JPS60181228A - Manufacture of hot rolled steel material - Google Patents

Manufacture of hot rolled steel material

Info

Publication number
JPS60181228A
JPS60181228A JP3615084A JP3615084A JPS60181228A JP S60181228 A JPS60181228 A JP S60181228A JP 3615084 A JP3615084 A JP 3615084A JP 3615084 A JP3615084 A JP 3615084A JP S60181228 A JPS60181228 A JP S60181228A
Authority
JP
Japan
Prior art keywords
strength
ferrite
steel material
grain size
hot rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3615084A
Other languages
Japanese (ja)
Inventor
Junichi Wakita
淳一 脇田
Manabu Takahashi
学 高橋
Takaaki Nakamura
中村 隆彰
Kazuaki Ezaka
江坂 一彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3615084A priority Critical patent/JPS60181228A/en
Publication of JPS60181228A publication Critical patent/JPS60181228A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To enable the accurate estimation of the quality of a steel material after hot rolling under any conditions when a plate, a hot strip or the like is manufactured by hot rolling, by attaining the desired strength according to a strength estimating attaining the desired strength according to a strength estimating equation including terms determined by structures and grain size. CONSTITUTION:In order to attain the desired strength, hot rolling is carried out by setting the grain size of ferrite and the strength and volume fraction of each of ferrite, pearlite, bainite and martensite structures so as to satisfy the strength estimating equation (where TS is tensile strength, sigma deg. is a parameter expressing the strength of each structure, V is volume fraction, F is ferrite, P is pearlite, B is bainite, M is martensite, and each of A1-A6 is a constant). By this method, factors related directly to strength and handled, and the relation among them is prescribed, so the strength of a steel material can be accurately estimated independently of changes in conditions during rolling and cooling or the structure of the steel material.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は熱間圧延によって厚板及びホットストリップ等
の鋼材を製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for manufacturing steel products such as thick plates and hot strips by hot rolling.

(従来技術の問題点) 鋼材の材質は一般に組織で決まる項と粒径で決まる項で
、例えば引張強さくTS)については、(1)式のよう
に表示できる。
(Problems with the Prior Art) The material quality of a steel material is generally determined by a term determined by the structure and a term determined by the grain size. For example, the tensile strength (TS) can be expressed as in equation (1).

TS=fCσF、σP、σB、σM 、vl−+VP 
、vl 、Vrl l dF )・・・・・・(1) ここでσは各組織の強度を表わすパラメータで、■は体
積分率を、dは粒径を示し、Fはフェライト、Pはパー
ライト、Mはマルテンサイトを示す。
TS=fCσF, σP, σB, σM, vl-+VP
, vl , Vrl l dF ) (1) Here, σ is a parameter representing the strength of each structure, ■ is the volume fraction, d is the grain size, F is ferrite, P is pearlite , M indicates martensite.

本発明は鋼材の強度を精度よく推定ないしは連中させる
手段を提供するものである。従来、鋼材の強度を推定す
る方法としては、成分、熱間圧延終了温度9巻取温度あ
るいは冷却停止温度を変数にした簡単な重回帰モデルが
あるばかりであり、強度を直接に決定している組織の強
度1体積分率、フェライト粒径といった因子を扱ったも
のは全くなかった。いわば間接的な製造要因で強度を推
定していたわけで、このように非厳密なモデルで精度が
悪いとしても使用に酎えたのは、従来の重回帰モデルは
ひとつの圧延工場での製品のみを対象とし、その製造条
件も一定の加熱条件から圧延が開始され、(変態前のオ
ーステナイト粒径を決める)圧延終了温度を含む圧延条
件は製品厚から、また(変態挙動を支配する)冷却温度
域や冷却速度も圧延終了温度と巻取温度から自動的に決
まるという拘束下にあったからである。
The present invention provides a means for accurately estimating or calculating the strength of steel materials. Conventionally, the only methods for estimating the strength of steel materials are simple multiple regression models using variables such as composition, hot rolling end temperature, coiling temperature, or cooling stop temperature, which directly determines the strength. There were no studies that dealt with factors such as the strength of the structure, volume fraction, and ferrite grain size. In other words, the strength was estimated using indirect manufacturing factors, and even though it was an inexact model with poor accuracy, it was still usable because conventional multiple regression models only estimate products from one rolling mill. The manufacturing conditions are as follows: rolling starts from a certain heating condition, rolling conditions including the finishing temperature (which determines the austenite grain size before transformation) are determined from the product thickness, and the cooling temperature range (which governs the transformation behavior) This is because the rolling process and cooling rate were automatically determined from the rolling end temperature and coiling temperature.

