JP2672572B2 - Manufacturing method of hot rolled steel - Google Patents

Manufacturing method of hot rolled steel

Info

Publication number
JP2672572B2
JP2672572B2 JP12758288A JP12758288A JP2672572B2 JP 2672572 B2 JP2672572 B2 JP 2672572B2 JP 12758288 A JP12758288 A JP 12758288A JP 12758288 A JP12758288 A JP 12758288A JP 2672572 B2 JP2672572 B2 JP 2672572B2
Authority
JP
Japan
Prior art keywords
exp
recrystallization
ferrite
calculated
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12758288A
Other languages
Japanese (ja)
Other versions
JPH01298114A (en
Inventor
淳一 脇田
治 河野
学 高橋
一彬 江坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12758288A priority Critical patent/JP2672572B2/en
Publication of JPH01298114A publication Critical patent/JPH01298114A/en
Application granted granted Critical
Publication of JP2672572B2 publication Critical patent/JP2672572B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、熱間圧延により厚板及びホットストリップ
等の鋼材を所要材質とそれを生ましめる組織構成との関
係から製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention relates to a method for producing a steel material such as a thick plate and a hot strip by hot rolling based on the relationship between the required material and the structural constitution that produces it. is there.

<従来の技術> 鋼材の材質は一般にミクロ的な組織で決まる項と粒径
で決まる項とその他の強化機構の項で決まる項の和で表
示出来る。
<Prior Art> Generally, the material quality of steel can be expressed as the sum of the terms determined by the microstructure, the grain size, and the other strengthening mechanism terms.

例えば引っ張り強さ(TS)については(28)式のよう
に表示出来る。
For example, the tensile strength (TS) can be displayed as in equation (28).

TS=f(σ、σ、σ、σ、Vf、Vp Vb、Vm、df、β) −(28) ここでσは各組織の強度を示すパラメータであり、V
は各組織の体積分率を表すパラメータでありdは粒径を
表す。
TS = f (σ f , σ p , σ b , σ m , V f , V p V b , V m , d f , β)-(28) where σ is a parameter indicating the strength of each tissue, V
Is a parameter indicating the volume fraction of each tissue, and d is the particle size.

又添え字f、p、b、mは、それぞれフェライト、パ
ーライト、ベーナイト、マルテンサイトを示す。尚β
は、その他の強化機構(例えば析出強化、加工強化等)
を表すパラメータである。
The subscripts f, p, b and m indicate ferrite, pearlite, bainite and martensite, respectively. Note that β
Are other strengthening mechanisms (eg precipitation strengthening, work strengthening, etc.)
Is a parameter that represents.

<発明が解決しようとする課題> 従来、強度の推定モデルについては、成分、熱間圧延
終了温度、巻き取りもしくは冷却停止温度を変数にした
簡単な重回帰によるものがあるばかりで、ミクロ組織、
フェライト粒径等の影響が考慮されていない。
<Problems to be Solved by the Invention> Conventionally, as to the strength estimation model, there is only a simple multiple regression in which a component, a hot rolling end temperature, a winding or cooling stop temperature are variables, and a microstructure,
The influence of ferrite grain size etc. is not considered.

この様な非厳密な重回帰モデルが使用に耐えたのは、
モデルが一つの圧延工場での製品のみを対象とし、その
製造条件も一定の加熱条件から開始され、変態前のオー
ステナイト粒径を決める圧延終了温度を含む圧延条件は
製品厚や成分から、又変態挙動を支配する冷却温度域や
冷却速度も圧延終了温度と巻き取り温度から自動的に定
まるといった強い高速条件下で使用されている事によっ
ている。
The use of such an inexact multiple regression model is as follows.
The model targets only products in one rolling mill, the manufacturing conditions are also started from constant heating conditions, and the rolling conditions including the rolling end temperature that determines the austenite grain size before transformation include the product thickness and composition, and the transformation This is because the cooling temperature range and cooling rate that control the behavior are used under strong high-speed conditions such that they are automatically determined from the rolling end temperature and the winding temperature.

このために従来のモデルは上記の様な特定の条件下で
しか使用できず、他のラインへの適用や、広汎に圧延条
件や、その後の冷却条件を変える事によって圧延材の材
質の範囲を拡大しようとする要請に応えられないもので
あった。
For this reason, the conventional model can be used only under the specific conditions as described above, and the range of the material of the rolled material can be changed by applying it to other lines or by widely changing the rolling conditions and the subsequent cooling conditions. I could not meet the request to expand.

又鋼材の材質をミクロ的な組織と対応づけて記述した
モデルを用いて材質を調整する試みは既に存在してお
り、例えば特公昭58−2246号公報、特開昭59−67324号
公報等に提案が行われている。
Also, there have already been attempts to adjust the material using a model in which the material of the steel material is described in association with the microstructure, for example, Japanese Patent Publication No. 58-2246 and Japanese Patent Publication No. 59-67324. Proposals are being made.

特公昭58−2246号公報では冷却曲線から変態組織体積
率を求め、この変態組織体積率から鋼材の材質を予測す
る方法について述べているが、組織の硬さ、粒径、熱間
圧延の効果に対する考慮が全く成されていない。
Japanese Examined Patent Publication No. 58-2246 describes a method for obtaining a transformation structure volume ratio from a cooling curve and predicting the material quality of a steel material from this transformation structure volume ratio.The hardness of the structure, the grain size, and the effect of hot rolling are described. Is not considered at all.

又特開昭59−67324号公報では実機圧延機の圧延荷重
から最終到達オーステナイト粒径、残留歪みを計算し、
その後の冷却過程でフェライト粒径を計算し、フェライ
ト粒径と冷却速度により得られる組織強化パラメータに
より強度を推定する方法について述べているが、ミクロ
組織の硬さ、体積率を予測する事が出来ない。
In JP-A-59-67324, the final reached austenite grain size and residual strain are calculated from the rolling load of the actual rolling mill,
The method of calculating the ferrite grain size in the subsequent cooling process and estimating the strength from the structure strengthening parameter obtained from the ferrite grain size and cooling rate is described, but it is possible to predict the hardness and volume fraction of the microstructure. Absent.

本発明者等はこれ等の課題を解決し、熱間圧延による
鋼材の製造全般に所要材質とそれを生ましめる組織構成
との関係から適用出来る製造方法を提供するものとして
特開昭62−158816号公報の提案を行っている。
As a solution to these problems, the inventors of the present invention provide a manufacturing method that can be applied to the general manufacturing of steel products by hot rolling in view of the relationship between the required material and the structural constitution that gives rise to it, and JP-A-62-158816. We are proposing the publication of the issue.

しかしながら本発明者等はその後の研究実験により、
含有Si量が0.1重量%以上の領域では必ずしも、前記特
開昭62−158816号公報の提案が精度の良くない部分を含
む事を発見した。
However, the inventors of the present invention have found that the following research experiment
It has been discovered that the proposal of the above-mentioned Japanese Patent Laid-Open No. 62-158816 includes a portion with poor accuracy in the region where the content of Si is 0.1% by weight or more.

本発明はこの新知見に基づく実験検討の結果なされた
もので、Siを重量で0.1%近傍を含む炭素鋼に対してよ
り精度高く、又0.2%程度以上を含有する炭素鋼に対し
ては全く新しく適用出来る製造方法を提供するものであ
る。
The present invention has been made as a result of an experimental study based on this new knowledge, and is more accurate for carbon steel containing Si in the vicinity of 0.1% by weight, and for carbon steel containing 0.2% or more of Si at all. It provides a new applicable manufacturing method.

