JPS6028384A - Solid-state image pickup element - Google Patents

Solid-state image pickup element

Info

Publication number
JPS6028384A
JPS6028384A JP58138208A JP13820883A JPS6028384A JP S6028384 A JPS6028384 A JP S6028384A JP 58138208 A JP58138208 A JP 58138208A JP 13820883 A JP13820883 A JP 13820883A JP S6028384 A JPS6028384 A JP S6028384A
Authority
JP
Japan
Prior art keywords
photodetectors
signal
solid
transfer
read
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58138208A
Other languages
Japanese (ja)
Inventor
Masaaki Kimata
雅章 木股
Shuhei Iwade
岩出 秀平
Natsuo Tsubouchi
坪内 夏朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58138208A priority Critical patent/JPS6028384A/en
Publication of JPS6028384A publication Critical patent/JPS6028384A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/701Line sensors

Abstract

PURPOSE:To decrease sufficiently the effect of transfer efficiency even for a solid-state image pickup element having a large picture element number by dividing a CCD in a plural number to decrease the number of stages of transfer in the solid-state image pickup element provided with plural photodetectors arranged linearly. CONSTITUTION:The CCD is divided into four; 31-34. A clock phiT1 is inputted to a transfer gate and a signal of the photodetectors 15, 17 is read by the CCD33. Then a clock phiT3 is inputted and a signal of photodetectors 16, 18 is read by the CCD34. The signals are given to a multiplexer 60 through preamplifiers 43, 44 according to the drive of the CCDs 33, 34. The signal is read from an output terminal 50 in the order of photodetector 18 17 16 15. The CCDs 31, 32 are driven in the state not including any signal. Clocks phiT3 and phiT4 are inputted just before the signal of the photodetectors 15, 16 is read, the signal of the photodetectors 11, 13 is read by the CCD31, the signal of the photodetectors 12, 14 is read by the CCD32 and the signal is outputted in the order of photodetector 14 13 12 11.

Description

【発明の詳細な説明】 この発明は、電荷結合素子の転送効率に起因する出力の
不均一を防止した固体撮像素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solid-state image pickup device that prevents uneven output caused by the transfer efficiency of a charge-coupled device.

現在、−次元固体撮像素子は2000〜3000個の光
検出器を持ったものが作られており、読み出しには通常
電荷結合素子(以下CCDとい5ンが用いられている。
Currently, -dimensional solid-state image pickup devices having 2,000 to 3,000 photodetectors are manufactured, and charge coupled devices (hereinafter referred to as CCDs) are usually used for readout.

第1図は従来の一次元固体撮像素子の一例を示すブロッ
ク図である。この例は簡単のために8画素のものを示し
である。この図で、11〜18は光検出器で、可視光域
の検出にはPN接合またはMOSキヤパンク等が、赤外
の検出にはショットキダイオード等が用いられる。21
〜28は前記光検出器11〜18からCODへの電荷の
転送を制御するトランスファーゲートで、この例の場合
、偶数番の光検出器12,14,16.18は偶数番の
トランスファーグー) 22,24,26.28を通じ
て上側のCCD32へ転送され、奇数番の光検出器11
.13,15.17は奇数番のトランスファーゲート2
1,23.25.27′ft通じて下側のCCD31へ
転送される。C0D31゜32へ転送された電荷は、順
次電荷検出器兼プリアンプ(以下単にプリアンプという
)40でマルチプレクサされて直列に1つの出力端子5
0から読み出される。
FIG. 1 is a block diagram showing an example of a conventional one-dimensional solid-state image sensor. This example shows an image of 8 pixels for simplicity. In this figure, 11 to 18 are photodetectors, in which a PN junction or a MOS capacitor is used to detect visible light, and a Schottky diode or the like is used to detect infrared light. 21
28 are transfer gates that control charge transfer from the photodetectors 11 to 18 to the COD; in this example, the even numbered photodetectors 12, 14, 16.18 are the even numbered transfer gates) 22 , 24, 26, and 28 to the upper CCD 32, and the odd-numbered photodetector 11
.. 13, 15, 17 are odd numbered transfer gates 2
1,23,25,27'ft and is transferred to the lower CCD 31. The charges transferred to the C0D31゜32 are sequentially multiplexed by a charge detector/preamplifier (hereinafter simply referred to as preamplifier) 40 and are serially connected to one output terminal 5.
Read from 0.

このような従来の構成の一次元固体撮像素子で最も問題
となるのが、CCD31.32の転送効率である。CC
D31.32の転送効率をηとするとN段の転送後、最
初Q。であった信号電荷Qは、 Q=Q、η8 になる。ここで、η=0.9999とするとN=200
0でQ/Qo=O182となり、8%のCCDの転送に
よる損失を生じる。この損失は、均−元が当った場合の
出力に不均一につながるし、通常信号の損失分は、後の
出力に加算されて分解能の低下にもつながる。
The most important problem with a one-dimensional solid-state image sensor having such a conventional configuration is the transfer efficiency of the CCDs 31 and 32. C.C.
If the transfer efficiency of D31.32 is η, then after N stages of transfer, the first Q. The signal charge Q that was previously becomes Q=Q, η8. Here, if η=0.9999, N=200
At 0, Q/Qo=O182, resulting in a loss of 8% due to CCD transfer. This loss leads to non-uniform output when the average element is correct, and the loss of the normal signal is added to the subsequent output, leading to a reduction in resolution.

この発明は、CODの出力を複数個に分割することによ
って転送段数を減らし、上記通常の固体撮像素子の転送
効率に関する問題点を低減できる固体撮像素子を提供す
るものである。以下図面に従ってこの発明を説明する。
The present invention provides a solid-state imaging device that can reduce the number of transfer stages by dividing the output of a COD into a plurality of parts, thereby reducing the problems associated with the transfer efficiency of the above-mentioned normal solid-state imaging device. The present invention will be explained below with reference to the drawings.

第2図はこの発明の一実施例を説明するグロック図、第
3図はこの動作を説明するクロック・タイミング図であ
る。簡単のためK、従来例と同様に8画素の素子で説明
する。第2図で、光検出器11〜18とトランスファー
ゲート21〜28の配置は従来例と同じであるが、CC
Dは31〜34と4分割されており、プリアンプ41〜
44も4個あり、プリアンプ41〜44の出力はマルチ
プレクサ6゛0を通じて直列に出力される。マルチプレ
クサ60は固体撮像素子チップ上にある必要はなく、外
部回路で構成してもよい。
FIG. 2 is a clock diagram for explaining one embodiment of the present invention, and FIG. 3 is a clock timing diagram for explaining this operation. For the sake of simplicity, the explanation will be made using an 8-pixel element as in the conventional example. In FIG. 2, the arrangement of photodetectors 11 to 18 and transfer gates 21 to 28 is the same as in the conventional example, but CC
D is divided into 4 parts, 31 to 34, and preamplifiers 41 to 34.
There are also four preamplifiers 44, and the outputs of the preamplifiers 41 to 44 are output in series through a multiplexer 6'0. The multiplexer 60 does not need to be located on the solid-state image sensor chip, and may be configured from an external circuit.

第3図でφl、φ2は、CCD31〜34Vc与えられ
る転送りロックで、φT1はトランスファーグー)25
.27K、φT2はトランスファーグー)26.28K
JφT3はトランスファーゲート21゜23に、φ14
はトランスファーゲート22.24に加えられるトラン
スファーゲート・クロックである。この例の場合は、2
相駆動CODを用いた場合である。
In Fig. 3, φl and φ2 are transfer locks given to CCD31 to 34Vc, and φT1 is transfer lock)25
.. 27K, φT2 is transfer goo) 26.28K
JφT3 is transfer gate 21゜23, φ14
is the transfer gate clock applied to transfer gates 22.24. In this example, 2
This is a case where phase drive COD is used.

また、奇数番のトランスファーグー)21.23゜25
.27は転送りロックφ1がそのゲートに、また、偶数
番のトランスファーゲート22,24゜26.28は転
送りロックφ2がそのゲート忙接続されるものとする。
Also, odd numbered transfer goo) 21.23゜25
.. It is assumed that the transfer lock φ1 is connected to the gate of 27, and the transfer lock φ2 of the even numbered transfer gates 22, 24, 26, and 28 is connected to the gate.

なお、T、は転送りpツクφ1.φ2の周期、Tsはト
ランスファーゲート・クロンクφ丁、〜φT40周期で
ある。
Note that T is the transfer ptsuk φ1. The period of φ2, Ts is the period of the transfer gate clock φT40.

次にこの発明の動作について説明する。まず、トランス
ファーゲート・クロンクφ丁、が入力され、光検出器1
5.17の信号がC0D33に読み出される。次に、T
、/2後にトランスファーゲート・クロックφT2が入
力され、光検出器16.18の信号をCCD34に読み
吊す。次に、C0D33゜34の駆動に従って、プリア
ンプ43.44を通してこれらの信号がマルチプレクサ
60に与えられ、光検出器18→17→16→15の信
号に対応する顔に出力端子50から読み出される。この
時、CCD31と32は信号を含まない状態で駆動され
ている。光検出器15.16の信号が読み出される直前
にトランスファーゲート・クロックφT3+ 4丁。が
入力され、光検出器11.13の信号なCCD31に、
光検出器12.14+7)信号をCCD32に読み吊す
。続いて、C0D31.32が駆動されるに従って信号
は、ブリア・ンプ41゜42およびマルチプレクサ60
を通して光検出器14→13→12→11の信号に対応
する順忙出力される。
Next, the operation of this invention will be explained. First, the transfer gate Cronk φ is input, and the photodetector 1
The signal of 5.17 is read out to C0D33. Next, T
, /2, the transfer gate clock φT2 is input, and the signals from the photodetectors 16 and 18 are read and hung on the CCD 34. Next, in accordance with the driving of the C0D 33.34, these signals are applied to the multiplexer 60 through the preamplifiers 43 and 44, and read out from the output terminal 50 to the face corresponding to the signals from the photodetectors 18→17→16→15. At this time, the CCDs 31 and 32 are being driven without any signals. Immediately before the signals from the photodetectors 15 and 16 are read out, the transfer gate clock φT3+4 is activated. is input, and the signal from the photodetector 11.13 is sent to the CCD 31,
The photodetector 12.14+7) signal is read and hung on the CCD 32. Subsequently, as C0D31.32 is driven, the signal is sent to the amplifier 41.42 and the multiplexer 60.
The signals corresponding to the photodetectors 14→13→12→11 are outputted through the photodetectors 14→13→12→11.

以上の動作で、光検出器11〜18の出力は右から順に
出力され、lライフ分の映像信号を得ることができる。
With the above operation, the outputs of the photodetectors 11 to 18 are output in order from the right, and video signals for one life can be obtained.

この例では、蓄積時間と読み出し時間は等しく、一度読
み出しが終るとすぐ次の読み出しが行われるようになっ
ているが、蓄積時間が読み出し時間に比べて長ければ全
く問題はない。
In this example, the storage time and readout time are equal, and the next readout is performed immediately after one readout, but there is no problem if the storage time is longer than the readout time.

第4図はこの発明の他の実施例を説明するりロック・タ
イミング図である。この場合の固体撮像素子の構成も第
2図と同じでよい。この場合、すべてのトランスファー
ゲート21〜28には同一のトランスファーゲート・り
pツクφ丁が与えられる。したがって、丁べての画素は
同時に蓄積・読み出しの動作を行う。CCDの転送りp
ツクφ1.。
FIG. 4 is a lock timing diagram illustrating another embodiment of the invention. The structure of the solid-state image sensor in this case may be the same as that shown in FIG. 2. In this case, all transfer gates 21-28 are provided with the same transfer gate rip φ. Therefore, all pixels perform storage and readout operations simultaneously. CCD transfer p
Tsukφ1. .

φ12はCCD33を、同じくφ2□、φ23はCCD
34を、同じ(φ4.φ3□はCCD31を、同じくφ
48.φ42はCCD32を駆動するものである。
φ12 is CCD33, same φ2□, φ23 is CCD
34, same (φ4.φ3□ is CCD31, same φ
48. φ42 drives the CCD 32.

トランスファーゲート・クロックφ丁が入力され、信号
が各C0D31〜34に読み出された後、まず、C0D
33.34が駆動される。この時、C0D31.32は
静止したままである。次に、C0D33.34の信号が
丁べて読み出された後、C0D31.32が駆動され、
信号は第3図の実施例と同様な順に読み出される。
After the transfer gate clock φd is input and the signals are read out to each C0D31 to C0D34, first, the C0D
33 and 34 are driven. At this time, C0D31.32 remains stationary. Next, after the signals of C0D33.34 are read out, C0D31.32 is driven,
The signals are read out in the same order as in the embodiment of FIG.

このように上記各実施例では、上下CCD31〜34を
2分割して転送段数を半分にしている。
In this manner, in each of the embodiments described above, the upper and lower CCDs 31 to 34 are divided into two to halve the number of transfer stages.

このため、転送効率に伴なった性能劣化は低減される。Therefore, performance deterioration due to transfer efficiency is reduced.

なお、上記各実施例では、CCD31〜34は各2分割
となっているが、これに限らず複数個に分割されていれ
ば同様の効果が得られる。この場会、分割段数は転送効
率と性能要求から決定されるべきものである。また、上
記説明では、C0D31〜34は丁べて2相駆動とした
が、単相・3相または4相駆動等でもよいことはいうま
でもなしゝ。
In each of the above embodiments, each of the CCDs 31 to 34 is divided into two parts, but the invention is not limited to this, and the same effect can be obtained if the CCDs are divided into a plurality of parts. In this case, the number of division stages should be determined based on transfer efficiency and performance requirements. Further, in the above description, all of the C0Ds 31 to 34 are driven in two phases, but it goes without saying that they may be driven in single phase, three phases, or four phases.

以上説明したよう忙、この発明は、−次元に配列された
複数の光検出器を備えた固体撮像素子における転送効率
の悪影響を避けるために、CCDを複数個に分割し転送
段数を減らしたので、非常に大きな画素数を持った固体
撮像素子においても、転送効率の影響を十分小さくする
ことが可能となる利点がある。
As explained above, this invention divides the CCD into multiple pieces to reduce the number of transfer stages in order to avoid adverse effects on transfer efficiency in a solid-state image sensor equipped with a plurality of photodetectors arranged in the − dimension. , there is an advantage that the influence of transfer efficiency can be sufficiently reduced even in a solid-state image sensor having a very large number of pixels.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の固体撮像素子の構成を示すグpツク図、
第2図はこの発明の一実施例の構成を示す1177図、
第3図はこの発明の固体撮像素子の動作を説明するりp
ツク・タイミング図、第4図はこの発明の他の実施例の
動作を説明するクロック・タイミング図である。 図中、11〜18は光検出器、21〜2Bはトランスフ
ァーゲート、31〜34はCCD、41〜44は電荷検
出器兼プリアンプ、50は出力端子、60はマルチブン
クサである。 代理人 大岩増雄 (外2名)
Figure 1 is a graphic diagram showing the configuration of a conventional solid-state image sensor.
FIG. 2 is a diagram 1177 showing the configuration of an embodiment of this invention.
FIG. 3 explains the operation of the solid-state image sensor of the present invention.
Figure 4 is a clock timing diagram illustrating the operation of another embodiment of the invention. In the figure, 11 to 18 are photodetectors, 21 to 2B are transfer gates, 31 to 34 are CCDs, 41 to 44 are charge detectors/preamplifiers, 50 is an output terminal, and 60 is a multibunker. Agent Masuo Oiwa (2 others)

Claims (1)

【特許請求の範囲】 (11−次元に配列された複数の光検出器と、こ4ら光
検出器からの信号を順次読み出すための電荷結合素子と
で構成された固体撮像素子において、読み出し方向に前
記電荷結合素子を複数個に分割し、これら複数個の電荷
結合素子からの出力を信号読み出し顆序に応じて駆動す
る手段を具備せしめたことを特徴とする固体撮像素子。 (2)分割された電荷結合素子と光検出器を接続するト
ランスファーゲートに、前記電荷結合素子の分割に応じ
て異なったトランスファーゲート・クロックを与えて駆
動することを特徴とする特許請求の範囲第(1)項記載
の固体撮像素子。 (3)分割された電荷結合素子忙異なった転送りpツク
パルスを与えて駆動することを特徴とする特許請求の範
囲第(1)項記載の固体撮像素子。
[Claims] (In a solid-state imaging device configured with a plurality of photodetectors arranged in 11 dimensions and a charge-coupled device for sequentially reading out signals from these four photodetectors, A solid-state imaging device characterized in that the charge-coupled device is divided into a plurality of devices, and means is provided for driving outputs from the plurality of charge-coupled devices according to signal readout condyle order. (2) Division Claim (1) characterized in that the transfer gate connecting the photodetector with the charge-coupled device is driven by applying different transfer gate clocks depending on the division of the charge-coupled device. (3) The solid-state image sensor according to claim 1, wherein the divided charge-coupled devices are driven by applying different transfer pulses.
JP58138208A 1983-07-26 1983-07-26 Solid-state image pickup element Pending JPS6028384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58138208A JPS6028384A (en) 1983-07-26 1983-07-26 Solid-state image pickup element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58138208A JPS6028384A (en) 1983-07-26 1983-07-26 Solid-state image pickup element

Publications (1)

Publication Number Publication Date
JPS6028384A true JPS6028384A (en) 1985-02-13

Family

ID=15216607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58138208A Pending JPS6028384A (en) 1983-07-26 1983-07-26 Solid-state image pickup element

Country Status (1)

Country Link
JP (1) JPS6028384A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0522526A2 (en) * 1991-07-10 1993-01-13 Sony Corporation Color linear sensor
US10354324B2 (en) 2000-03-02 2019-07-16 Trading Technologies International, Inc. Click based trading with market depth display

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0522526A2 (en) * 1991-07-10 1993-01-13 Sony Corporation Color linear sensor
EP0522526A3 (en) * 1991-07-10 1994-08-24 Sony Corp Color linear sensor
US10354324B2 (en) 2000-03-02 2019-07-16 Trading Technologies International, Inc. Click based trading with market depth display

Similar Documents

Publication Publication Date Title
US7068316B1 (en) Selectable resolution image capture system
US20070030371A1 (en) Frame shuttering scheme for increased frame rate
JPS6028384A (en) Solid-state image pickup element
JPS63226177A (en) Csd type solid-state image pickup element
JPH11191863A (en) Solid-state image pickup device, drive method for the solid-state image pickup device, solid-state image pickup element and drive method for the solid-state image pickup element
JPS62166662A (en) Ccd image pickup device
JPS61214870A (en) Solid-state image pickup device
JP3940530B2 (en) Solid-state imaging device and driving method thereof
JP4283014B2 (en) Solid-state imaging device, driving method of solid-state imaging device, and camera
JP4391107B2 (en) Solid-state imaging device, driving method of solid-state imaging device, and camera
JP2001060681A (en) Solid-state image pickup device and method for driving the same
JP4209367B2 (en) Solid-state imaging device, charge transfer device, and drive method of charge transfer device
JP2001094740A (en) Solid-state image pickup device, its drive method and image input device
JPH10224697A (en) Solid-state image pickup device and drive method for the solid-state image pickup device
JP3449823B2 (en) Driving method of solid-state imaging device
JPH01165270A (en) Mos type solid-state image pickup device
JP2705158B2 (en) Image sensor device
JPH01303975A (en) Solid-state image pickup device
JPS62147765A (en) Solid-state image pickup device
JP2749700B2 (en) Linear image sensor
EP0130103A1 (en) Charge-coupled device image sensor and method for asynchronous readout
JPH02137570A (en) Driving system for ccd image sensor
JPH01248665A (en) Electric charge transferring device
JPH09322068A (en) Solid-state image pickup device
JP2001309119A (en) Line ccd camera