それゆえ従来のモデルは上記のような特定の場合にしか
適用できない特殊なモデルであったというべきで、広汎
に圧延条件やその後の冷却条件を変えることによって圧
延材の材質の範囲を拡大しようという新時代の要請には
応えられない。ところが本発明によれば強度を直接に決
定している要因を取扱い両者の間の関係を規定したため
、あらゆる条件でかつ従来では得られない精度で熱間圧
延後の鋼材の材質が推定できるもである。
Therefore, it can be said that the conventional model was a special model that could only be applied in specific cases such as those mentioned above, and it was attempted to expand the range of materials for rolled materials by broadly changing the rolling conditions and subsequent cooling conditions. It cannot meet the demands of the new era. However, according to the present invention, since the factors that directly determine the strength are dealt with and the relationship between the two is defined, it is possible to estimate the material quality of the hot-rolled steel material under all conditions and with an accuracy that cannot be obtained in the past. be.

(発明の目的) 本発明の目的は上記の知見をもとに、従来の欠 ′点を
ことごとく解消し、鋼材の材質を支配するその本質的な
要因を制御して行なう革新的な熱間圧延及び冷却制御方
法を提供するところにある。
(Objective of the Invention) The object of the present invention is, based on the above-mentioned knowledge, to eliminate all the conventional drawbacks and to develop an innovative hot rolling method that performs hot rolling by controlling the essential factors that control the material properties of steel materials. and a cooling control method.

(発明の構成) 上記目的を達成するための本発明の構成は以下の通りで
ある。
(Structure of the Invention) The structure of the present invention for achieving the above object is as follows.

目標強度を得るにあたって、下記の強度推定式を満足す
るフェライト粒径とフェライト、パーライト、ベーナイ
ト、マルテンサイトの各種組織の強度と体積分率を設定
して熱間圧延することを特徴とする熱間圧延鋼材の製造
方法。
In order to obtain the target strength, hot rolling is performed by setting the ferrite grain size and the strength and volume fraction of various structures of ferrite, pearlite, bainite, and martensite that satisfy the strength estimation formula below. Method of manufacturing rolled steel products.

TS=AI +A2 Xσy’ XVF +A3 Xσ
p XVp+A4 ×σB’ xv、+A5 X ハ票
−圭 +A6XdF σ0:組織の強度を表わすパーライト V二体積分率 d:フェライト粒径 F:フェライト P:パーライト B:ベーナイト M:マルテンサイト A1〜A6 :定数 以下そのモデルについて説明する。複合組織鋼の強度に
ついては次の公知の理論がある。
TS=AI +A2 Xσy' XVF +A3 Xσ
p XVp+A4 ×σB' xv, +A5 The model will be explained below. There is the following known theory regarding the strength of composite structure steel.

理論l: 例えば業態らの[鉄と鋼e8(1982) P2OJに
よれば、軟質相と硬質相の強度比が2.3以下ならば歪
一定モデルが成立し、以下の式で強度を表わすことがで
きる。
Theory 1: For example, according to Nakane et al.'s [Tetsu to Hagane e8 (1982) P2OJ], if the strength ratio of the soft phase to the hard phase is 2.3 or less, a constant strain model is established, and the strength can be expressed by the following formula. I can do it.

