の定数は実施例1の場合の値を利用した。 巻取温度の計算値と実績値との差を第2表に示す。 同表より、本発明例によれば、比較例に比べ、各種鋼板
において精度よく巻取温度が確保されていることがわか
る。しかも、実施例1の場合よりも巻取温度制御の精度
が向上している。
Table 1 Target temperature of actual temperature by automatic cooling control Target temperature of CT 2500°C [1] Milk This example is an embodiment of the second invention. Four types of test steel A (C: 0.14 wt%, Mn: 1.0
wt%), B (C: 0.4wt%, Mn: 0.75wt
%1MO:0,2 wt%), C(C:0.65wt
%, Mn: 0.45wt%, C:r: 0.3vt%)
, D (C: 0,90+t%1Mn:0.65tzt%)
Using this, an automatic cooling control experiment was conducted on an actual rolling line. At that time, the actual value of 1 winding temperature is 450 to 680.
℃ range. In the example of the present invention, Ts (temperature range controlled by calculating the temperature as Q=O, CY:aa+a, T) is within the shaded range in FIG. Cooling control was performed in an actual line under conditions in which the ratio of transformation time to time) was 7 or less, and in the comparative example under conditions outside these ranges. Note that the calculation formula used was the formula shown in the explanation of the second invention, and the constants at that time were the values in Example 1. Table 2 shows the difference between the calculated value and the actual value of the winding temperature. From the table, it can be seen that according to the examples of the present invention, the coiling temperature is ensured with high precision for various steel sheets compared to the comparative examples. Furthermore, the accuracy of the winding temperature control is improved compared to the case of the first embodiment.

【以下余白】[Left below]

(発明の効果) 以上詳述したように、本発明1によれば、鋼板の抜熱を
計算して温度制御しながら鋼板を制御するに当たり、被
冷却材の熱伝達と分離して変態発熱量を考慮し、しかも
その際に発熱量を磁気変態に起因するものと組織変態に
起因するものとに区分すると共に、冷却区間毎に固有の
比熱を用い、且つ変態区間外(オーステナイト状態の高
温度域とフェライト状態の温度域)での発熱量を無とし
て、抜熱量を求めるので、温度計算の精度が良く、比較
的簡単な計算であるため、制御の応答性が良く、しかも
温度制御精度が極めて良好である。 また1本発明2によれば、〔%C〕で規定される温度T
sまでは、発熱量Q=O,比熱Cy = a、+aIT
で抜熱量を計算して温度制御し、巻取るまでの時間を内
においては、未変態時間をt×(7/8)以下に抑え、
以降は巻取るまでの間にモデル式に基づいて求められる
総発熱量(QM+Qa+Qρ)を付与することにより、
抜熱量を決定して温度制御するので、任意の冷却パター
ンの広範囲の成分系鋼に対して、極めて精度よく巻取温
度を確保できる。 したがって、任意の鋼種について鋼板全長にわたり均一
の材質の鋼板を得ることができ、或いは特異な特性を安
定して得ることが可能となり、更には極めて簡単にオン
ラインでの巻取温度制御ができる等、顕著な効果が得ら
れる。
(Effects of the Invention) As described in detail above, according to the present invention, when controlling the steel plate while controlling the temperature by calculating the heat removal of the steel plate, the transformation calorific value is In addition, in doing so, the calorific value is divided into those due to magnetic transformation and those due to structural transformation, and specific heat is used for each cooling zone, and outside the transformation zone (high temperature of austenite state) Since the amount of heat removed is calculated by assuming that the amount of heat generated in the temperature range (temperature range of ferrite state and temperature range of ferrite state) is negligible, the accuracy of temperature calculation is good, and since the calculation is relatively simple, the responsiveness of control is good, and temperature control accuracy is high. Very good. Further, according to the present invention 2, the temperature T defined in [%C]
Up to s, calorific value Q = O, specific heat Cy = a, +aIT
The amount of heat removed is calculated and the temperature is controlled, and within the time until winding, the untransformed time is kept below t x (7/8),
From then on, by giving the total calorific value (QM + Qa + Qρ) calculated based on the model formula until winding,
Since the temperature is controlled by determining the amount of heat removed, the coiling temperature can be ensured with extremely high accuracy for a wide range of component steels with arbitrary cooling patterns. Therefore, for any steel type, it is possible to obtain a steel plate of uniform material over the entire length of the steel plate, or to stably obtain unique properties, and furthermore, it is possible to control the coiling temperature extremely easily on-line, etc. Remarkable effects can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はTsの温度範囲と〔%C〕の関係を示す図、第
2図はTs以降、巻取までの時間に占める未変態時間の
割合を示す図。 第3図は本発明2の具体的な温度制御方法を説明する図
である。 特許出願人  株式会社神戸製鋼所 代理人弁理士 中  村   尚 第2図 第1図 未亥ルロ楠間/lτ117合 第3図 C量 〔いtη〕
FIG. 1 is a diagram showing the relationship between the temperature range of Ts and [%C], and FIG. 2 is a diagram showing the ratio of untransformed time to the time from Ts to winding. FIG. 3 is a diagram illustrating a specific temperature control method of the second invention. Patent Applicant: Kobe Steel, Ltd. Patent Attorney Takashi Nakamura Figure 2 Figure 1 Unai Ruro Kusuma/lτ117 Figure 3 C Quantity [tη]