<課題を解決するための手段> 本発明は上記した知見を基に、前記した従来の欠点を
悉く解消し、熱間圧延鋼材の材質を支配する本質的な要
因を制御して熱間圧延鋼材を製造する方法を提供するも
のであり、このために従来技術では行われていない圧延
条件から冷却直前のオーステナイト粒径及び残留歪みを
計算し、その後の冷却条件から各ミクロ組織(フェライ
ト、パーライト、ベーナイト、マルテンサイト等)の体
積率及び硬さとフェライト粒径を精度良く算出し、これ
等ミクロ的な因子から鋼材の材質を算出し、これを基に
目標とする熱間圧延後の鋼材の材質を得るように、鋼材
の製造条件を調整するもので、 (1)予め実態から求めた式を用いてSiを0.1重量%以
上含有する炭素鋼をAr3点温度以上で圧延後冷却して鋼
材を製造するに際し、加熱炉出側平均γ粒径を少なくと
も加熱速度α(K/min)、加熱温度T0(K)、等温保持
時間t0(min)からなる加熱条件をもとに(1)式で計
算し、動的再結晶、静的再結晶、未再結晶の各占積率
fD、fS、fN及び動的再結晶、静的再結晶、未再結晶の各
々の粒径、dD(μm)とdS(μm)とdN(μm)をそれ
ぞれ少なくとも加工温度Ti(K)、付加歪ε、歪速度
(S-1)からなる加工条件をもとに、(2)式で与
えられる付加歪εが、動的再結晶の限界歪εより大き
い時は動的再結晶、静的再結晶、未再結晶の3グループ
に分け、付加歪εが動的再結晶の限界歪εより小さい
時は静的再結晶、未再結晶の2グループに分けて(3)
(4)(5)(6)(7)(8)式で計算し、パス間に
おける粒成長を動的再結晶については(9)式で、静的
再結晶については(10)式で計算して次パス直前の平均
オーステナイト粒径である▲▼(μm)を(11)
式で、次パス直前の残留歪量であるΔεを(12)式で
求めて次パスにおいては付加歪εi+1に前パスの残量歪
量Δεを加えて実行歪を求め、この実行歪と次パス直
前の平均オーステナイト粒径▲▼(μm)から上
記と同様に再結晶挙動を計算し、これを所定パス回数繰
り返して冷却開始前の平均オーステナイト粒径▲▼
(μm)と残留歪量Δεを求め、該冷却開始前の平均オ
ーステナイト粒径▲▼(μm)と残留歪量Δεを初
期条件とし、(16)式で変態のための潜伏期の消費が始
まる平均変態温度Ae3(K)を求め、フェライト、パー
ライトが変態する温度とベーナイトが変態する温度の境
界を示すTPE(K)を(17)式で求め、フェライト、パ
ーライト、ベーナイトの等温変態率の推定式(13)(1
4)(15)式により既に求められている冷却曲線につい
て、変態率の加算則を適用し、最終的なフェライト組
織、パーライト組織、ベーナイト組織の体積率を計算し
て1から前記フェライトとパーライトとベーナイトの各
組織の合計体積率を減算してマルテンサイト組織の体積
率を求める。上記変態率の計算に於いて923K以上で出現
したフェライトの硬さHf0は(18)式で、923K未満723K
以上で現れたフェライトの硬さHf0は(19)式で各々冷
却曲線に沿って計算し更に最終フェライトの硬さHf
(20)式で求めパーライトの最終硬さHpを(21)式で求
め、ベーナイトの最終硬さHbを(22)式で各々求め、最
終フェライト粒径df(μm)を(23)(24)式で求め
る。
<Means for Solving the Problems> The present invention is based on the above-mentioned findings, and solves the above-mentioned conventional drawbacks by controlling the essential factors that govern the material quality of hot-rolled steel products. It is to provide a method for manufacturing, to calculate the austenite grain size and residual strain immediately before cooling from the rolling conditions not performed in the prior art for this, each microstructure from the subsequent cooling conditions (ferrite, pearlite, Bainite, martensite, etc.) volume ratio and hardness and ferrite grain size are calculated accurately, and the material of the steel material is calculated from these micro factors, and based on this, the target material of the steel material after hot rolling. The manufacturing conditions of the steel materials are adjusted so that (1) a carbon steel containing 0.1% by weight or more of Si is rolled at an Ar 3 point temperature or higher and then cooled by the formula obtained from the actual condition. To manufacture And at least a heating rate of the heating furnace exit side average γ grain size α (K / min), the heating temperature T 0 (K), based on the heating conditions consisting of isothermal holding time t 0 (min) (1) equation in Calculated, dynamic recrystallization, static recrystallization, unrecrystallized space factor
f D , f S , f N and grain sizes of dynamic recrystallization, static recrystallization and unrecrystallized, d D (μm) and d S (μm) and d N (μm), respectively, at least at the processing temperature. Ti (K), additional strain ε i , strain rate
When the additional strain ε given by the equation (2) is larger than the critical strain ε C of the dynamic recrystallization based on the processing condition consisting of i (S −1 ), dynamic recrystallization, static recrystallization, Divided into 3 groups of unrecrystallized and divided into 2 groups of static recrystallized and unrecrystallized when the additional strain ε is smaller than the critical strain ε C of dynamic recrystallization (3).
(4), (5), (6), (7), and (8) are calculated, and grain growth between passes is calculated using Eq. (9) for dynamic recrystallization and Eq. (10) for static recrystallization. Then, calculate the average austenite grain size immediately before the next pass, ▲ ▼ i (μm) (11)
In the equation, Δε i which is the residual strain amount immediately before the next pass is obtained by the equation (12), and in the next pass, the additional strain ε i + 1 is added to the residual strain amount Δε i of the previous pass to obtain the execution strain, The recrystallization behavior was calculated from this execution strain and the average austenite grain size ▲ ▼ i (μm) immediately before the next pass in the same manner as above, and this was repeated for a predetermined number of passes, and the average austenite grain size before cooling was started.
(Μm) and residual strain amount Δε are calculated, and the average austenite grain size ▲ ▼ (μm) before the start of cooling and residual strain amount Δε are used as initial conditions, and the average consumption of the latent period for transformation starts in Eq. (16). Obtain the transformation temperature Ae 3 (K), find the boundary between the transformation temperature of ferrite and pearlite and the transformation temperature of bainite with TPE (K) using equation (17), and estimate the isothermal transformation rate of ferrite, pearlite, and bainite. Formula (13) (1
4) Applying the transformation rate addition rule to the cooling curve already obtained by the equation (15), and calculating the volume ratio of the final ferrite structure, pearlite structure, and bainite structure from 1 to the ferrite and pearlite The volume ratio of the martensite structure is obtained by subtracting the total volume ratio of each structure of bainite. In the above calculation of the transformation rate, the hardness H f0 of the ferrite that appeared at 923K or higher is expressed by equation (18), and is less than 923K 723K
The hardness H f0 of the ferrite that appears above is calculated along each cooling curve by equation (19), and the hardness H f of the final ferrite is calculated by equation (20), and the final hardness H p of pearlite is calculated by equation (21). The final hardness H b of the bainite is calculated by the formula (22), and the final ferrite grain size d f (μm) is calculated by the formulas (23) and (24).

以上からフェライト粒径df(μm)、フェライト体積
率Xf、フェライトの硬さHf、パーライト体積率Xp、パー
ライトの硬さHp、ベーナイト体積率Xb、ベーナイト硬さ
Hb、マルテンサイト体積率Xfmを基に(25)〜(27)式
により引張強さTS(kgf/mm2)、降伏強さYS(kgf/mm2
及び全伸びT.E1(%)を算出し、これ等を目標材質と比
較してその差が常に所要範囲にある様に少なくとも上記
実態の中の圧延条件及び又は冷却条件からなる製造条件
を調整する事を特徴とする。
From the above, ferrite particle size d f (μm), ferrite volume fraction X f , ferrite hardness H f , pearlite volume fraction X p , pearlite hardness H p , bainite volume fraction X b , bainite hardness
The tensile strength TS (kgf / mm 2 ) and the yield strength YS (kgf / mm 2 ) are calculated from Eqs. (25) to (27) based on H b and martensite volume ratio X fm.
And calculate the total elongation T.E1 (%), compare these with the target material and adjust the manufacturing conditions consisting of at least the rolling conditions and cooling conditions in the above actual conditions so that the difference is always within the required range. It is characterized by doing.

γ0 =(k1・α-a+A1・exp(−A2/T0)t
0 b (1) k1=B〔(T0−1173)/100〕+C a、b、A1、A2、B、Cは実験により求める。
d γ0 2 = (k1 · α -a ) 2 + A1 · exp (−A 2 / T 0 ) t
0 b (1) k 1 = B [(T 0 −1173) / 100] 3 + C a, b, A 1 , A 2 , B and C are experimentally determined.

αは加熱速度、T0は加熱温度、t0は保持時間。α is the heating rate, T 0 is the heating temperature, and t 0 is the holding time.

ε=A3・d0 C1・exp(A4/RTi) (2) Tiは圧延温度、Rは気体定数。ε C = A 3 · d 0 C 1 · exp (A 4 / RT i ) (2) T i is the rolling temperature and R is the gas constant.

C1、A3、A4は実験により求める。C 1 , A 3 , and A 4 are experimentally determined.

fD=1−exp・〔−(ε−εC−ε
(3) ε=A5・〔1−exp(−d0/k2)〕 k2=A6-d・exp(−A7/Ti) m=A8・exp(A9/Ti) d、A5〜A9は実験により求める。
f D = 1-exp · [- (ε i -ε C / ε S -ε i) m ]
(3) ε S = A 5 · [1-exp (−d 0 / k 2 )] k 2 = A 6 · -d · exp (−A 7 / Ti) m = A 8 · exp (A 9 / Ti ) d, A 5 ~A 9 is determined by experiments.

は歪速度である。 Is the strain rate.

fS=(1−fD){1−exp〔−t/τ〕} (4) τ=A10・ε-f・exp(A11/RTi) tはパス間時間。 f S = (1-f D ) {1-exp [-t / τ S) e]} (4) τ S = A 10 · ε -f · exp (A 11 / RT i) t between the path time.

e、f、A10、A11は実験により求める。e, f, A 10 and A 11 are experimentally determined.

fN=1−fD−fS (5) dD=k3・Z-g (6) k3=A12・Q0−A13 Q0=A14−A15・Ceq Ceq=〔%C〕+〔%Mn〕/6 Z=・exp(Q0/RT) g、A12〜A15は実験により求める。f N = 1-f D −f S (5) d D = k 3 · Z -g (6) k 3 = A 12 · Q 0 −A 13 Q 0 = A 14 −A 15 · C eq C eq = [% C] + [% Mn] / 6 Z = · exp (Q 0 / RT) g, A 12 to A 15 are determined by experiments.

dS=k16・d0 h・ε-i (7) h、i、A16は実験により求める。d S = k 16 · d 0 h · ε -i (7) h, i, A 16 are obtained by experiments.

j、k、l、m、m1、A17〜A20は実験により求める。 j, k, l, m, m 1 , A 17 to A 20 are experimentally determined.

Δε=(fD・ε+fD・ε)・exp〔−(t/τ
(12) τ=A21・exp(A22/RTi) n、A21、A22は実験により求める。
Δε = (f D · ε C + f D · ε) · exp [− (t / τ k ) n ]
(12) τ k = A 21 · exp (A 22 / RT i ) n, A 21 , and A 22 are obtained by experiments.

Xf/Xfmax=1−〔1+k1/p(t−τ)〕-p (13) q=1/2〔r2+β・γ(α−γ−1/2・F +β(α−γ1/2・E〕 α=eΔε、β=1、γ=e−Δε Γ=〔α(β−γ)/β(α−γ)〕1/2 μ=arccos(γ/α) Kf=exp{B4+B5ln(%Si)+B6〔ln(%Si)〕 +B7(%C)+B8(%Mn)+B9(T−273) +B10(T−273)τ=exp{B11+B12ln(%Si) +B13〔ln(%Si)〕+B14(%C)+B15(%Mn) +B16(T−273)+B17(T−273)} Xfmax=1−〔%C〕/〔B1819(T−273) +B20(T−273)〕 (T≧993k) =1−〔%C〕/〔B18+B19・720+B20・(720)〕 (T<993k) p=B21+B22ln(%Si)+B23〔ln(%Si)〕 B1〜B23は実験により求める。X f / X fmax = 1- [1 + k 1 / p (t-τ 1 )] -p (13) q = 1/2 [r 2 + β · γ 22 −γ 2 ) −1 / 2 · F + β (α 2 −γ 2 ) 1/2 · E] α = e Δε , β = 1, γ = e −Δε Γ = [α 22 −γ 2 ) / β 22 −γ 2 )] 1/2 μ = arccos (γ / α) K f = exp {B 4 + B 5 ln (% Si) + B 6 [ln (% Si)] 2 + B 7 (% C) + B 8 (% Mn) + B 9 (T-273) + B 10 (T-273) 2} τ f = exp {B 11 + B 12 ln (% Si) + B 13 [ln (% Si)] 2 + B 14 (% C) + B 15 (% Mn) + B 16 (T-273) + B 17 (T-273) 2} X fmax = 1 - [% C] / [B 18 + 19 (T-273 ) + B 20 (T-273) 2 ] (T ≧ 993k) = 1 - [% C] / [B 18 + B 19 · 720 + B 20 · (720) 2 ] (T <993k) p = B 21 + B 22 ln (% Si) + B 23 [ln (% Si)] 2 B 1 to B 23 are obtained by experiments.

Xp=1−exp〔1+k1/p(t−τ)〕-p (14) Kb=exp[B24+B25(%Si)+B26(%C) +B27(%Mn)+B28(T−273) +B29(T−273)τ=exp〔B30+B31(%Si)+B32(%Si)〕 +B33(%C)+B34(%Mn)+B35(T−273) +B36(T−273)〕 P1=1.4 B24〜B36は実験により求める。X p = 1-exp [1 + k 1 / p (t−τ 1 )] -p (14) K b = exp [B 24 + B 25 (% Si) 2 + B 26 (% C) + B 27 (% Mn) + B 28 (T-273) + B 29 (T-273) 2] τ b = exp [B 30 + B 31 (% Si) + B 32 (% Si)] 2 + B 33 (% C) + B 34 (% Mn) + B 35 (T-273) + B 36 (T-273) 2 ] P 1 = 1.4 B 24 ~B 36 is determined by experiment.

TPE=B41+B42(%C)+B43(%Mn)+B44(%Si) (17) P2、B37〜B44は実験により求める。 TPE = B 41 + B 42 ( % C) + B 43 (% Mn) + B 44 (% Si) (17) P 2, B 37 ~B 44 is determined by experiment.

Hf0=C1+C2(%C)+C3(%Mn)+C4(%Si)+C4lnt
(18) (T≧993k) Hf=Hf0+C8・exp(C9/T) (20) P3、C1〜C9は実験により求める。
H f0 = C 1 + C 2 (% C) + C 3 (% Mn) + C 4 (% Si) + C 4 lnt
(18) (T ≧ 993k) H f = H f0 + C 8 · exp (C 9 / T) (20) P 3, C 1 ~C 9 is determined by experiments.

Hp=Σ〔ΔXp・H(T)〕/ΣΔXp (21) H(T)=C10+C11(Ae1−T)-1 Ae1=C12+C13(%Mn)+C14(%Si) ΔXpは各温度で現れたパーライト量 P4、P5、C11〜C19は実験により求める。H p = Σ [ΔX p · H (T)] / ΣΔX p (21) H (T) = C 10 + C 11 (Ae 1 −T) −1 Ae 1 = C 12 + C 13 (% Mn) + C 14 ( % Si) ΔX p is the amount of pearlite that appears at each temperature P 4, P 5, C 11 ~C 19 is determined by experiment.

df=df0 (23) df0=exp[f1+f2・lnXf+f3・k3+f4・k4 +f5・ln(1+B3・Δε)+f6・ln(%C) +f7・ln(%Mn)] (T≦723k) k3=ln{〔f8+f9・(%Si)+f10・(%Si) ×〔(2.24/40)/(2.24/40+B2)〕} df=df0+d11・exp(f12/T) (24) (T>723k) f1〜f12は実験により求める。d f = d f0 (23) d f0 = exp [f 1 + f 2 · lnX f + f 3 · k 3 + f 4 · k 4 + f 5 · ln (1 + B 3 · Δε) + f 6 · ln (% C) + f 7・ Ln (% Mn)] (T ≦ 723k) k 3 = ln {[f 8 + f 9・ (% Si) + f 10・ (% Si) 2 ] 3 × [(2.24 / 40) / (2.24 / 40 + B 2 )]} d f = d f0 + d 11 · exp (f 12 / T) (24) (T> 723k) f 1 to f 12 are obtained by experiments.

TS=g1+g2・Xf・df −1/2+g3・Xb・dγ −1/2 +g4・Xm1/2+g5(Hf・Xf+Hp・Xp+Hb・Xb) (25) YS=g6+g7・Xf・df −1/2+g8・Xb・dγ −1/2 +g9・Xm1/2+g10(Hf・Xf+Hp・Xp+Hb・Xb) (26) T.El=g11+g12・Xf・df −1/2+g13・Xb・dγ −1/2 +g14・Xm1/2+g15(Hf・Xf+Hp・Xp+Hb・Xb) (27) g1〜g15は実験により求める。TS = g 1 + g 2 · X f · d f −1/2 + g 3 · X b · d γ −1/2 + g 4 · Xm 1/2 + g 5 (H f · X f + Hp · X p + H b · X b) (25) YS = g 6 + g 7 · X f · d f -1/2 + g 8 · X b · d γ -1/2 + g 9 · Xm 1/2 + g 10 (H f · X f + Hp・ X p + H b・ X b ) (26) T.El = g 11 + g 12・ X f・ d f −1/2 + g 13・ X b・ d γ −1/2 + g 14・ Xm 1/2 + g 15 (H f · X f + Hp · X p + H b · X b) (27) g 1 ~g 15 is determined by experiment.

<作用> 以下に発明で使用するモデル式を構築する知見の説明
とその作用について述べる。
<Operation> The following is a description of the knowledge for constructing the model formula used in the invention and the operation thereof.

熱間圧延鋼材の材質は成分のみならず、圧延条件、冷
却条件等の製造条件により変化する。
The material of the hot-rolled steel material varies depending not only on the composition but also on manufacturing conditions such as rolling conditions and cooling conditions.

本発明者等は鋼材の材質が鋼材のミクロ組織と対応づ
けられる事に着目し、ミクロ組織を介する事により製造
条件から材質を予測するモデルを実態の解析データに基
づき構築した。
The inventors of the present invention focused on the fact that the material quality of the steel material is associated with the microstructure of the steel material, and constructed a model for predicting the material quality from the manufacturing conditions through the microstructure based on actual analysis data.

このモデルはミクロ組織を予測するモデルとミクロ組
織から材質を予測するモデルの2つから構成され、ミク
ロ組織を予測するモデルは更に冷却前のオーステナイト
粒径及び残留歪を計算するオーステナイト粒径モデル
と、これ等を初期条件として冷却条件に基づき冷却完了
後の変態組織体積分率、硬さ、及びフェライト粒径等の
ミクロ組織を計算する変態モデルから構成されている。
This model consists of two models, one for predicting the microstructure and one for predicting the material from the microstructure. The model for predicting the microstructure is the austenite grain size model for calculating the austenite grain size and residual strain before cooling. Based on these cooling conditions as the initial conditions, a transformation model for calculating a microstructure such as a transformation structure volume fraction, hardness, and ferrite grain size after completion of cooling is constructed.

全体の計算フローは第1図に示しており、以下、この
第1図を参照して説明する。
The overall calculation flow is shown in FIG. 1, and will be described below with reference to FIG.

以下モデルについて述べる。 The model is described below.

圧延終了後冷却開始直前の平均オーステナイト粒径▲
▼及び残留歪Δεはその後の冷却によって生じる変
態組織分率、硬さ、粒径に大きな影響を及ぼし最終的な
鋼材の材質を左右する。
Average austenite grain size immediately after cooling after rolling is completed ▲
The ▼ and the residual strain Δε have a great influence on the transformation structure fraction, hardness, and grain size generated by the subsequent cooling, and influence the final steel material.

この▲▼、Δεは、オーステナイト域の加工条件
(加工温度Ti、付加歪ε、歪速度)及び初期粒径
dγから決定される。
▲ ▼ and Δε are determined from the processing conditions (processing temperature T i , additional strain ε i , strain rate i ) in the austenite region and the initial grain size dγ 0 .

d0は第1段目の圧延機入口のオーステナイト粒径であ
り、再加熱材の場合には加熱温度T0、加熱速度α、等温
保持時間t0によって決まり(1)式を用いて表現され、
通常の加熱条件の場合、加熱温度の影響が最も大きく低
温加熱温度細粒となる。
d 0 is the austenite grain size at the inlet of the first rolling mill, and in the case of a reheated material, it is determined by the heating temperature T 0 , the heating rate α, and the isothermal holding time t 0 and expressed using the equation (1). ,
Under normal heating conditions, the influence of the heating temperature is the largest, and the low temperature heating temperature fine particles are obtained.

初期粒径doのオーステナイトを加工(加工温度Ti、付
加歪ε、歪速度)する場合に歪εが小さい場合
には(もしくは温度Tiが低い場合には)再結晶が起こり
にくいが、εが大きい場合(もしくは高Tiの場合)に
は加工後に静的な再結晶が起こり粒は細粒化する。
When austenite with an initial grain size d o is processed (processing temperature T i , additional strain ε i , strain rate i ), recrystallization occurs when the strain ε i is small (or when the temperature T i is low). Although difficult, if ε i is large (or high T i ), static recrystallization occurs after processing and the grains become finer.

更に大きな歪みを加えると、加工中にも再結晶(動的
再結晶)が起こり粒は更に細粒化する。
When a larger strain is applied, recrystallization (dynamic recrystallization) occurs even during processing, and the grains become finer.

この時の粒径変化は(2)式で与えられる動的再結晶
の限界歪みεを境にして2つの領域に分けて考える事
が出来、ε≧εの領域では動的再結晶、静的再結
晶、未再結晶の3グループに分かれ、ε<εでは静
的再結晶、未再結晶の2グループに分かれ、この時のε
は高温程、初期粒が小さい程小さくなる。
The grain size change at this time can be divided into two regions with the critical strain ε c of the dynamic recrystallization given by the equation (2) as a boundary, and the dynamic recrystallization can be considered in the region of ε i ≧ ε c. , Static recrystallization and non-recrystallization, and when ε ic , it is divided into two groups, static recrystallization and non-recrystallization.
c becomes smaller as the temperature is higher and as the initial grains are smaller.

動的再結晶の占積率fDはε<εではzeroである
が、εが増加すると共に増加し、εが温度、初期粒
径、歪速度で決まる歪εを越すと1になり、(3)式
で表現出来る。
Although space factor f D of the dynamic recrystallization is epsilon i <the epsilon c zero, increases with epsilon i is increased, epsilon i is the temperature, the initial particle size, it exceeds the strain epsilon s determined by the strain rate It becomes 1 and can be expressed by equation (3).

εは高温度、低歪速度程、初期オーステナイト粒径
が小さい程小さい値となり、動的再結晶の進行が遅い事
を示す。
The higher the temperature, the lower the strain rate, and the smaller the initial austenite grain size, the smaller the value of ε s , indicating that the progress of dynamic recrystallization is slow.

又この時得られる動的再結晶粒径dDは、付加歪、初期
粒径に全く依存せず、(5)式の様に温度と歪速度で決
まるZener・Hollomon因子Zで表現されると言う特徴を
持ち低温、高歪速度(高Z)程細粒となる。
Further, the dynamic recrystallized grain size d D obtained at this time does not depend on the additional strain and the initial grain size at all, and is expressed by the Zener-Hollomon factor Z determined by the temperature and the strain rate as in the equation (5). The characteristic is that the lower the temperature and the higher the strain rate (high Z), the finer the particles.

動的細結晶が起きない場合は全領域を対象として、又
動的再結晶が起こった場合には残りの部分を対象として
加工後に静的再結晶が起こる。
If dynamic fine crystals do not occur, the entire region is targeted, and if dynamic recrystallization occurs, the remaining parts are targeted, and static recrystallization occurs after processing.

この時の静的再結晶占積率fsは時間と共に増加し、そ
の速度は付加歪が大きい程、高温程速くなり(4)式の
形で示される。
The static recrystallization space factor f s at this time increases with time, and the higher the additional strain, the higher the temperature, and the higher the speed, the higher the higher the additional strain, the more the rate is represented by the formula (4).

又この時に得られる静的再結晶粒径dsは動的再結晶と
は対称的に(7)式のように温度、歪速度には依存せ
ず、初期粒径d0、付加歪εで決定されると言う特徴を持
ち、d0が小さい程、εが大きい程細粒となる。
Also, the static recrystallized grain size d s obtained at this time does not depend on the temperature and strain rate as shown in Eq. (7) symmetrically with the dynamic recrystallization, and it depends on the initial grain size d 0 and the additional strain ε. It has a characteristic that it is determined, and the smaller d 0 and the larger ε i , the finer the particles.

この様に1回の加工で生じた動的、静的再結晶粒は、
次の加工もしくは冷却の開始迄の間に粒成長により粗粒
化する。
In this way, the dynamic and static recrystallized grains generated in one processing are
Coarse grains are formed by grain growth before the next processing or the start of cooling.

この時の動的再結晶粒は、粒内に多量の転位を持つ一
種の加工組織であり、粒毎に転位密度が異なるために粒
界の界面エネルギーと同時に転位密度の差も含めた大き
な駆動力で非常に早い粒成長を行う。
At this time, the dynamic recrystallized grain is a kind of work structure that has a large amount of dislocations in the grain, and since the dislocation density is different for each grain, a large driving force including the interface energy at the grain boundary and the dislocation density as well. Forces very fast grain growth.

一方、静的再結晶をした粒の粒内の転位速度は極めて
低い事から、粒成長の駆動力は殆ど界面エネルギーのみ
であり、比較的ゆっくりとした粒成長を行う。
On the other hand, since the dislocation velocity in the grains of the statically recrystallized grains is extremely low, the driving force for grain growth is almost exclusively the interface energy, and relatively slow grain growth is performed.

これ等を表現したのが、(9)、(10)式である。 These are expressed by equations (9) and (10).

動的、静的再結晶をしなかった部分は未再結晶部分と
して、その占積率fNは(5)式で表せ、粒径dNは扁平化
の効果を取り込んで(8)式で表現出来る。
The portion that has not undergone dynamic and static recrystallization is an unrecrystallized portion, and its space factor f N can be expressed by equation (5), and the grain size d N can be expressed by equation (8) by incorporating the flattening effect. Can be expressed.

以上の式を用いる事により1回の加工時間tを経過し
た後(次回加工前の、もしくは冷却開始直前の)平均オ
ーステナイト粒径▲▼又は▲▼は、各再結晶
の形態に属する粒の占める占積率及び各粒が時間tの間
に成長した粒径を用いて2次元平均を行い(11)式で計
算する。
By using the above equation, the average austenite grain size ▲ ▼ or ▲ ▼ i after one processing time t has elapsed (before the next processing or immediately before the start of cooling) is the grain size of each recrystallization morphology. A two-dimensional average is calculated using the space factor and the grain size of each grain grown during the time t, and is calculated by equation (11).

又この時間tの間の歪の解放については、動的再結晶
した粒内には平均としてε、動的再結晶した粒はzer
o、未再結晶粒には付加歪が残り、時間tの間に静的に
回復するとして(12)式で計算され、残留歪Δεを求め
る事が出来る。
Regarding the release of strain during this time t, ε c was averaged in the dynamically recrystallized grains, and
o, additional strain remains in the non-recrystallized grains, and the residual strain Δε can be calculated by the equation (12) assuming that it is statically recovered during the time t.

以上の過程を実際の加工回数だけ繰り返す事により、
冷却開始直前における平均γ粒径▲▼、残留歪Δε
を得る事が出来る。
By repeating the above process for the actual number of machining,
Immediately before the start of cooling, the average γ grain size ▲ ▼, residual strain Δε
Can be obtained.

次に冷却過程については、等温変態曲線(TTT曲線)
を基本として、以下に示す方法により計算を行う。
Next, regarding the cooling process, the isothermal transformation curve (TTT curve)
Based on, the calculation is performed by the following method.

オーステナイト域で加工が完了した鋼材は、その温度
が(15)式で示される平衡変態温度Ae3以下になると変
態し得る状態になる。
A steel material that has been worked in the austenite region is in a state where it can be transformed when the temperature becomes equal to or lower than the equilibrium transformation temperature Ae 3 shown in equation (15).

この時等温(Ae3温度以下)で保持した際には成分や
温度で決まる潜伏期τを消費した後変態を開始し、その
後は時間と共に変態量が増加する。
When kept isothermally (Ae 3 temperature or lower) at this time, the transformation starts after consuming the incubation period τ determined by the components and temperature, and thereafter the transformation amount increases with time.

この時の変態進行のkineticsはフェライト、パーライ
トの場合は(イ)式、ベーナイトの場合は(ロ)式で表
現出来る。
Kinetics of transformation progress at this time can be expressed by the formula (a) in the case of ferrite and pearlite, and by the formula (b) in the case of bainite.

X(t)=1−(1+k/p(t−τ))-p (イ) X(t)=1−exp(−k(t−τ) (ロ) (但しt≧τ) ここでτは潜伏期、k、nは実験もしくは理論から求
められる定数であり、X(t)は等温変態の際の時刻t
での変態量である。
X (t) = 1- (1 + k / p (t-τ)) -p (b) X (t) = 1-exp (-k (t-τ) p (b) (where t ≧ τ) where τ is the incubation period, k and n are constants obtained from experiments or theory, and X (t) is the time t during the isothermal transformation.
It is the amount of transformation in.

k、nは変態のkinetics、加工の効果等を表現する事
が出来る重要な因子で、変態により現れる各組織(フェ
ライト、パーライト、ベーナイト)に対してそれぞれ決
定しなくてはならない。
k and n are important factors that can express the kinetics of transformation, the effect of processing, etc., and must be determined for each structure (ferrite, pearlite, bainite) that appears due to transformation.

γ域での加工により残留した歪Δεの効果は、梅本等
(鉄と鋼vol70(1984)N06)が行っている様に、γ粒
の扁平化によって生ずる粒界面積増加による変態核生成
サイトの増加、粒内に発生する変形帯等の新しい変態
核生成サイトの増加、核生成速度自身の増加の3つの
効果を総合的に取り込む必要がある。
The effect of residual strain Δε due to processing in the γ region is similar to that of Umemoto et al. (Iron and steel vol70 (1984) N06), and the transformation nucleation site due to the increase in the grain boundary area caused by the flattening of the γ grain It is necessary to comprehensively incorporate the three effects of increase, increase of new transformation nucleation sites such as deformation zones generated in grains, and increase of nucleation rate itself.

梅本等の方法に従うと、は圧延により伸長したγ粒
の粒界面積増加指数qを用いて表す事が出来、は歪の
2乗の項で表現出来、は歪の一次の項で表現出来る。
According to the method of Umemoto et al., Can be expressed by using the grain boundary area increase index q of the γ grain elongated by rolling, can be expressed by the term of square of strain, and can be expressed by the first term of strain.

これ等の効果を取り込んで(イ)式を表現すると、フ
ェライト、パーライト、ベーナイトに対して、それぞれ
(13)、(14)、(15)式の表現出来る。
By taking these effects into consideration and expressing equation (a), equations (13), (14), and (15) can be expressed for ferrite, pearlite, and bainite, respectively.

これ等(13)、(14)、(15)の式及びkf、kbは本発
明者等はSiを0.1%以上含有する鋼材について新たに知
得した変態挙動に基づいて、前記した本発明者等の提案
である特開昭62−158816号公報の(13)、(14)、(1
5)式及びk4、k10、k13を改め、変態挙動の実態に沿っ
てより正確に材質を予測するものである。
These equations (13), (14) and (15) and k f and k b are based on the newly known transformation behavior of the steel materials containing 0.1% or more of Si by the present inventors. (13), (14), and (1) of Japanese Patent Application Laid-Open No. 62-158816 proposed by the inventors.
5) changed the formula and k 4, k 10, k 13 , it is to predict more accurately the material along the actual conditions of transformation behavior.

尚本発明においても各組織が温度Tで変態を開始する
迄には、τ、τで示される潜伏期を消費し終わらな
ければならない点は変わらない。
In the present invention as well, the fact that each structure must consume and finish the latent period indicated by τ 1 and τ 2 before the transformation starts at the temperature T remains unchanged.

各組織の最大変態率は平衡状態図から予測出来る。フ
ェライトについては、炭素量、変態温度でXfmaxが記述
でき残りがXPmax、XBmaxとなる。
The maximum transformation rate of each structure can be predicted from the equilibrium diagram. For ferrite, X fmax can be described in terms of carbon content and transformation temperature, and the rest are X Pmax and X Bmax .

この様な等温変態曲線(TTT曲線)がある場合に通常
の冷却過程では加算則を用いて変態進行を計算出来る。
When there is such an isothermal transformation curve (TTT curve), the transformation progress can be calculated using the addition rule in the normal cooling process.

即ち冷却曲線に沿って温度変化を微小温度ΔTとに分
解し、各温度での等温変態の進行を加算するものであ
る。
That is, the temperature change is decomposed into a minute temperature ΔT along the cooling curve, and the progress of the isothermal transformation at each temperature is added.

Ae3以下ではフェライトの潜伏期の消費量Wは(ハ)
式で示され、Wが1を越した時点でフェライト変態が開
始する。
Below Ae 3 , the consumption W of ferrite during the incubation period is (C)
As shown by the formula, when W exceeds 1, ferrite transformation starts.

W=ΣMi (ハ) 但しWiはTからT−ΔTの1stepで消費される潜伏期
で(ニ)式で表現される。
W = ΣM i (c) However, W i is the latent period consumed in one step from T to T−ΔT, and is expressed by the equation (d).

但しCRはΔ間の平均冷却速度である。 However, CR is the average cooling rate between Δ.

Wi=ΔT/CR/τ(T) (ニ) フェライト変態が完了した場合には引き続いてパーラ
イト変態量を求め、又(17)式で示されるパーライト変
態終了温度TPE迄は、フェライト変態が完了していない
場合には、その後についてはベーナイト変態の変態量を
計算する。
W i = ΔT / CR / τ (T) (d) When the ferrite transformation is completed, the pearlite transformation amount is subsequently obtained, and the ferrite transformation is completed up to the pearlite transformation end temperature TPE shown in equation (17). If not, the transformation amount of bainite transformation is calculated thereafter.

冷却中に変態した各組織は変態後冷却中に軟化し、最
終的な硬さを決定する。
Each structure transformed during cooling softens during cooling after transformation and determines the final hardness.

(17)式で表されるパーライト変態終了温度TPE以上
で現れたフェライトについては、含有元素成分(〔C
%〕、〔Mn%〕、〔Si%〕)で決まる硬さから、TPE迄
の時間は(18)式に従って軟化するが、TPE以下におい
ては温度、時間に依存する(19)式で軟化する。
Regarding the ferrite expressed by the expression (17) above the pearlite transformation end temperature TPE, the contained elemental components ([C
%], [Mn%], [Si%]), the time up to TPE softens according to formula (18), but below TPE it softens according to temperature and time according to formula (19). .

又この時各温度で平衡する固溶炭素量SC(T)を考慮
に入れた(19)式によって450℃迄計算した後、450℃で
平衡する固溶炭素量による強化を差引き最終的なフェラ
イト硬さHfを計算する。
At this time, the solid solution carbon amount SC (T) that equilibrates at each temperature is taken into consideration and calculated up to 450 ° C by the equation (19). Calculate the ferrite hardness H f .

パーライトについては生成温度によって決まるパーラ
イト硬さH(T)にその生成量ΔXpをかけて合計の上平
均する。
For pearlite, the pearlite hardness H (T) determined by the production temperature is multiplied by the production amount ΔX p , and the total is averaged.

この時各温度で生成するパーライトの硬さはパーライ
トのラメラー間隔によって決まると考えられ、この間隔
は〔Mn%〕で決まるAe1平衡変態温度からの過冷却によ
って記述される。従って最終パーライト硬さは(21)式
で表現される。
The hardness of pearlite formed at each temperature is considered to be determined by the lamellar spacing of pearlite, and this spacing is described by supercooling from the Ae 1 equilibrium transformation temperature determined by [Mn%]. Therefore, the final pearlite hardness is expressed by equation (21).

ベーナイトの硬さについては、ベーナイトが生成する
全温度領域に対し、(22)式で示した軟化を考慮した式
により計算出来る。
The hardness of bainite can be calculated by the equation considering the softening shown in equation (22) for the entire temperature range where bainite is generated.

次にこの冷却中に現れたフェライトの粒径は、(23)
式で計算出来る。
Next, the grain size of ferrite that appeared during this cooling was (23)
It can be calculated by a formula.

又冷却停止後(もしくは巻き取り後)の除冷ではフェ
ライト粒同士の合体による粒成長が起こるが、除冷であ
るがため最終的に成長した粒径は冷却停止(もしくは巻
き取り温度)CTと初期フェライト粒径df0で一義的に決
まり(24)式で表現出来る。
In addition, grain growth occurs due to coalescence of ferrite grains with each other when cooling is performed after cooling is stopped (or after winding), but since it is cooling, the finally grown grain size is the same as CT when cooling is stopped (or winding temperature). It is uniquely determined by the initial ferrite grain size d f0 and can be expressed by equation (24).

この様にして得られるミクロ組織と最終熱延鋼材の材
質との間には、友田等(鉄と鋼vol 61(1976)No1)が
行っている様な混合則が成立すると考えられる。
It is considered that a mixing rule similar to that used by Tomoda et al. (Iron and Steel vol 61 (1976) No. 1) is established between the microstructure obtained in this way and the material of the final hot-rolled steel.

フェライト、パーライト、ベーナイト、マルテンサイ
トを種々の割合で含んだ鋼材の材質とミクロ組織の関係
を歪一定で変形する部分、及び応力一定で変形する部分
に分解し記述すると、引っ張り試験における引っ張り強
度TS、降伏応力YS、全伸びT・Elについて(25)(26)
(27)式となり、ミクロ組織因子を代入する事により最
終熱延鋼材の材質を計算出来る。
The tensile strength TS in the tensile test can be described by decomposing and describing the relationship between the material and microstructure of steel materials containing ferrite, pearlite, bainite, and martensite in various proportions into parts that deform with constant strain and parts that deform with constant stress. , Yield stress YS, Total elongation T · El (25) (26)
It becomes the formula (27), and the material of the final hot rolled steel can be calculated by substituting the microstructure factor.

この様に製造工程の各要因からミクロ組織を予測し、
そのミクロ組織から鋼材の材質を決定すると言う方法を
とる事により熱間圧延鋼材の材質を推定する事が出来
る。
In this way, the microstructure is predicted from each factor in the manufacturing process,
The material of the hot rolled steel can be estimated by adopting the method of determining the material of the steel from the microstructure.

この予測材質が目標の材質と合致する様に各製造ライ
ンの特性や製造方法の変化等に基づいて、圧延条件、冷
却条件を調整する事により、効率良く、歩留良く必要な
材質の鋼材を製造する事が出来る。
By adjusting the rolling conditions and cooling conditions based on the characteristics of each manufacturing line and changes in the manufacturing method so that this predicted material matches the target material, the required steel material can be efficiently and efficiently produced. Can be manufactured.

<実施例> 表1は、本発明を熱間圧延工程に実施した際の基本成
分、冷却速度、及び目標値として設定した熱間圧延鋼材
の材質(引っ張り強度、降伏強度、全伸び)と、予測し
た所要ミクロ組織因子(フェライト、パーライト、ベー
ナイトの組織分率、硬さ、及びフェライト粒径)と、最
終的にこれによって熱間圧延工程で得た鋼材のそれ等の
実測値を示す。表2は、表1に示す各試験番号における
シュミレーションにおいて適用した圧延温度、圧延速
度、巻取温度を示す。尚本実施例において(1)〜(2
7)式で用いた具体的な数値を以下を示す。
<Examples> Table 1 shows the materials (tensile strength, yield strength, total elongation) of hot-rolled steel materials set as basic components, cooling rates, and target values when the present invention was carried out in the hot-rolling process, Predicted required microstructure factors (structure fraction of ferrite, pearlite, bainite, hardness, and ferrite grain size) and finally measured values of those of the steel material obtained in the hot rolling process are shown. Table 2 shows the rolling temperature, rolling speed, and winding temperature applied in the simulation for each test number shown in Table 1. In the present embodiment, (1) to (2
The specific numerical values used in equation (7) are shown below.

表1の1乃至11は本発明例、12と13は特開昭62−1588
16号公報の提案による材質予測とその実積値を示す比較
例である。
In Table 1, 1 to 11 are examples of the present invention, and 12 and 13 are JP-A-62-1588.
It is a comparative example showing the material prediction and the actual product value proposed by Japanese Patent No. 16 publication.

表1に明らかな様に、本発明方法によると比較例に比
して各鋼材の目標材質に必要なミクロ組織を精度良く推
定出来ると共に、高い精度で目標材質を有する熱間圧延
鋼材が得られる。
As is clear from Table 1, according to the method of the present invention, the microstructure required for the target material of each steel material can be estimated more accurately than in the comparative example, and the hot rolled steel material having the target material can be obtained with high accuracy. .

<発明の効果> 以上に説明した本発明は、Siを0.1重量%以上含む熱
間圧延鋼材の各ミクロ組織の硬さの予測と粒径予測と組
織体積率予測及び組み合わせの各精度を高範囲にわたっ
て一段と高めたので、この材質の推定値に基づいて成
分、製造条件を設定する事により、材質を精度良く目標
値にコントロールした熱間圧延鋼材を効率良く、歩留高
く、低いコストの下に製造出来る等、熱間圧延によって
鋼材を製造する分野にもたらす効果は大きい。
<Effects of the Invention> The present invention described above has a high range of accuracy of prediction of hardness, grain size prediction, structure volume fraction prediction, and combination of microstructures of hot-rolled steel containing Si in an amount of 0.1% by weight or more. Since it has been further improved over the past, by setting the composition and manufacturing conditions based on the estimated value of this material, the hot rolled steel material in which the material is accurately controlled to the target value can be used efficiently, with high yield and at low cost. For example, the effect of producing the steel material by hot rolling is great.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の全体の計算フロー図を示している。 FIG. 1 shows an overall calculation flow chart of the present invention.

フロントページの続き (72)発明者 江坂 一彬 大分県大分市大字西ノ洲1番地 新日本 製鐵株式会社大分製鐵所内 (56)参考文献 特開 昭62−158816(JP,A) 特開 昭61−163211(JP,A) 鉄と鋼 第70年 (1984) 第6号 梅本,大塚,田村P.557〜564Continuation of the front page (72) Inventor Isaka Esaka 1-chome Nishinosu, Oita City, Oita Prefecture Shin-Nippon Steel Co., Ltd. Oita Works (56) Reference JP 62-158816 (JP, A) JP 61 -163211 (JP, A) Iron and steel 70th year (1984) No. 6 Umemoto, Otsuka, Tamura P. 557 ~ 564

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】予め実態から求めた式を用いてSiを0.1重
量%以上含有する炭素鋼をAr3点温度以上で圧延後冷却
して鋼材を製造するに際し、加熱炉出側平均γ粒径を少
なくとも加熱速度α(K/min)、加熱温度T0(K)、等
温保持時間t0(min)からなる加熱条件をもとに(1)
式で計算し、動的再結晶、静的再結晶、未再結晶の各占
積率fD、fS、fN及び動的再結晶、静的再結晶、未再結晶
の各々の粒径、dD(μm)とdS(μm)とdN(μm)を
それぞれ少なくとも加工温度Ti(K)、付加歪ε、歪
速度(S-1)からなる加工条件をもとに、(2)式
で与えられる付加歪εが、動的再結晶の限界歪εより
大きい時は動的再結晶、静的再結晶、未再結晶の3グル
ープに分け、付加歪εが動的再結晶の限界歪εより小
さい時は静的再結晶、未再結晶の2グループに分けて
(3)(4)(5)(6)(7)(8)式で計算し、パ
ス間における粒成長を動的再結晶については(9)式
で、静的再結晶については(10)式で計算して次パス直
前の平均オーステナイト粒径である▲▼(μm)
を(11)式で、次パス直前の残留歪量であるΔε
(12)式で求めて次パスにおいては付加歪εi+1に前パ
スの残量歪量Δεを加えて実行歪を求め、この実行歪
と次パス直前の平均オーステナイト粒径▲▼(μ
m)から上記と同様に再結晶挙動を計算し、これを所定
パス回数繰り返して冷却開始前の平均オーステナイト粒
径▲▼(μm)と残留歪量Δεを求め、該冷却開始
前の平均オーステナイト粒径▲▼(μm)と残留歪
量Δεを初期条件とし、(16)式で変態のための潜伏期
の消費が始まる平均変態温度Ae3(K)を求め、フェラ
イト、パーライトが変態する温度とベーナイトが変態す
る温度の境界を示すTPE(K)を(17)式で求め、フェ
ライト、パーライト、ベーナイトの等温変態率の推定式
(13)(14)(15)式により既に求められている冷却曲
線について、変態率の加算則を適用し、最終的なフェラ
イト組織、パーライト組織、ベーナイト組織の体積率を
計算して1から前記フェライトとパーライトとベーナイ
トの各組織の合計体積率を減算してマルテンサイト組織
の体積率を求める。上記変態率の計算に於いて923K以上
で出現したフェライトの硬さHf0は(18)式で、923K未
満723K以上で現れたフェライトの硬さHf0は(19)式で
各々冷却曲線に沿って計算し更に最終フェライトの硬さ
Hfを(20)式で求めパーライトの最終硬さHpを(21)式
で求め、ベーナイトの最終硬さHbを(22)式で各々求
め、最終フェライト粒径df(μm)を(23)(24)式で
求める。 以上からフェライト粒径df(μm)、フェライト体積率
Xf、フェライトの硬さHf、パーライト体積率Xp、パーラ
イトの硬さHp、ベーナイト体積率Xb、ベーナイト硬さ
Hb、マルテンサイト体積率Xfmを基に(25)〜(27)式
により引張強さTS(kgf/mm2)、降伏強さYS(kgf/mm2
及び全伸びT.E1(%)を算出し、これ等を目標材質と比
較してその差が常に所要範囲にある様に少なくとも上記
実態の中の圧延条件及び又は冷却条件からなる製造条件
を調整する事を特徴とする熱間圧延鋼材の製造方法。 dγ0 =(k1・α-a+A1・exp(−A2/T0)t
0 2 (1) k1=B〔(T0−1173)/100〕+C a、b、A1、A2、B、Cは実験により求める。 αは加熱速度、T0は加熱温度、t0は保持時間。 ε=A3・d0 C1・exp(A4/RTi) (2) Tiは圧延温度、Rは気体定数。 C1、A3、A4は実験により求める。 fD=1−exp・〔−(ε−εC−ε
(3) ε=A5・〔1−exp(−d0/k2)〕 k2=A6-d・exp(−A7/Ti) m=A8・exp(A9/Ti) d、A5〜A9は実験により求める。 は歪速度である。 fS=(1−fD){1−exp〔−t/τ〕} (4) τ=A10・ε-f・exp(A11/RTi) tはパス間時間。 e、f、A10、A11は実験により求める。 fN=1−fD−fS (5) dD=k3・Z-g (6) k3=A12・Q0−A13 Q0=A14−A15・Ceq Ceq=〔%C〕+〔%Mn〕/6 Z=・exp(Q0/RT) g、A12〜A15は実験により求める。 dS=k16・d0 h・ε-i (7) h、i、A16は実験により求める。 dN=d0・exp(−ε/4) (8) dDG 2=dD 2+A17・exp(−A18/RT)・tj (9) j、k、l、m、m1、A17〜A20は実験により求める。 Δε=(fD・ε+fD・ε)・exp〔−(t/τ
(12) τ=A21・exp(A22/RTi) n、A21、A22は実験により求める。 Xf/Xfmax=1−〔1+k1/p(t−τ)〕-p (13) q=1/2〔r2+β・γ(α−γ−1/2・F +β(α−γ1/2・E〕 Γ=〔α(β−γ)/β(α−γ)〕1/2 μ=arccos(γ/α) kf=exp{B4+B5ln(%Si)+B6〔ln(%Si)〕 +B7(%C)+B8(%Mn)+B9(T−273) +B10(T−273)τ=exp{B11+B12ln(%Si) +B13〔ln(%Si)〕+B14(%C)+B15(%Mn) +B16(T−273)+B17(T−273)} Xfmax=1−〔%C〕/〔B1819(T−273) +B20(T−273)〕 (T≧993k) =1−〔%C〕/〔B18+B19・720+B20・(720)〕 (T<993k) p=B21+B22ln(%Si)+B23〔ln(%Si)〕 B1〜B23は実験により求める。 Xp=1−exp〔1+k1/p(t−τ)〕-p (14) kb=exp[B24+B25(%Si)+B26(%C) +B27(%Mn)+B28(T−273) +B29(T−273)τ=exp〔B30+B31(%Si)+B32(%Si)〕 +B33(%C)+B34(%Mn)+B35(T−273) +B36(T−273)〕 P1=1.4 B24〜B36は実験により求める。 TPE=B41+B42(%C)+B43(%Mn)+B44(%Si) (17) P2、B37〜B44は実験により求める。 Hf0=C1+C2(%C)+C3(%Mn)+C4(%Si)+C4lnt
(18) (T≧993k) Hf=Hf0+C8・exp(C9/T) (20) P3、C1〜C9は実験により求める。 Hp=Σ〔ΔXp・H(T)〕/ΣΔXp (21) H(T)=C10+C11(Ae1−T)-1 Ae1=C12+C13(%Mn)+C14(%Si) ΔXpは各温度で現れたパーライト量 P4、P5、C11〜C19は実験により求める。 df=df0 (23) df0=exp[f1+f2・lnXf+f3・k3+f4・k4 +f5・ln(1+B3・Δε)+f6・ln(%C) +f7・ln(%Mn)] (T≦723k) k3=ln{〔f8+f9・(%Si)+f10・(%Si) ×〔(2.24/40)/(2.24/40+B2)〕} df=df0+d11・exp(f12/T) (24) (T>723k) f1〜f12は実験により求める。 TS=g1+g2・Xf・df −1/2+g3・Xb・dγ −1/2 +g4・Xm1/2+g5(Hf・Xf+Hp・Xp+Hb・Xb) (25) YS=g6+g7・Xf・df −1/2+g8・Xb・dγ −1/2 +g9・Xm1/2+g10(Hf・Xf+Hp・Xp+Hb・Xb) (26) T.El=g11+g12・Xf・df −1/2+g13・Xb・dγ −1/2 +g14・Xm1/2+g15(Hf・Xf+Hp・Xp+Hb・Xb) (27) g1〜g15は実験により求める。
1. When manufacturing a steel product by rolling a carbon steel containing 0.1% by weight or more of Si at a temperature of Ar 3 point or higher and cooling it by using a formula obtained from actual conditions in advance, the average γ grain size on the outlet side of the heating furnace is set. (1) on the basis of the heating conditions including at least the heating rate α (K / min), the heating temperature T 0 (K), and the isothermal holding time t 0 (min)
Calculated by the formula, the space factors f D , f S , and f N of dynamic recrystallization, static recrystallization, and non-recrystallization and the grain sizes of dynamic recrystallization, static recrystallization, and non-recrystallization , D D (μm) and d S (μm) and d N (μm), respectively, based on the processing conditions including at least the processing temperature Ti (K), the additional strain ε i , and the strain rate i (S −1 ). When the additional strain ε given by the equation (2) is larger than the critical strain ε C of dynamic recrystallization, it is divided into three groups of dynamic recrystallization, static recrystallization, and non-recrystallization, and the additional strain ε is dynamic. When the critical strain of recrystallization is smaller than ε C, static recrystallization and non-recrystallization are divided into two groups, and calculations are performed using equations (3), (4), (5), (6), (7), and (8), and The average austenite grain size immediately before the next pass is calculated by calculating the grain growth in Eq. (9) for dynamic recrystallization and Eq. (10) for static recrystallization ▲ ▼ i (μm)
Is calculated by Eq. (11), Δε i , which is the residual strain amount immediately before the next pass, is calculated by Eq. (12), and the additional strain ε i + 1 is added to the residual strain amount Δε i of the previous pass in the next pass. The strain is calculated, and the effective strain and the average austenite grain size immediately before the next pass ▲ ▼ i
m), the recrystallization behavior is calculated in the same manner as described above, and this is repeated a predetermined number of times to obtain the average austenite grain size ▲ ▼ (μm) before the start of cooling and the residual strain amount Δε, and the average austenite grain before the start of cooling. With the diameter ▲ ▼ (μm) and the residual strain Δε as initial conditions, the average transformation temperature Ae 3 (K) at which consumption of the latent period for transformation starts is calculated using equation (16), and the temperature at which ferrite and pearlite transform and bainite The TPE (K), which indicates the boundary of the temperature at which the transformation takes place, is calculated using Equation (17), and the cooling curve that has already been calculated using Equations (13), (14), and (15) for estimating the isothermal transformation rate of ferrite, pearlite, and bainite The transformation ratio addition rule is applied to calculate the final volume fraction of the ferrite structure, the pearlite structure, and the bainite structure, and the total volume ratio of the ferrite, pearlite, and bainite structures is subtracted from 1 to calculate the volume ratio. Determine the volume rate of ten site organization. In the above calculation of the transformation rate, the hardness H f0 of ferrite that appears above 923 K is expressed by equation (18), and the hardness H f0 of ferrite that appears below 923 K and above 723 K is expressed by equation (19) along each cooling curve. Calculated from the hardness of the final ferrite
The H f final hardness H p (20) perlite determined by the equation obtained in (21), each seeking final hardness H b of bainite in (22), the final ferrite grain size d f ([mu] m) (23) (24) is calculated. From the above, ferrite grain size d f (μm) and ferrite volume ratio
X f , ferrite hardness H f , pearlite volume fraction X p , pearlite hardness H p , bainite volume fraction X b , bainite hardness
The tensile strength TS (kgf / mm 2 ) and the yield strength YS (kgf / mm 2 ) are calculated from Eqs. (25) to (27) based on H b and martensite volume ratio X fm.
And calculate the total elongation T.E1 (%), compare these with the target material and adjust the manufacturing conditions consisting of at least the rolling conditions and cooling conditions in the above actual conditions so that the difference is always within the required range. A method for producing a hot rolled steel material, comprising: d γ0 2 = (k1 · α -a ) 2 + A1 · exp (−A 2 / T 0 ) t
0 2 (1) k 1 = B [(T 0 −1173) / 100] 3 + C a, b, A 1 , A 2 , B and C are experimentally determined. α is the heating rate, T 0 is the heating temperature, and t 0 is the holding time. ε C = A 3 · d 0 C 1 · exp (A 4 / RT i ) (2) T i is the rolling temperature and R is the gas constant. C 1 , A 3 , and A 4 are experimentally determined. f D = 1-exp · [- (ε i -ε C / ε S -ε i) m ]
(3) ε S = A 5 · [1-exp (−d 0 / k 2 )] k 2 = A 6 · -d · exp (−A 7 / Ti) m = A 8 · exp (A 9 / Ti ) d, A 5 ~A 9 is determined by experiments. Is the strain rate. f S = (1-f D ) {1-exp [-t / τ S) e]} (4) τ S = A 10 · ε -f · exp (A 11 / RT i) t between the path time. e, f, A 10 and A 11 are experimentally determined. f N = 1-f D −f S (5) d D = k 3 · Z -g (6) k 3 = A 12 · Q 0 −A 13 Q 0 = A 14 −A 15 · C eq C eq = [% C] + [% Mn] / 6 Z = · exp (Q 0 / RT) g, A 12 to A 15 are determined by experiments. d S = k 16 · d 0 h · ε -i (7) h, i, A 16 are obtained by experiments. d N = d 0 · exp (−ε / 4) (8) d DG 2 = d D 2 + A 17 · exp (−A 18 / RT) · t j (9) j, k, l, m, m 1 , A 17 to A 20 are experimentally determined. Δε = (f D · ε C + f D · ε) · exp [− (t / τ k ) n ]
(12) τ k = A 21 · exp (A 22 / RT i ) n, A 21 , and A 22 are obtained by experiments. X f / X fmax = 1- [1 + k 1 / p (t-τ 1 )] -p (13) q = 1/2 [r 2 + β · γ 22 −γ 2 ) −1 / 2 · F + β (α 2 −γ 2 ) 1/2 · E] Γ = [α 22 −γ 2 ) / β 22 −γ 2 )] 1/2 μ = arccos (γ / α) k f = exp {B 4 + B 5 ln (% Si) + B 6 [ln (% Si)] 2 + B 7 (% C) + B 8 (% Mn) + B 9 (T-273) + B 10 (T-273) 2} τ f = exp {B 11 + B 12 ln (% Si) + B 13 [ln (% Si)] 2 + B 14 (% C) + B 15 (% Mn) + B 16 (T-273) + B 17 (T-273) 2} X fmax = 1 - [% C] / [B 18 + 19 (T-273 ) + B 20 (T-273) 2 ] (T ≧ 993k) = 1 - [% C] / [B 18 + B 19 · 720 + B 20 · (720) 2 ] (T <993k) p = B 21 + B 22 ln (% Si) + B 23 [ln (% Si)] 2 B 1 to B 23 are obtained by experiments. X p = 1-exp [1 + k 1 / p (t−τ 1 )] -p (14) k b = exp [B 24 + B 25 (% Si) 2 + B 26 (% C) + B 27 (% Mn) + B 28 (T-273) + B 29 (T-273) 2 ] τ b = exp [B 30 + B 31 (% Si) + B 32 (% Si)] 2 + B 33 (% C) + B 34 (% Mn) + B 35 (T-273) + B 36 (T-273) 2 ] P 1 = 1.4 B 24 ~B 36 is determined by experiment. TPE = B 41 + B 42 ( % C) + B 43 (% Mn) + B 44 (% Si) (17) P 2, B 37 ~B 44 is determined by experiment. H f0 = C 1 + C 2 (% C) + C 3 (% Mn) + C 4 (% Si) + C 4 lnt
(18) (T ≧ 993k) H f = H f0 + C 8 · exp (C 9 / T) (20) P 3, C 1 ~C 9 is determined by experiments. H p = Σ [ΔX p · H (T)] / ΣΔX p (21) H (T) = C 10 + C 11 (Ae 1 −T) −1 Ae 1 = C 12 + C 13 (% Mn) + C 14 ( % Si) ΔX p is the amount of pearlite that appears at each temperature P 4, P 5, C 11 ~C 19 is determined by experiment. d f = d f0 (23) d f0 = exp [f 1 + f 2 · lnX f + f 3 · k 3 + f 4 · k 4 + f 5 · ln (1 + B 3 · Δε) + f 6 · ln (% C) + f 7・ Ln (% Mn)] (T ≦ 723k) k 3 = ln {[f 8 + f 9・ (% Si) + f 10・ (% Si) 2 ] 3 × [(2.24 / 40) / (2.24 / 40 + B 2 )]} d f = d f0 + d 11 · exp (f 12 / T) (24) (T> 723k) f 1 to f 12 are obtained by experiments. TS = g 1 + g 2 · X f · d f −1/2 + g 3 · X b · d γ −1/2 + g 4 · Xm 1/2 + g 5 (H f · X f + Hp · X p + H b · X b) (25) YS = g 6 + g 7 · X f · d f -1/2 + g 8 · X b · d γ -1/2 + g 9 · Xm 1/2 + g 10 (H f · X f + Hp・ X p + H b・ X b ) (26) T.El = g 11 + g 12・ X f・ d f −1/2 + g 13・ X b・ d γ −1/2 + g 14・ Xm 1/2 + g 15 (H f · X f + Hp · X p + H b · X b) (27) g 1 ~g 15 is determined by experiment.
JP12758288A 1988-05-24 1988-05-24 Manufacturing method of hot rolled steel Expired - Lifetime JP2672572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12758288A JP2672572B2 (en) 1988-05-24 1988-05-24 Manufacturing method of hot rolled steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12758288A JP2672572B2 (en) 1988-05-24 1988-05-24 Manufacturing method of hot rolled steel

Publications (2)

Publication Number Publication Date
JPH01298114A JPH01298114A (en) 1989-12-01
JP2672572B2 true JP2672572B2 (en) 1997-11-05

Family

ID=14963631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12758288A Expired - Lifetime JP2672572B2 (en) 1988-05-24 1988-05-24 Manufacturing method of hot rolled steel

Country Status (1)

Country Link
JP (1) JP2672572B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104673992B (en) * 2015-02-13 2017-01-04 中冶南方工程技术有限公司 The control method of a kind of production line of bar Controlled cooling process and device
JP2020509242A (en) 2016-12-20 2020-03-26 アルセロールミタル Method of dynamic conditioning for producing thermally treated steel sheet
CN114807589B (en) * 2022-03-31 2023-07-14 中钢集团邢台机械轧辊有限公司 Martensitic-bainitic complex phase structure heat treatment control method for high-carbon high-speed steel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
鉄と鋼 第70年 (1984) 第6号 梅本,大塚,田村P.557〜564

Also Published As

Publication number Publication date
JPH01298114A (en) 1989-12-01

Similar Documents

Publication Publication Date Title
Kim et al. Dynamic recrystallization behavior of AISI 304 stainless steel
US6430461B1 (en) Process for monitoring and controlling the quality of rolled products from hot-rolling processes
Sellars et al. Recrystallization and grain growth in hot rolling
Cuddy Microstructures developed during thermomechanical treatment of HSLA steels
Kim et al. Modeling of AGS and recrystallized fraction of microalloyed medium carbon steel during hot deformation
JP2597986B2 (en) Manufacturing method of hot rolled steel
McQueen Metal forming: Industrial, mechanical computational and microstructural
WO1992021970A1 (en) Method of estimating material of steel product
DeArdo Metallurgical basis for thermomechanical processing of microalloyed steels
CN1205920A (en) Model supported method for controlling cooling of rolled piece during rolling and cooling
Nwachukwu et al. Effects of rolling process parameters on the mechanical properties of hot-rolled St60Mn steel
McQueen Review of simulations of multistage hot-forming of steels
JPH08512094A (en) Strain-induced transformation to ultrafine microstructure in steel
JP2672572B2 (en) Manufacturing method of hot rolled steel
PR et al. Simulated rod rolling of interstitial free steels
Balogun et al. Influence of finishing temperature on the mechanical properties of conventional hot rolled steel bar
JPH05142126A (en) Method for predicting quality of steel plate
JPH0587800A (en) Estimating method of quality of steel material
Yanagimoto FE-based analysis for the prediction of inner microstructure in metal forming
Stumpf Grain size modelling of a low carbon strip steel during hot rolling in a Compact Strip Production (CSP) plant using the Hot Charge Route
JP2509487B2 (en) Steel plate material prediction method
JPH04361158A (en) Estimation and control of material quality of steel plate
Schmitz et al. New thermomechanical hot rolling schedule for the processing of high strength fine grained multiphase steels
JP2509479B2 (en) Steel plate material prediction device
JPH0711024B2 (en) Manufacturing method of hot rolled steel and its material prediction method