σ=σ1V1 +σ2 V2 ここでσ1は軟質相の強度であり、vlは体積分率であ
る。
σ=σ1V1 +σ2 V2 where σ1 is the strength of the soft phase and vl is the volume fraction.

またσ2は硬質相の強度であり、■2は体積分率である
Further, σ2 is the strength of the hard phase, and ■2 is the volume fraction.

理論2: 例えばM、F、AshbyのrPhil May、 1
4 (In2) P1157Jによれば、硬質相が分散
している場合の強度は次式の形で書ける。
Theory 2: For example, M, F. Ashby's rPhil May, 1
4 (In2) According to P1157J, the strength when the hard phase is dispersed can be written in the form of the following equation.

σ−σ。+ao x J”i ここでσ。l (10は定数項、■は硬質相の体積率で
ある。
σ−σ. +ao x J”i where σ.l (10 is a constant term, ■ is the volume fraction of the hard phase.

本発明はこれらの公知の理論を組合せて強度と組織の関
係を定式化したもので、そのポイントは以下の点である
。すなわち、 ■上記2つの理論を組み合わせて強度を推定しようとす
る試みは皆無であった。
The present invention combines these known theories to formulate the relationship between strength and texture, and the main points are as follows. That is, (1) there has been no attempt to estimate the strength by combining the above two theories.

■フェライト粒 、パーライト、ベーナイト、マルテン
サイトが上記2つの理論のどちらの範ちゅうかを具体的
に示したものは皆無であった。
■No one has specifically shown which of the above two theories falls into the category of ferrite grains, pearlite, bainite, and martensite.

■フェライトーパーライト鋼、フェライト−パーライト
−ベーナイト鋼、フェライト−ベーナイト鋼、フェライ
ト−マルテンサイト鋼その他のあらゆる組合せの鋼につ
いて1つの式で強度を推定できるという知見は皆無であ
った。
■There is no knowledge that the strength of ferrite-pearlite steel, ferrite-pearlite-bainite steel, ferrite-bainite steel, ferrite-martensitic steel, or any other combination of steel can be estimated using a single formula.

理論1からフェライト、パーライト、については歪一定
モデルが成立することは容易に推定されることである。
From Theory 1, it can be easily inferred that the constant strain model holds true for ferrite and pearlite.

又、フェライト、マルテンサイト2相鋼については理論
2が適用できることも公知である。ところが、マルテン
サイトを含む3相以上の組織鋼については、理論1.理
論2ともに適用できない。このように理論l、理論2と
もに適用範囲がせまく制限条件下でしか適用できない。
It is also known that Theory 2 can be applied to ferritic and martensitic dual phase steels. However, for steels with three or more phases containing martensite, theory 1. Neither theory 2 is applicable. In this way, both Theory 1 and Theory 2 have a narrow scope of application and can only be applied under limited conditions.

ところが最近、圧延技術、冷却技術の駆使によりマルテ
ンサイトを含む多相鋼が次々に開発されている。そのよ
うな、背景のもとに強度推定式の適用拡大が緊急課題と
してもちあがっている。本発明はその要請に応えたもの
で本発明者の解析により理論l、理論2を組合せればあ
らゆる場合に適用できる予測式が得られることがわかっ
た。
However, recently, multiphase steels containing martensite have been developed one after another by making full use of rolling technology and cooling technology. Against this background, expanding the application of strength estimation formulas has been raised as an urgent issue. The present invention meets this need, and the inventor's analysis revealed that by combining Theory 1 and Theory 2, a prediction formula that can be applied to all cases can be obtained.

まず通常の鋼で現われる組織を大別するとフェライト、
パーライト、ベーナイト、マルテンサイトの4種に分類
できる。そこで、これらの組織と強度の関係を定式化す
る場合、上記の2つの理論のうちどちらが適用できるか
を決定する必要がある。そこで、まず、理論lの歪一定
モデルの適用対象を決定するため各種組織のつ゛イッカ
ース硬さを測定し、その比を比較した。4種の組織の中
ではフェライトが最も軟質であるので、この硬さをベー
スにその比の値を第1図に示す。
First, the structures that appear in ordinary steel can be roughly divided into ferrite,
It can be classified into four types: pearlite, bainite, and martensite. Therefore, when formulating the relationship between these structures and strength, it is necessary to determine which of the above two theories is applicable. Therefore, first, in order to determine the application target of the constant strain model of theory 1, the Ickers hardness of various tissues was measured and the ratios were compared. Since ferrite is the softest of the four types of structures, the ratio values are shown in FIG. 1 based on this hardness.

第1図かられかるようにパーライト、ベーナイトはフェ
ライトの硬さとの比はいずれも2.0以下である。すな
わち、フェライト、パーライト。
As can be seen from FIG. 1, the hardness ratio of pearlite and bainite to ferrite is 2.0 or less. i.e. ferrite, pearlite.

ベーナ・イトは理論1の歪一定モデルが適用できる。残
ったのはマルテンサイトであるが、これは必然理論2の
範ちゅうということになる。
The constant strain model of Theory 1 can be applied to Boehnerite. What remains is martensite, which falls within the category of Necessity Theory 2.

以上から鋼材の強度推定モデル式は次のように書けるこ
とがわかる。
From the above, it can be seen that the model formula for estimating the strength of steel can be written as follows.

TS=σfVf+(Tp Vp +σ3 VB+kL匹
−・・・・・・(2) ここでフェライトの強度は一般に次のように書けること
が明らかである。
TS = σfVf + (Tp Vp + σ3 VB + kL particles - (2) It is clear that the strength of ferrite can generally be written as follows.

一十 σf = σ0子 十 k、 dイ 1.910.(3
)(2)、(3)式より TS = σofV(−+σPvp +(TB VB 
十に57−÷ +kfd4 ・・・・・・(4) 強度を表わすパラメータσI、σP0.σJを用いれば
σof=BIXσi +B2−・・−(5)σp=13
3 ×σδ +B4 ・・・・・・(6)σ、=B5X
σ; +B6 ・・・・・・(7)なので(4)は T S = AI + A2 X % XVF+ Aa
 X (fp X Vp+A4×σ、o xvB +A
5X (C−十 + A6 X dF ・・・・・・(8)となる゛。
10 σf = σ0 child 10 k, d i 1.910. (3
) (2) and (3), TS = σofV(-+σPvp + (TB VB
57−÷+kfd4 (4) Parameters σI, σP0. If σJ is used, σof=BIXσi +B2−...−(5)σp=13
3 ×σδ +B4 ・・・・・・(6)σ,=B5X
σ; +B6 ......(7) Therefore, (4) is T S = AI + A2 X % XVF + Aa
X (fp X Vp+A4×σ, o xvB +A
5X (C-10+A6X dF...(8)).

更に最小2乗法によりA0〜A6の係数を決定した1例
を以下に示す。
Furthermore, an example in which the coefficients of A0 to A6 are determined by the least squares method is shown below.

TS=−10,425+ 0.289XHFXVF+ 
0.342XHp XVp + 0.287XHB X
VB + 58.05−÷ x 、r; + 1.259X dF ・・・・・・(
9)ただし、Hはつ゛イッカース硬さであり、ここでは
硬さを強度で表わすパラメータとして採用した。TSの
単位はkg/mm” 、 dはmmであり、式の寄与率
は表1に示す広い変域の対象材についてR=0.984
であった。式の寄与率から明らかなように(8)式はき
わめて高い精度でTSを推定す゛ることができる。又、
(8)式から必要な材質を得るに必要な組織の強度1体
積分率、フェライト粒径の組合せを知り、それらをつく
りこむ圧延条件や冷却条件を決定することも可能である
TS=-10,425+ 0.289XHFXVF+
0.342XHp XVp + 0.287XHB X
VB + 58.05-÷ x, r; + 1.259X dF (
9) However, H is Ickers hardness, and here it is used as a parameter expressing hardness in terms of strength. The unit of TS is "kg/mm", d is mm, and the contribution rate of the formula is R = 0.984 for the target material in the wide range shown in Table 1.
Met. As is clear from the contribution rate of the equation, equation (8) can estimate the TS with extremely high accuracy. or,
It is also possible to know the combination of the strength 1 volume fraction of the structure and the ferrite grain size necessary to obtain the required material from equation (8), and then determine the rolling conditions and cooling conditions to create them.

ここで組織の体積率については等温変態線図(TTT)
をベースにした推定方法があるし、組織の強度を表わす
パラメータ例えば硬さについては成分、冷却条件から推
定する方法がある。又、フェライト粒径についても、直
接測定法としてオンライン超音波やX線によりγ粒径を
測定し、特願昭58−18140?によりフェライト粒
径を推定する方法がある。
Here, the volume fraction of the tissue is determined using the isothermal transformation diagram (TTT).
There is an estimation method based on , and there is a method for estimating parameters representing tissue strength, such as hardness, from components and cooling conditions. Regarding the ferrite grain size, the γ grain size was measured using online ultrasonic waves or X-rays as a direct measurement method. There is a method of estimating the ferrite grain size.

(実施例) 次に本発明による実施例を示す。実施例の供試材の成分
系はいずれもC−Mn系で詳細を表1に示す。
(Example) Next, an example according to the present invention will be shown. The component systems of the sample materials in the examples are all C--Mn-based, and the details are shown in Table 1.

表1かられかるように組織及びフェライト粒径がどのよ
うに変ろうと、本発明によれば非常によい精度でTSを
推定できることがわかる。これによって既述のごとく、
例えば、(8)式を使って強度予測をするかあるいは必
要強度から必要組織の強度と体積率、フェライト粒径を
(9)式によりめそれらを目ざした熱間圧延、その後の
冷却規制を行なうことが可能となる。
As can be seen from Table 1, no matter how the structure and ferrite grain size change, according to the present invention, TS can be estimated with very good accuracy. As mentioned above, this causes
For example, predict the strength using equation (8), or use equation (9) to determine the required strength, volume fraction, and ferrite grain size from the required strength, and perform hot rolling and subsequent cooling regulation to achieve these values. becomes possible.

以上より本発明は鋼材の組織と強度の間の関係をはじめ
て定式化したもので、この方法により強度を精度よく推
定するのに大きな力を発揮するものである。
As described above, the present invention is the first to formulate the relationship between the structure and strength of steel materials, and this method has great power in estimating strength with high accuracy.

(発明の効果) 以上の説明から明らかなように圧延条件、冷却条件が変
り、鋼材の組織がいかに変ろうと本発明によると強度を
精度よく推定でき、逆に、必要強度を得る組織の強度と
体積率、フェライト粒径を決定し、これを目ざし圧延、
冷却条件を指定することができる。その結果熱間圧延に
おける強度推定精度が大幅に向上するので、きわめて効
率のよ2 い熱間圧延が可能となって歩留りの向上、コストの低減
等の大きな効果が得られる。
(Effects of the invention) As is clear from the above explanation, no matter how the rolling conditions and cooling conditions change and the structure of the steel material changes, according to the present invention, the strength can be estimated accurately. Determine the volume fraction and ferrite grain size, and roll with this in mind.
Cooling conditions can be specified. As a result, the strength estimation accuracy in hot rolling is greatly improved, making it possible to perform extremely efficient hot rolling, resulting in significant effects such as improved yield and reduced costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は軟質相と硬質相の硬さの比を組織種類別に示す
図である。 特許出願人 代理人 弁理士 矢 葺 知 之 (ほか1名) 3 第 1 γtJ[J (“ 01 (′1 1時回 ヒ) 直n)
FIG. 1 is a diagram showing the ratio of hardness between the soft phase and the hard phase for each type of structure. Patent Applicant Representative Patent Attorney Tomoyuki Yafuki (and 1 other person) 3 1st γtJ[J (“ 01 (’1 1 o’clock turn) Naon)”

Claims (1)

【特許請求の範囲】 目標強度を得るにあたって、下記の強度推定式を満足す
るフェライト粒径とフェライト、パーライト、ベーナイ
ト、マルテンサイトの各種組織の強度と体積分率を設定
して熱間圧延することを特徴とする熱間圧延鋼材の製造
方法。 TS=Al +A2 XσF XVy +A3 XσP
’XVP+A4×σ: XVB +A5X f;;−告 十A 6 X dp σ0:組織の強度を表わすパラメータ V:体積分率 d:フェライト粒径 F:フェライト P:パーライト B:ベーナイト M:マルテンサイト A1〜八6 :定数
[Claims] To obtain the target strength, hot rolling is performed by setting the ferrite grain size and the strength and volume fraction of various structures of ferrite, pearlite, bainite, and martensite that satisfy the following strength estimation formula. A method for producing hot rolled steel material characterized by: TS=Al +A2 XσF XVy +A3 XσP
'XVP + A4 x σ: XVB +A5 86: Constant
JP3615084A 1984-02-29 1984-02-29 Manufacture of hot rolled steel material Pending JPS60181228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3615084A JPS60181228A (en) 1984-02-29 1984-02-29 Manufacture of hot rolled steel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3615084A JPS60181228A (en) 1984-02-29 1984-02-29 Manufacture of hot rolled steel material

Publications (1)

Publication Number Publication Date
JPS60181228A true JPS60181228A (en) 1985-09-14

Family

ID=12461754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3615084A Pending JPS60181228A (en) 1984-02-29 1984-02-29 Manufacture of hot rolled steel material

Country Status (1)

Country Link
JP (1) JPS60181228A (en)

Similar Documents

Publication Publication Date Title
Kurpe et al. Improvement of process parameters calculation for coil rolling at the steckel mill
OUCHI et al. Hot deformation strength of austenite during controlled rolling in a plate mill
JPS60181228A (en) Manufacture of hot rolled steel material
JPH0480973B2 (en)
JPH042957A (en) Apparatus for steel plate component prediction
RU2655398C2 (en) Method of rolled products production
JPH05142126A (en) Method for predicting quality of steel plate
JPH044911A (en) Method for predicting the quality of steel material
JPS6119322B2 (en)
Kruglova et al. Improvement of chemical composition and production regimes for manufacture of K65–K70 (X80–X90) strip based on simulation
JPS5967324A (en) Method for controlling quality of rolled material in hot rolling
JPH04361158A (en) Estimation and control of material quality of steel plate
JPS621816A (en) Method for adjusting quality of hot rolling steel products
JP2672572B2 (en) Manufacturing method of hot rolled steel
JPH1121626A (en) Production of hot rolled steel plate, based on material prediction
JP2509487B2 (en) Steel plate material prediction method
JPH06330164A (en) Method for predicting system of hot working steel
JPS61163211A (en) Adjusting method of properties of hot rolled steel material
JP2509492B2 (en) Steel plate material prediction method
JP4133419B2 (en) Hot-rolled steel sheet material prediction method, pass schedule correction or setting method, and hot-rolled steel sheet manufacturing method
JPH0380848B2 (en)
JPS62199214A (en) Cold rolling method for metastable austenitic group stainless steel
JPH03130318A (en) Production of hot rolled steel sheet having high strength and excellent workability and method for predicting its material quality
Majta Progress In Microstructural Modelling To Predict Mechanical Properties Of C-Mn And Microalloyed Steels
Yada et al. Important Metallurgical Parameters that must be Determined to Control the Properties of Steels During Processing