Claims (2)

【特許請求の範囲】[Claims] (1)鋼板の抜熱を計算して温度制御しながら熱延鋼板
を冷却するに当たり、 [1]温度降下量の計算式において変態発熱による温度
上昇量と熱伝達による温度降下量とを分離することを前
提にし、 [2]組織変態温度区間Ts〜Tfにおいては、その温
度区間での発熱量と比熱につき、発熱量Qは、磁気変態
に起因する発熱量Qmと組織変態に起因する発熱量Qa
pに分け、Qm及びQapを以下の式により求めた総和
とし、その際、比熱Cはオーステナイト域の比熱Cγと
し、 ▲数式、化学式、表等があります▼ ここで、Cγ=a_0+a_1T C_α=a_2+a_3T+a_4T^2+a_5T^
3C_4=a_6+a_7T+a_8T^2 Tq:キューリ温度 Ae_3:γ■α変態温度(平衡状態) T:温度 a_0〜a_8:定数 Qap:Qa+Qp ここで、Qa=a_9+a_1_0×[%C]Qp:a
_1_1+a_1_2×[%C] [%C]:炭素含有量(wt%) a_9〜a_1_2:定数 [3]組織変態区間外のオーステナイト状態の高温度域
においては比熱Cγを用い、フェライト状態の温度域に
おいては比熱Cαをそれぞれ用い、発熱量は無とする、 の[1]〜[3]の3点により、鋼の変態開始点Tsと
変態終了点Tfの間で発生する変態発熱量を考慮して抜
熱量を決定して、鋼板を冷却制御することを特徴とする
鋼板の冷却制御方法。
(1) When cooling a hot-rolled steel sheet while controlling the temperature by calculating the heat removal of the steel sheet, [1] In the calculation formula for the amount of temperature drop, the amount of temperature increase due to transformation heat generation and the amount of temperature decrease due to heat transfer are separated. [2] In the structure transformation temperature range Ts to Tf, regarding the heat value and specific heat in that temperature range, the heat value Q is the heat value Qm due to magnetic transformation and the heat value due to textural transformation. Qa
p, and Qm and Qap are the sums obtained by the following formula, where the specific heat C is the specific heat Cγ of the austenite region. 2+a_5T^
3C_4=a_6+a_7T+a_8T^2 Tq: Curie temperature Ae_3: γ■α transformation temperature (equilibrium state) T: Temperature a_0 to a_8: Constant Qap: Qa+Qp Here, Qa=a_9+a_1_0×[%C] Qp: a
_1_1+a_1_2×[%C] [%C]: Carbon content (wt%) a_9 to a_1_2: Constant [3] Specific heat Cγ is used in the high temperature range of the austenite state outside the structural transformation zone, and in the temperature range of the ferrite state The specific heat Cα is used, and the calorific value is assumed to be zero. Considering the transformation calorific value generated between the transformation start point Ts and the transformation end point Tf of the steel, according to the three points [1] to [3] of A method for controlling cooling of a steel plate, characterized by determining the amount of heat removed and controlling the cooling of the steel plate.
(2)鋼板の抜熱を計算して温度制御しながら熱延鋼板
を冷却するに当たり、 [1]鋼板の温度計算式において変態発熱による温度上
昇量と熱伝達による温度降下量とを分離することを前提
とし、 [2]連続冷却下のもとで、上限値Tsmax=Ae_
3と下限値Tsmin=−250×〔%C〕+550と
で定まる範囲の温度Ts(計算値)に至るまでは、発熱
量Qと比熱Cγにつき、 Q=0 Cγ=a_0+a_1T として抜熱量を計算し、 [3]温度Ts以降、巻取るまでの時間tにおいては、
発熱量Qと比熱Cγにつき、次式の設定条件のもとで、 t=t_1+t_2 0≦t_1/t_2≦7 ここで、t_1:未変態時間 t_2:発熱時間 t_1までは、次式のもとで抜熱量を決定し、Q=0 Cγ=a_0+a_1T t_1以降、巻取るまでは、次式のもとで抜熱量を決定
し、 Q=Q_M+Qa+Qp Q/t_2(発熱速度) Cγ:a_0+a_1T 但し、 ▲数式、化学式、表等があります▼ ここで、CT:巻取温度目標値 Qa=a_9+a_1_0〔%C〕 Qp=a_1_1+a_1_2〔%C〕 ここで、〔%C〕:炭素含有量(wt%) a_9〜a_1_2:定数 以上の[1]〜[3]の条件で、熱延鋼板を冷却制御す
ることを特徴とする熱延鋼板の冷却制御方法。
(2) When cooling a hot-rolled steel plate while controlling the temperature by calculating heat removal from the steel plate, [1] Separate the amount of temperature increase due to transformation heat generation and the amount of temperature decrease due to heat transfer in the temperature calculation formula for the steel plate. [2] Under continuous cooling, upper limit Tsmax=Ae_
3 and the lower limit Tsmin=-250×[%C]+550, the amount of heat removed is calculated as Q=0 Cγ=a_0+a_1T for the calorific value Q and specific heat Cγ. , [3] After the temperature Ts, during the time t until winding,
Regarding the calorific value Q and specific heat Cγ, under the setting conditions of the following formula, t = t_1 + t_2 0≦t_1/t_2≦7 Here, t_1: untransformed time t_2: heat generation time up to t_1, under the following formula Determine the amount of heat removed, Q=0 Cγ=a_0+a_1T From t_1 until winding, determine the amount of heat removed based on the following formula, Q=Q_M+Qa+Qp Q/t_2 (heating rate) Cγ: a_0+a_1T However, ▲ Formula, There are chemical formulas, tables, etc. ▼ Here, CT: Coiling temperature target value Qa = a_9 + a_1_0 [%C] Qp = a_1_1 + a_1_2 [%C] Here, [%C]: Carbon content (wt%) a_9 to a_1_2: A method for controlling cooling of a hot-rolled steel sheet, comprising controlling the cooling of the hot-rolled steel sheet under the conditions [1] to [3] above a constant.
JP1318342A 1988-12-09 1989-12-07 Method for controlling cooling of hot rolled steel sheet Granted JPH02258932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1318342A JPH02258932A (en) 1988-12-09 1989-12-07 Method for controlling cooling of hot rolled steel sheet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-311682 1988-12-09
JP31168288 1988-12-09
JP1318342A JPH02258932A (en) 1988-12-09 1989-12-07 Method for controlling cooling of hot rolled steel sheet

