JPS6027123A - Method of photo plasma gas phase reaction - Google Patents

Method of photo plasma gas phase reaction

Info

Publication number
JPS6027123A
JPS6027123A JP13539683A JP13539683A JPS6027123A JP S6027123 A JPS6027123 A JP S6027123A JP 13539683 A JP13539683 A JP 13539683A JP 13539683 A JP13539683 A JP 13539683A JP S6027123 A JPS6027123 A JP S6027123A
Authority
JP
Japan
Prior art keywords
plasma
reaction
reactive gas
gas
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13539683A
Other languages
Japanese (ja)
Other versions
JPH0557732B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP13539683A priority Critical patent/JPS6027123A/en
Publication of JPS6027123A publication Critical patent/JPS6027123A/en
Publication of JPH0557732B2 publication Critical patent/JPH0557732B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To obtain the Si oxide film which is hard and has no void by a method wherein the reactive gas of hydride or halogenide of silicon is mixed with oxide gas and the light of 1,500-300cm<-1> wavenumber is projected and at the same time, plasma reaction is performed. CONSTITUTION:The reactive gas is sent from a doping system 20 to the substrate 1 arranged in a reaction system 10 of the device for photo plasma gas phase reaction. Next, the far infrared rays of 1,500-300cm<-1> wavenumber are projected to the substrate 1 by a lamp 9. These rays are resonance-absorbed in an Si-H coupling in the reactive gas, thereby activating the reactive gas. Next, plasma glow discharge is performed by a high-frequency oscillator 4 and electrodes 5 and 6 to cause a plasma reaction. Then, as photo excitation by the far infrared rays and the plasma reaction are carried out at a time, a step coverage of an uneven surface is improved.

Description

【発明の詳細な説明】 この発明は、珪素の水素化物またはハロゲン化物よりな
る珪化物気体と酸化物気体とを光プラズマ気相法(PP
CV Dという)により反応せしめ、酸化珪素被膜を形
成する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for combining a silicide gas and an oxide gas made of silicon hydrides or halides using a photoplasma vapor phase method (PPP vapor phase method).
The present invention relates to a method of forming a silicon oxide film by reacting with the method (referred to as CVD).

従来、酸化珪素被膜を500℃以下の温度で作らんとす
るには、本発明人の特許になるシランと酸素とを減圧気
相法により作製する方法(特公昭56−52877、特
公昭58−24374 )またはシランとNLOとの反
応によるプラズマCVD (PCVDという)法が知ら
れている。
Conventionally, in order to make a silicon oxide film at a temperature of 500°C or less, there has been a method patented by the present inventor in which silane and oxygen are produced by a reduced pressure vapor phase method (Japanese Patent Publication No. 56-52877, Japanese Patent Publication No. 58-58). 24374) or a plasma CVD (referred to as PCVD) method using a reaction between silane and NLO is known.

前者は被形成面に凹凸を存していてもその側面に対し一
ヒ面と同様の厚い被膜を作ることができ、即ちステソプ
カハレンジに優れた被膜とすることができるという特長
を有しながらも、被膜が柔らかいという欠点を有してい
た。
The former has the advantage that even if the surface to be formed has irregularities, it is possible to form a thick film on the side surface of the surface, which is the same as that on the surface of the first surface, that is, it is possible to form a film with excellent stability. However, it had the disadvantage that the coating was soft.

他方、1&者においては、被膜を固く作ることができる
という特長を有しながらも、凹凸表面のコーナ一部に巣
(空孔)ができてしま・うという欠点を有していた。こ
の空孔は集積回路の微細加工の際、この空孔を伝わっ゛
ζエツチング液が横方向に侵入し、サイドエッチが段差
部に発生してしまうという大きな欠点を有していた。
On the other hand, although No. 1 & No. 1 & No. 1 had the advantage of being able to form a hard coating, it had the disadvantage that voids (holes) were formed at some of the corners of the uneven surface. These holes have a major drawback in that during microfabrication of integrated circuits, the ζ etching solution penetrates laterally through the holes, resulting in side etching at the stepped portions.

本発明はこれらと同様に500℃以下の温度、好ましく
は200〜350℃の温度で作製されるに加えて、被膜
が固く (高温型酸化珪素入かつ巣のない被膜の作製方
法を提唱することを目的としている。
The present invention proposes a method for producing a film containing high-temperature silicon oxide and having no voids, in addition to being produced at a temperature of 500°C or less, preferably 200 to 350°C, as well as having a hard film. It is an object.

本発明はかかる目的のため、珪素の水素化物であるシラ
ンにおけるS t−H結合が2000〜2200cm−
’(ピーク値2100cm−1)および1100〜70
0 cm−’ (ピーク値950 cm’ 、830c
m−’ )に共鳴吸収をする、即ちかかる長波長の光エ
ネルギを選択的に吸収する特性を利用して、光励起を伴
ったプラズマ気相反応を行わしめんとするものである。
For this purpose, the present invention provides a method in which the S t-H bond in silane, which is a silicon hydride, is 2000 to 2200 cm-
'(peak value 2100 cm-1) and 1100-70
0 cm-' (peak value 950 cm', 830c
The purpose is to perform a plasma gas phase reaction accompanied by optical excitation by utilizing the characteristic of resonant absorption at wavelengths m-', that is, selective absorption of such long wavelength light energy.

かかる目的のため、本発明は1500cm’以下の波長
の連続光の遠赤外光を発光するセラミックス発光発熱体
を用いている。このために5i−Hの1100〜700
 cm”の強い吸収ピークに波数が一致した遠赤外光(
以下FIRという)を反応性気体に照射させ、吸収させ
ることにより、反応性気体を活性化させることができた
For this purpose, the present invention uses a ceramic light-emitting heating element that emits continuous far-infrared light with a wavelength of 1500 cm' or less. For this purpose, 1100-700 of 5i-H
Far-infrared light (
By irradiating the reactive gas with FIR (hereinafter referred to as FIR) and absorbing it, the reactive gas could be activated.

さらにS i −H結合は上記のFll?を加えたのみ
では分解させることができない。このためこれに加えて
電気エネルギを反応性気体に加え、グロー放電によるプ
ラズマ反応を生ぜしめたものである。
Furthermore, the S i -H bond is the above FlI? It cannot be decomposed just by adding . Therefore, in addition to this, electrical energy was added to the reactive gas to generate a plasma reaction due to glow discharge.

本発明のFIRとプラズマ反応吉を同時に行わしめるこ
とにより、従来pcvo法では行い得なかったミクロな
レヘルでの凹凸表面でのステンブカバレイジを良好にし
く側面の厚さ/上面の厚さ>11.8 )、さらに凹部
の集面の存在を除去したもので、νLSIにきわめて有
効な方法を提唱することにある。さらにプラズマ励起が
おこりにくい弱い電気エネルギでもPPCVDでは放電
の発生持続が可能となり、ひいては凹凸表面の被膜の形
成が可能となった。
By simultaneously performing the FIR and plasma reaction of the present invention, it is possible to achieve good stent coverage on uneven surfaces at microscopic levels that could not be achieved with the conventional PCVO method. 11.8), which further eliminates the presence of convergent surfaces in the concave portion, and proposes a method that is extremely effective for νLSI. Furthermore, even with weak electrical energy that is difficult to cause plasma excitation, PPCVD has made it possible to sustain the generation of discharge, and in turn, it has become possible to form a film on an uneven surface.

このため被形成面上へのプラズマによりスパッタ(損傷
)も軽減せしめることが可能となった。
Therefore, it has become possible to reduce spatter (damage) caused by plasma on the surface to be formed.

さらに広い圧力範囲でもインピーダンスマツチングをと
ることが可能となり、このため従来より高い圧力(1〜
l0torr)においても、プラズマ空間での活性スピ
ーシズを多量に発生させることができるという特徴を有
している。
It is now possible to perform impedance matching even in a wider pressure range, which makes it possible to perform impedance matching even in a wider pressure range.
10 torr), it also has the feature of being able to generate a large amount of active species in the plasma space.

さらに他方、従来、光CVD法として、10.6μのC
O2レーザのみを用いた光CVD法においても酸化珪素
被膜を作ることができる。しかしこの場合はその反応空
間を1OctI1以上とすることができず、被形成面も
l cJ以上とすることができない。かかるl H/ 
cJ以上の光エネルギののを与えることによって実施す
る光CVD法は被膜形成表面が0.1〜0.3人/秒と
きわめて小さく、かつ実効的に被膜形成に必要な使用電
力比が大きくなり、省エネルギの面からも有効でない。
On the other hand, conventionally, as a photo-CVD method, a C of 10.6 μ
A silicon oxide film can also be formed by optical CVD using only an O2 laser. However, in this case, the reaction space cannot be made larger than 1 OctI1, and the surface on which it is formed cannot be made larger than lcJ. Such l H/
In the photoCVD method, which is carried out by applying light energy of cJ or more, the coating surface is extremely small at 0.1 to 0.3 persons/second, and the power consumption ratio required for effective coating is large. , it is not effective in terms of energy saving either.

さらに上記したごとききわめて小さく面積ではなく、本
発明は少なくともその10倍位の100d以上(この実
施例にては4225.fflの面積)であり、空間も1
000.ff1以上(この実施例では105625cJ
)と大きく、工業的に量産化可能な方法を提案すること
を特徴としている。
Furthermore, the area of the present invention is not extremely small as described above, but is at least 10 times that size, or more than 100 d (in this embodiment, the area is 4225.ffl), and the space is also 1.
000. ff1 or more (105625cJ in this example)
) and is characterized by proposing a method that can be industrially mass-produced.

以下に図面に従って本発明の被膜形成、方法を説明する
The film formation and method of the present invention will be explained below with reference to the drawings.

第1図はシランのうち特にモノシラン(St)−14)
を例にしてその反応式を示しであるが、ポリシラン(s
i2H,等)を用いる場合も同様に可能である。
Figure 1 shows monosilane (St)-14) among silanes.
The reaction formula is shown using as an example, but polysilane (s
i2H, etc.) is similarly possible.

第1図は反応系がPPCV Dの本発明方法を実施する
ための装置の概要を示す。
FIG. 1 shows an outline of an apparatus for carrying out the method of the present invention in which the reaction system is PPCV D.

第1図は反応系(10入ドーピング系(20)、排気系
(30)を有する。
FIG. 1 has a reaction system (10 doping system (20) and an exhaust system (30).

反応系(10)は、反応容器(2)〔内容積(0190
cm、高さ60cm、奥行き90cm)、反応空間(6
5cm x65cmX25cm、105625 cIa
) )には被形成面を有する基板(1)がその空間(3
2)を取り囲んで石英ホルダ(31)に保持されている
The reaction system (10) consists of a reaction container (2) [inner volume (0190
cm, height 60cm, depth 90cm), reaction space (6
5cm x 65cm x 25cm, 105625 cIa
)), a substrate (1) having a surface to be formed is placed in the space (3).
2) and is held in a quartz holder (31).

このホルダーは65cm ’であるが、反応性気体の流
れ方向に20cmを有し、5インチウェハを100枚一
度に同時(被形成面の延べ面積12266己)に挿入さ
せている。
This holder has a length of 65 cm, but has a width of 20 cm in the flow direction of the reactive gas, and allows 100 5-inch wafers to be inserted at the same time (total surface area to be formed: 12,266 mm).

基板はハロゲン補助ヒータ(7)により100〜500
℃例えば250℃に加熱される。加えて、1500cm
−1(9,3p)〜700 cm−’ (14,3μ)
のFIRの波長を発光する光化学反応用のランプ(9〉
(最大3KW。
The substrate is heated to 100 to 500 by the halogen auxiliary heater (7).
It is heated to, for example, 250°C. In addition, 1500cm
-1 (9,3p) ~ 700 cm-' (14,3μ)
Lamp for photochemical reaction that emits light at the FIR wavelength (9)
(Maximum 3KW.

27mW/ant)が同時に設けられている。反応性気
体は導入D (H,)よりノズル(3)を経て反応空間
(32)に至り、排出口(8)を経て(12)より排気
系(30)に至る。
27 mW/ant) is provided at the same time. The reactive gas enters the reaction space (32) from the introduction D (H,) through the nozzle (3), and reaches the exhaust system (30) through the outlet (8) and (12).

排気系(30)は、圧力調整バルブ(13)、ス)7プ
バルブ(14>、メカニカルブースターポンプ(17)
、ロータリーポンプ(18)より外部に不用物を排出す
る。
The exhaust system (30) includes a pressure adjustment valve (13), a 7 valve (14), and a mechanical booster pump (17).
, waste materials are discharged to the outside from the rotary pump (18).

基板は、ホルダにて最初予備室(16)に配設させ、真
空引きを(22>、(23)にて行った後、ゲート(3
7)を開け、反応空間(32)に移設させた。反応性気
体はドーピング系(20)にてシランが(26)より、
その他ジポラン(BzHc)等のホウ素ガラス用気体ま
たはフォスヒン(PH3)等のリンガラス用気体(24
〉、酸化物気体である二酸化窒素(NO)を(25)、
キャリアガスとしての窒素またはへリューム(27)を
それぞれ流量計(29)を経てバルブ(28)により制
御して加えた。
The substrate is first placed in the preliminary chamber (16) using a holder, and after vacuuming is performed at (22>, (23)), the substrate is placed at the gate (3).
7) was opened and moved to the reaction space (32). The reactive gas is silane from (26) in the doping system (20),
Other gases for boron glass such as diporane (BzHc) or gases for phosphorus glass such as phoshine (PH3) (24
〉, oxide gas nitrogen dioxide (NO) (25),
Nitrogen or helium (27) as carrier gas was added via a flow meter (29), respectively, controlled by a valve (28).

酸化物気体はNLOのみではなく 、GOL、 No、
 NO2であってもよい。
Oxide gases include not only NLO, but also GOL, No.
It may also be NO2.

第1図においては、圧力調整バルブ(32)を経てバル
ブ(25>、(4β)に至る。
In FIG. 1, the valves (25>, (4β) are reached through the pressure regulating valve (32).

シラン(39)よりなる半導体用のS t −H結合を
有する反応性気体は、(26)を経て流量針を経て反応
系(10)に至る。この反応系には100〜500℃好
ましくは200〜350℃、代表的には250℃に保持
された被形成面が配設してあり、反応領域(32)の圧
力を0.0l−10torr例えばI torrとし、
シラン流量を1〜200cc 7分例えば20cc /
分供給した。
A reactive gas having an S t -H bond for semiconductors made of silane (39) passes through (26) and a flow needle to reach the reaction system (10). This reaction system is provided with a surface to be formed which is maintained at 100-500°C, preferably 200-350°C, typically 250°C, and the pressure in the reaction area (32) is maintained at 0.0-10 torr, for example. I torr,
Silane flow rate 1-200cc for 7 minutes e.g. 20cc/
The amount was supplied.

またNLOはNLO/ 5tH4> 5とし、ここでは
200cc/分供給して、FIRの光エネルギーをセラ
ミックス発熱体例えばジルコンセラミック(ZrSi%
)により発光するランプ(長さ680mm、直径11m
mφ出力500 W)を6本(合計3 KW)用いて光
照射を行った。
In addition, the NLO is NLO/5tH4>5, here 200cc/min is supplied, and the FIR light energy is transferred to a ceramic heating element such as a zircon ceramic (ZrSi%
) emitted by a lamp (length 680mm, diameter 11m
Light irradiation was performed using six (3 KW in total) mφ output 500 W).

第2図は本発明方法を用いたセラミックス発熱体の発光
特性−(50)を示している。かかる特性において、1
500cm’以下の波数において十分な発熱があること
がわかる。このセラミック発熱体はジルコンのみではな
くアルミナ、ジルコニア等の耐熱セラミックスでもよい
ことはいうまでもない。
FIG. 2 shows the luminescence characteristics (50) of a ceramic heating element using the method of the present invention. In such characteristics, 1
It can be seen that sufficient heat generation occurs at wave numbers of 500 cm' or less. It goes without saying that this ceramic heating element may be made of not only zircon but also heat-resistant ceramics such as alumina and zirconia.

また、シランのS 1−1tの結合の吸収ピークも曲線
(51)に示され、10μ(1000cm’ )付近で
赤外光を十分に共鳴吸収することができた。
Further, the absorption peak of the S 1-1t bond of silane was also shown in curve (51), and infrared light could be sufficiently resonantly absorbed around 10μ (1000cm').

FIHの出力は5mW/cJ1以下ではその効果が小さ
くなり、それ以外は基板温度を設定値より上昇させすぎ
ない範囲で高い出力の方が効果が顕著であった。
The effect was small when the FIH output was 5 mW/cJ1 or less, and the effect was more pronounced at higher outputs within a range that did not cause the substrate temperature to rise too much above the set value.

次ぎに電気エネルギーを高周波発振器(周波数10〜5
00KIIz例えば50KHzの比較的低い周波数)に
より(4)より一対の電極(5)、(,6)に10〜5
00−例えば200W加え、プラズマグロー放電をせし
めてPPCV D反応を行った。
Next, the electrical energy is transmitted to a high frequency oscillator (frequency 10 to 5
00KIIz (relatively low frequency, e.g. 50KHz), from (4) to the pair of electrodes (5), (,6)
00-For example, 200 W was applied to cause a plasma glow discharge to perform a PPCV D reaction.

この放電が発熱体(9)に至らないようにして発熱体(
9)上に酸化珪素が可能なかぎに付着しないようにし、
FIRの発光を妨げないようにした。
This discharge is prevented from reaching the heating element (9).
9) Prevent silicon oxide from adhering to the possible locks,
Made it so that it does not interfere with FIR light emission.

この周波数を500KHz以上例えば13.56FIH
zとすると、放電プラズマの均質電界がとりにくく、そ
の材 ¥果、被膜の膜厚のバラツキが±5%を越えてしまった
・ 基板位置は照射光に対して平行に配設されており、光化
学反応は基板表面よりもむしろ飛翔中の反応性気体に対
して行った。かくすることにより多量生産が可能なPP
CVDを実施することができた。
Change this frequency to 500KHz or higher, for example 13.56FIH
If z, it is difficult to obtain a homogeneous electric field of the discharge plasma, and the variation in the material and film thickness exceeds ±5%.The substrate position is arranged parallel to the irradiation light, Photochemical reactions were carried out on the reactive gas in flight rather than on the substrate surface. By doing this, PP can be produced in large quantities.
CVD could be performed.

側質特に密度(固さ)に関しては、照射光が基板に対し
て垂直である方が良好であるが、量産性においては第1
図の配置が優れていた。
Regarding side quality, especially density (hardness), it is better if the irradiation light is perpendicular to the substrate, but in terms of mass productivity, it is the first
The layout of the figures was excellent.

このF I I?の照射により、珪化物気体のうち、特
にシランは予め会合状態をボンベ内で呈している。
This FI I? Due to the irradiation, among the silicide gases, silane in particular exhibits an associated state in advance in the cylinder.

このため一般には酸化珪素膜中に電子顕微鏡的にシリコ
ンが化学量論的に多い部分いわゆるクラスタが存在する
。するとその後の加熱処理にて高密度化が起き、クラン
ク(ひびわれ)が発生しやすくなる。この従来のpcv
oに観察されるクラスタはFIRを与え“ζ会合してい
るシランを分散させ単分子化させることができた。
For this reason, there are generally so-called clusters in the silicon oxide film, which are observed under an electron microscope to have a stoichiometrically large amount of silicon. Then, during the subsequent heat treatment, densification occurs and cracks are more likely to occur. This conventional pcv
The clusters observed in o gave FIR and the ζ-associated silanes could be dispersed and made into monomolecules.

その分解したそれぞれを酸素化物と反応させるため、ク
ラスタが透過電子顕微鏡で観察されず、かくのごとくし
て本発明のPPCV D法を用い、酸化珪素膜を作るこ
とができた。
Since each of the decomposed particles was reacted with an oxygenate, no clusters were observed under a transmission electron microscope, and thus a silicon oxide film could be produced using the PPCVD method of the present invention.

この装置の実施例においては、基板は発生したグロー放
電プラズマにおける陽光柱領域に配設されており、例え
ば被形成面上に酸化珪素膜が以下の式に基づいて形成さ
れた。
In this embodiment of the apparatus, the substrate was disposed in the positive column region of the generated glow discharge plasma, and a silicon oxide film was formed on the surface to be formed, for example, based on the following formula.

SiH4+ 3NL OSt Oo +21(20’+
 3Ntさらにこの装置を用いて単なるPCVDを比較
のために行う場合は、FIRランプによる光エネルギを
加えることなしに電気エネルギのみをいわゆる加熱用の
熱エネルギとともに加えることも試みた。
SiH4+ 3NL OSt Oo +21(20'+
3Nt Furthermore, when simple PCVD was performed using this apparatus for comparison, an attempt was made to apply only electrical energy together with so-called thermal energy for heating without adding optical energy from an FIR lamp.

この成長速度はPCVDのみにおいては5〜8人/秒例
えば゛6人/秒であった。
This growth rate was 5 to 8 people/second, for example 6 people/second, for PCVD alone.

またPPCVDにおいては、6〜13人/秒例えば9人
/秒であった。
In PPCVD, the rate was 6 to 13 people/second, for example, 9 people/second.

PPCVDにおいて、同じ被膜成長速度を得んとすると
、電気エネルギをPCVDの場合の電気エネルギに比べ
て10(光エネルギ0.1KW )〜50%(3)[W
 )も弱くすることができた。このPPCVD法におい
ては、その工程によって光照射を行い、その後に電気エ
ネルギを加えてプラズマを生ぜしめたことはきわめて重
要である。かくすることにより、放電開始時のプラズマ
衝撃波による基板表面の損傷を防ぐことができ、電気的
にはプラズマ損傷を実質的に防ぐことができるという特
長を有していた。
In PPCVD, when trying to obtain the same film growth rate, the electrical energy is 10% (light energy 0.1 KW) to 50% (3) [W
) could also be weakened. In this PPCVD method, it is extremely important that the process involves light irradiation and then electrical energy is applied to generate plasma. By doing so, damage to the substrate surface due to plasma shock waves at the start of discharge can be prevented, and plasma damage can be substantially prevented electrically.

第3図は従来のPCVD法により作られた凹凸表面を有
する被形成面に酸化珪素膜を積層したもののSEM (
走査電子顕微鏡)写真の断面図である。
Figure 3 shows an SEM (
It is a cross-sectional view of a scanning electron microscope (SEM) photograph.

即ち基板(1)上の高さ1.5μrl] 2μの凸部に
対しく41)の巣が見られる。これは従来のP C,V
 D法においてその周波数が均一性を向上させるため3
0Kllzと低く四部に十分な活性反応生成物が到達で
きないことによったものと推察される。
In other words, a nest 41) is seen on the substrate (1) at a height of 1.5 .mu.rl]2 .mu.m convex portion. This is the conventional P C, V
3 in order to improve the uniformity of the frequency in the D method.
This is presumed to be due to the fact that the active reaction product was as low as 0Kllz and the active reaction product could not reach the four parts.

他方第4図の本発明のppcvo法においては、凹部の
深くに対しても光励起をさせられた活性反応生成物を十
分拡散できた。
On the other hand, in the ppcvo method of the present invention shown in FIG. 4, the photoexcited active reaction product could be sufficiently diffused even deep into the recess.

即ちまわりごみが光エネルギを与えることにより著しく
向上し、四部のコーナ一部では巣はまったく観察されな
かった。これはFIRが5mW/cn以上において見ら
れ、28mW/c4 (3kW )における場合を第4
図で形状を電子顕微鏡にて示した。
That is, the amount of surrounding debris was significantly improved by applying light energy, and no nests were observed at all in some of the four corners. This is seen when the FIR is 5mW/cn or higher, and the case at 28mW/c4 (3kW) is the fourth
The figure shows the shape using an electron microscope.

このことはVLSIの高信頼性を得るためにも、またサ
ブミクロンパターンを作るためにもきわめて重要なもの
で、その工業的効果は大きいといわざるを得ない。
This is extremely important for obtaining high reliability of VLSI and for creating submicron patterns, and it cannot be denied that it has great industrial effects.

加えて、反応炉内に導入された反応性気体の有効利用率
(収率即ち被膜に密着した珪素/導入された珪素〉を高
めることができた。そしてPCVD法では2〜5%であ
ったものを本発明のPPCVD方では10〜20%にま
で高めることが可能である。
In addition, we were able to increase the effective utilization rate of the reactive gas introduced into the reactor (yield: silicon adhered to the film/introduced silicon), which was 2 to 5% in the PCVD method. With the PPCVD method of the present invention, it is possible to increase this to 10-20%.

本発明方法において、FIRの出力は3KWを単位空間
力たり28mW/cJであった。しかしこの出力をさら
に50〜500mW /cJにしてFIRの効果をさら
に高め、光プラズマ反応に必要な電気エネルギを小さく
することは被形成面に損傷を与えないために有効である
In the method of the present invention, the output of the FIR was 28 mW/cJ per unit space force of 3 KW. However, it is effective to further increase this output to 50 to 500 mW/cJ to further enhance the FIR effect and to reduce the electrical energy required for the photoplasma reaction in order to prevent damage to the surface on which it is formed.

本明細書においては、酸化珪素を主成分とする絶縁被膜
を示した。この絶縁被膜にホウ素またはリンを同時に加
えて、ホウ素ガラス(BSG )、またはリンガラス(
PSG )も同様に被膜形成時にBIHt。
In this specification, an insulating film containing silicon oxide as a main component is shown. Boron or phosphorus is simultaneously added to this insulating film to form boron glass (BSG) or phosphorus glass (
PSG) is also BIHt during film formation.

またはPHJを導入すればよいことはいうまでもない。Alternatively, it goes without saying that PHJ may be introduced.

さらにメタンまたはアンモニアを同時に導入して、炭素
または窒素が添加された酸化珪素被膜を作ることは有効
である。
Furthermore, it is effective to simultaneously introduce methane or ammonia to form a silicon oxide film doped with carbon or nitrogen.

本明細書においては、珪素の水素化物の実施例を示した
。しかし5i−Fは1300〜100100O’ 、S
i −CIは1000〜600 ciにその共鳴吸収を
得ることができる。このことにより、5il−14の代
わりにS+F++!1□SiF21JSiCI□5iC
Iす等のハロゲン化物を珪化物気体として用いることは
有効である。
In this specification, examples of silicon hydrides are shown. However, 5i-F is 1300~100100O', S
i-CI can obtain its resonance absorption at 1000-600 ci. This allows S+F++ instead of 5il-14! 1□SiF21JSiCI□5iC
It is effective to use halides such as I as the silicide gas.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は゛本発明方法を用いた反応系を示す。 第2図は本発明に用いられた遠赤外の発光特性および5
i−II結合の赤外線吸収特性である。 第3図は従来例によって得られた被膜の縦断面図を示す
。 第4図は本発明の光プラズマ気相法で作られた被膜の縦
断面図である。 特許出願人
FIG. 1 shows a reaction system using the method of the present invention. Figure 2 shows the far-infrared emission characteristics used in the present invention and 5
This is the infrared absorption characteristic of the i-II bond. FIG. 3 shows a longitudinal cross-sectional view of a coating obtained by a conventional example. FIG. 4 is a longitudinal cross-sectional view of a film made by the optical plasma vapor phase method of the present invention. patent applicant

Claims (1)

【特許請求の範囲】 ■、珪素の水素化物またはハロゲン化物の反応性気体に
酸化物気体を混入せしめ、1500〜300cm”の波
数の連続光を照射せしめるとともに、電気エネルギーを
供給することにより光プラズマ反応を住ぜしめて、酸化
珪素被膜を作製することを特徴とする光プラズマ気相反
応法。 2、特許請求の範囲第1項において、珪素の水素化物と
してSiH4を、また酸化物気体としてN20を用いる
とともに、5mW/cJ以上の連続光を500KIIz
以下の周波数の電気エネルギとともに供給して、凹凸表
面に酸化珪素被膜を作製することを特徴とする光プラズ
マ気相反応法。
[Scope of Claims] (2) By mixing an oxide gas into a reactive gas of silicon hydride or halide, irradiating continuous light with a wave number of 1,500 to 300 cm'', and supplying electrical energy, optical plasma is produced. A light plasma vapor phase reaction method characterized in that a silicon oxide film is produced by allowing a reaction to occur. 2. In claim 1, SiH4 is used as a silicon hydride and N20 is used as an oxide gas. At the same time, continuous light of 5mW/cJ or more is used at 500KIIz.
A photoplasma vapor phase reaction method characterized in that a silicon oxide film is produced on an uneven surface by supplying electrical energy with the following frequencies.
JP13539683A 1983-07-25 1983-07-25 Method of photo plasma gas phase reaction Granted JPS6027123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13539683A JPS6027123A (en) 1983-07-25 1983-07-25 Method of photo plasma gas phase reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13539683A JPS6027123A (en) 1983-07-25 1983-07-25 Method of photo plasma gas phase reaction

Publications (2)

Publication Number Publication Date
JPS6027123A true JPS6027123A (en) 1985-02-12
JPH0557732B2 JPH0557732B2 (en) 1993-08-24

Family

ID=15150732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13539683A Granted JPS6027123A (en) 1983-07-25 1983-07-25 Method of photo plasma gas phase reaction

Country Status (1)

Country Link
JP (1) JPS6027123A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0277127A (en) * 1988-09-13 1990-03-16 Sony Corp Semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS499589A (en) * 1972-03-23 1974-01-28
JPS56124229A (en) * 1980-03-05 1981-09-29 Matsushita Electric Ind Co Ltd Manufacture of thin film
JPS5710920A (en) * 1980-06-23 1982-01-20 Canon Inc Film forming process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS499589A (en) * 1972-03-23 1974-01-28
JPS56124229A (en) * 1980-03-05 1981-09-29 Matsushita Electric Ind Co Ltd Manufacture of thin film
JPS5710920A (en) * 1980-06-23 1982-01-20 Canon Inc Film forming process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0277127A (en) * 1988-09-13 1990-03-16 Sony Corp Semiconductor device

Also Published As

Publication number Publication date
JPH0557732B2 (en) 1993-08-24

Similar Documents

Publication Publication Date Title
JP4739577B2 (en) Semiconductor substrate processing method and apparatus using hydroxyl radical
US7790633B1 (en) Sequential deposition/anneal film densification method
CN1807681B (en) Evaporating device and method utilizing same
JPH09172008A (en) Method and device that form good boundary between sacvd oxide film and pecvd oxide film
JP2023536422A (en) Multilayer deposition and processing of silicon nitride films
JPH077759B2 (en) Insulation film formation method
CN101476116B (en) Device and method for deposition
JPS6027123A (en) Method of photo plasma gas phase reaction
JPS6164124A (en) Thin film manufacturing equipment
JPS5982732A (en) Manufacture for semiconductor device
JPS6027124A (en) Method of photo plasma gas phase reaction
JPH036379A (en) Chemical vapor growth device
JPS62230026A (en) Formation of thin film
JP3086424B2 (en) Fabrication method of interlayer insulating film
JPS6027121A (en) Photo chemical vapor deposition device
JPS6027125A (en) Method of photo plasma gas phase reaction
JPH08262251A (en) Film forming device for optical waveguide
JP2620063B2 (en) Semiconductor device
JP3167995B2 (en) Fabrication method of interlayer insulating film
JPS60200532A (en) Method for growing si nitride film
JPS60167316A (en) Formation of film
JPS5642350A (en) Formation of insulating film
JPS61198733A (en) Method of forming thin-film
JPS6286165A (en) Formation of thin film
JPH03166369A (en) Formation of diamond film