Publications (2)

Publication Number Publication Date
JPH02258932A true JPH02258932A (en) 1990-10-19
JPH0569886B2 JPH0569886B2 (en) 1993-10-04

Family

ID=18020201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1318342A Granted JPH02258932A (en) 1988-12-09 1989-12-07 Method for controlling cooling of hot rolled steel sheet

Country Status (1)

Country Link
JP (1) JPH02258932A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011212743A (en) * 2010-04-02 2011-10-27 Kobe Steel Ltd Temperature prediction method for steel plate taking transformation heat into account

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011212743A (en) * 2010-04-02 2011-10-27 Kobe Steel Ltd Temperature prediction method for steel plate taking transformation heat into account

Also Published As

Publication number Publication date
JPH0569886B2 (en) 1993-10-04

Similar Documents

Publication Publication Date Title
US5357443A (en) Method of estimating properties of steel product
US5082510A (en) Method for producing non-oriented steel sheets
JPS6289515A (en) Temperature control method and device for hot rolling stock
JP3602201B2 (en) Method for producing high-strength duplex stainless steel strip or steel sheet
JP5693392B2 (en) Method for calculating transformation rate in steel plate to be cooled or heated, and method for controlling transformation rate of steel plate
JP5610819B2 (en) Steel temperature prediction method considering transformation heat generation
KR100306147B1 (en) Method for controlling cooling of hot rolled steel sheet
JPH02258932A (en) Method for controlling cooling of hot rolled steel sheet
JPH05142126A (en) Method for predicting quality of steel plate
JP2563844B2 (en) Steel plate material prediction method
KR100931222B1 (en) Cooling Control Method of High Carbon Hot Rolled Sheets Considering Phase Transformation and Edge Crack Prevention
JP2509481B2 (en) Steel plate material prediction control method
KR100301992B1 (en) Method for controlling cooling of hot rolled high carbon steel
JP2509487B2 (en) Steel plate material prediction method
JPH0380848B2 (en)
JP2861871B2 (en) Control method of winding temperature of hot rolled steel sheet
US11779977B2 (en) Method for setting different cooling curves of rolling material over the strip width of a cooling stretch in a hot-strip mill or heavy-plate mill
JPH03174909A (en) Manufacture of hot coil of high carbon steel
JPS6029424A (en) Adjusting method of quality of hot rolled steel material
JP4620529B2 (en) Manufacturing method of high strength hot-rolled steel sheet
Marder et al. Processing of a molybdenum-bearing dual-phase steel
Yada et al. Important Metallurgical Parameters that must be Determined to Control the Properties of Steels During Processing
JPH04141531A (en) Method for controlling cooling of hot rolled steel sheet
JPH1072643A (en) High damping alloy and its production
JPH04141528A (en) Method for deciding cooling state of hot roller plate of high carbon steel

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081004

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees