JPS6026527B2 - Biological electrode - Google Patents

Biological electrode

Info

Publication number
JPS6026527B2
JPS6026527B2 JP56050577A JP5057781A JPS6026527B2 JP S6026527 B2 JPS6026527 B2 JP S6026527B2 JP 56050577 A JP56050577 A JP 56050577A JP 5057781 A JP5057781 A JP 5057781A JP S6026527 B2 JPS6026527 B2 JP S6026527B2
Authority
JP
Japan
Prior art keywords
electrode
impedance
sensitive
biological
guard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56050577A
Other languages
Japanese (ja)
Other versions
JPS57166142A (en
Inventor
真 須田
勲 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Koden Corp
Original Assignee
Nippon Koden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Koden Corp filed Critical Nippon Koden Corp
Priority to JP56050577A priority Critical patent/JPS6026527B2/en
Publication of JPS57166142A publication Critical patent/JPS57166142A/en
Publication of JPS6026527B2 publication Critical patent/JPS6026527B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Description

【発明の詳細な説明】 本発明は心電図、脳波等の生体の電気現象を導出するた
めの生体用電極に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a biological electrode for deriving biological electrical phenomena such as electrocardiograms and electroencephalograms.

生体で発生する電気現象は極めて微弱であり、例えば心
電図で数mV、脳波で数10ムVである。
Electrical phenomena occurring in living organisms are extremely weak, for example, several mV in an electrocardiogram and several tens of muV in an electroencephalogram.

これらの生体信号は一般に生体表皮に装着された銀皿鷲
極等で電位を抽出しリード線を介して心亀計等の外部装
置にて増幅し記録される。しかるに生体表皮の電気抵抗
(以下皮膚インピーダンスZd)及び電極抵抗(以下電
極インピーダンスな)を含む電極の皮膚との接触抵抗(
以下接触インピーダンスな)は数1血○〜数MOとされ
ており、微弱な生体信号を忠実に検出するためには、こ
の接触インピーダンスに比べ十分大きい入力インピーダ
ンスの増幅器が必要であり理想的に無限大が望ましい。
These biological signals are generally extracted with electric potentials such as silver-plated electrodes attached to the epidermis of the living body, and amplified and recorded by an external device such as a shingume meter via lead wires. However, the contact resistance of the electrode with the skin (hereinafter referred to as "electrode impedance") includes the electrical resistance of the biological epidermis (hereinafter referred to as skin impedance Zd) and the electrode resistance (hereinafter referred to as electrode impedance).
The contact impedance (hereinafter referred to as contact impedance) is said to be from several MO to several MO, and in order to faithfully detect weak biological signals, an amplifier with an input impedance sufficiently larger than this contact impedance is required, and ideally it is infinite. Large is preferable.

しかし入力インピーダンスの高い測定器では、わずかな
電極リード線の揺れや体動に伴なう電極の動きでも信号
波形が乱れたり、商用周波数の雑音が信号波形に混入し
測定の障害となる。
However, in measuring instruments with high input impedance, the signal waveform is disturbed by the slightest shaking of the electrode lead wire or movement of the electrode due to body movement, and noise at the commercial frequency mixes into the signal waveform, which interferes with measurement.

そのため増幅器の入力インピーダンスを高くすることに
は限界があり心電計であっては8MO程度とされている
。したがって必然的に電極の接触インピーダンスを極力
低くする必要があった。このため従来の電極には電解質
を含む電極ペーストを生体表皮との間に介在させ電位を
抽出するものがあったが、これといえども接触抵抗の低
インピーダンス化に限界があるばかりか、長時間使用す
るとべ‐ストが乾燥し逆に接触インピーダンスが増加し
て信号波形が不安定になった。
Therefore, there is a limit to increasing the input impedance of the amplifier, and for electrocardiographs, it is set to about 8 MO. Therefore, it was necessary to make the contact impedance of the electrode as low as possible. For this reason, some conventional electrodes extract electric potential by interposing an electrode paste containing electrolyte between the biological epidermis, but even with this, there is a limit to reducing the impedance of the contact resistance, and the electrode paste can be used for long periods of time. When used, the base dried and conversely the contact impedance increased and the signal waveform became unstable.

又、電極ベース‐トで皮膚の炎症を起す欠点もあった。
又、他の電極例として電極リード線をシールドした電極
では、リード線の揺れに対し効果的ではあるが、シール
ド線のシールド側と芯線との間に浮遊容量Cs、漏洩抵
抗Rsが存在するため、たとえ入力インピーダンス無限
大の増幅器を用いてもシールド線で入力インピーダンス
Zinが、Zin=Rs/(iのCsRs+1)に低下
する欠点がある。又、電極を二重構造とし、生体信号を
検知する第1の電極板と、これを囲むようにこの電極板
と同一平面上に設けてアースに接続した第2の電極板を
備えたものがある。しかしこれは皮膚に装着時中心の第
1の電極板が皮膚抵抗で第2の電極板と結合しアースし
たことになるため入力インピーダンスを高く維持できな
い欠点があった。又、発汗時、汗により入力側が短絡状
態となって信号波形の導出が不可能になることもあった
。又、他の電極例として電極に半導体能動素子回路を直
接組み込み、電極自体で生体信号のインピーダンス変換
を行ない、低インピーダンス化された信号をリード線に
より導出するタイプがあった。
Another drawback was that the electrode base caused skin irritation.
In addition, as another example of an electrode, an electrode in which the electrode lead wire is shielded is effective against shaking of the lead wire, but since stray capacitance Cs and leakage resistance Rs exist between the shield side of the shield wire and the core wire. Even if an amplifier with infinite input impedance is used, there is a drawback that the input impedance Zin decreases to Zin=Rs/(CsRs+1 of i) due to the shielded wire. In addition, there is a device with a double electrode structure, including a first electrode plate for detecting biological signals, and a second electrode plate surrounding the first electrode plate, which is provided on the same plane as the electrode plate and connected to the ground. be. However, this has the disadvantage that when worn on the skin, the first electrode plate at the center is connected to the second electrode plate due to skin resistance and grounded, making it impossible to maintain a high input impedance. Furthermore, when sweating, the input side may become short-circuited due to the sweat, making it impossible to derive a signal waveform. Another type of electrode is one in which a semiconductor active element circuit is directly incorporated into the electrode, the impedance of the biological signal is converted by the electrode itself, and the low-impedance signal is derived through a lead wire.

しかしこれは入力インピーダンスが高い点では優れてい
るが誘導波形の基線の安全性に欠けわずかの体動でも波
形が乱れ取り扱いが難かしい欠点があった。
However, although this is superior in terms of high input impedance, it lacks the safety of the baseline of the guided waveform and has the disadvantage that even the slightest body movement causes the waveform to become distorted and is difficult to handle.

さらにはこの種の電極に対してアーチフアクトの影響を
低減するため電極の背面をシールド材で覆ったタイプも
あるが、これは入力漏洩電流がシールドを通してアース
に流れるため入力インピーダンスが低下してしまいこの
種の電極としての価値が半減していた。本発明は上記欠
点に鑑みなされ、入力インピーダンスを極めて高く保ち
ながら常に安定した波形を抽出できるようにしたもので
、感電極を保持する電極保持体に半導体能動回路素子を
内蔵して感電極にて検出された生体信号のインピーダン
ス変換をし、この出力側を前記感電極を環状に囲むガー
ド電極へ印加して感電極と等電位とし、感電極をシール
ドしたのと同様の働きを持たせながら電極の入力インピ
ーダンスを極めて高くした生体用電極を得るにある。
Furthermore, in order to reduce the effects of artifacts on this type of electrode, some types cover the back of the electrode with a shielding material, but this reduces the input impedance because the input leakage current flows through the shield to the ground. Its value as a seed electrode had been halved. The present invention was developed in view of the above drawbacks, and is capable of always extracting a stable waveform while maintaining an extremely high input impedance. The impedance of the detected biological signal is converted, and the output side is applied to the guard electrode that surrounds the sensitive electrode in a ring shape to make it have the same potential as the sensitive electrode. The object of the present invention is to obtain a biological electrode with extremely high input impedance.

以下、図面を参照して本発明の−実施例について説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の生体用電極の断面図で、第2図は第1
図の等価回路図である。
Figure 1 is a cross-sectional view of the biological electrode of the present invention, and Figure 2 is a cross-sectional view of the biological electrode of the present invention.
FIG. 2 is an equivalent circuit diagram of FIG.

図において生体用電極1は、生体表皮に装着される面を
蕗出した感電極2と、この感電極2を中心とし環状に配
したガード電極3と、これらの感電極2及びガード電極
を一体に保持する絶縁性の電極保持体4と、前記電極保
持体4上に載遣されガード電極3内に収納された高電圧
保護回略5、この高鷺圧保護回路5に電気的に後贋接続
されたインピーダンス変換回路6を少くとも有している
In the figure, the biological electrode 1 includes a sensitive electrode 2 with a rounded surface to be attached to the epidermis of the living body, a guard electrode 3 arranged in a ring shape around the sensitive electrode 2, and these sensitive electrodes 2 and the guard electrode integrated. an insulating electrode holder 4 held on the electrode holder 4; a high voltage protection circuit 5 mounted on the electrode holder 4 and housed in the guard electrode 3; It has at least an impedance conversion circuit 6 connected thereto.

感電極2は例えば、銀、塩化線、ステンレス、金などの
金属、シリコンなどの半導体、酸化ケイ素、チタン酸バ
リウムなどの議導体、カーボン樹脂などの高分子材料、
又はこれらの組み合わせによる複合材料が使用される。
The sensitive electrode 2 may be made of, for example, a metal such as silver, chloride wire, stainless steel, or gold, a semiconductor such as silicon, a conductor such as silicon oxide or barium titanate, a polymer material such as carbon resin,
Or a composite material made of a combination of these is used.

ガード電極3は感電極と同材質でよく、又、本実施例に
おいては電極保持体4の感電極2と反対側の位置にカッ
プ状に配し感電極を外部から覆うようにしている。電極
保持体4はェポキシ樹脂などが使用され亀気的絶縁が保
たれる。高電圧保護回路5は除細敷器などを併用し高鷲
圧が感電極2を介してインピーダンス変換器6あるいは
心電計(図示せず)等に導かれることのないように保護
せんとしたものである。第2図において高電圧保護回路
5は抵抗51,52と、この抵抗の接続点とアース端子
7の間にッェナーダイオード53,54を互いに逆接続
してなる。
The guard electrode 3 may be made of the same material as the sensitive electrode, and in this embodiment, it is disposed in a cup shape on the opposite side of the electrode holder 4 from the sensitive electrode 2 so as to cover the sensitive electrode from the outside. The electrode holder 4 is made of epoxy resin or the like to maintain electrical insulation. The high voltage protection circuit 5 is designed to protect the high voltage from being introduced to the impedance converter 6 or the electrocardiograph (not shown) through the sensing electrode 2 by using a defibrator or the like. It is. In FIG. 2, the high voltage protection circuit 5 includes resistors 51 and 52, and Zener diodes 53 and 54 connected in reverse to each other between the connection point of these resistors and the ground terminal 7.

抵抗51,52は1ぴ○〜1ぴQに選ばれるが感電極2
に10‐1〜1ぴ○肌程度の抵抗率の比較的高い材料を
使用すれば抵抗51を省略できる。
Resistors 51 and 52 are selected from 1pi○ to 1piQ, but the sensitive electrode 2
The resistor 51 can be omitted if a material with a relatively high resistivity of about 10-1 to 1 pcm is used.

又、ッヱナーダィオード53,54は微弱な生体信号が
導入される場合は高抵抗を示す。しかしッェナー電圧(
一般に数V)以上の電圧が導入される場合は急激にその
抵抗が低下し、このときの電流は抵抗51、ッェナーダ
ィオード53,54を経てアース端子7に導かれる。こ
のためインピーダンス変換回路6は破損が防止される。
インピーダンス変換回路6は演算増幅器61から成りこ
の演算増幅器の一方の入力側は前記高電圧保護回路5の
抵抗52に接続され、他方の入力側にはこの演算増幅器
61の出力がフィードバックされている。
Further, the sensor diodes 53 and 54 exhibit high resistance when a weak biological signal is introduced. However, the Jenner voltage (
Generally, when a voltage of several volts or more is introduced, the resistance drops rapidly, and the current at this time is led to the ground terminal 7 via the resistor 51 and the Jenner diodes 53 and 54. Therefore, the impedance conversion circuit 6 is prevented from being damaged.
The impedance conversion circuit 6 consists of an operational amplifier 61, one input side of which is connected to the resistor 52 of the high voltage protection circuit 5, and the output of the operational amplifier 61 is fed back to the other input side.

8は演算増幅器61を駆動する電源の端子である。8 is a terminal of a power source that drives the operational amplifier 61.

又、この演算増幅器61の出力側はリード線9を介して
外部装置(図示せず)に導かれるほか、ガード電極3に
接続されている。尚、高電圧保護回磯5は必ずしも必要
でなく、必要な場合、その製造はIC技術などによりイ
ンピーダンス変換回路6と一体化し一個の素子としても
よい。さらに感電極2をシリコンなどの半導体で形成し
、その片面又は両面に前記インピーダンス変換回路6及
び高電圧保護回賂5を一体化して形成してもよい。次に
本発明の上記実施例につきその動作を説明する。
The output side of the operational amplifier 61 is led to an external device (not shown) via a lead wire 9 and is also connected to the guard electrode 3. Note that the high voltage protection circuit 5 is not necessarily required, and if necessary, it may be manufactured as a single element by integrating it with the impedance conversion circuit 6 using IC technology or the like. Furthermore, the sensitive electrode 2 may be formed of a semiconductor such as silicon, and the impedance conversion circuit 6 and the high voltage protection circuit 5 may be integrally formed on one or both surfaces thereof. Next, the operation of the above embodiment of the present invention will be explained.

生体表皮に装着された生体用電極1は感蟹極2を介して
微弱な生体信号を抽出する。
A biological electrode 1 attached to the epidermis of a living body extracts a weak biological signal via a crab-sensitive electrode 2.

この生体信号はこの感電極2に後直接銃された高電圧保
護回路5に導かれるが、入力電圧がツェナーダィオード
53,54のッェナー鰭圧以下である場合は抵抗51,
52を介してインピーダンス変換器6の演算増幅器61
の一方の入力とされる。
This biosignal is guided to the high voltage protection circuit 5 which is directly connected to the sensitive electrode 2, but if the input voltage is below the Zener fin pressure of the Zener diodes 53, 54, the resistor 51,
Operational amplifier 61 of impedance converter 6 via 52
is used as one input.

これに伴いこの演算増幅器は端子8に接続される電源で
駆動されその出力側62に生体電位がインピーダンス変
換されて導出される。このときこの出力側62は同時に
ガード電極3に接続されているため、感電極2とガード
電極3との間に浮遊容量Csと漏洩抵抗Rsによる漏れ
インピーダンスZsが存在してもガード電極3は入力電
圧と等電位に保たれる。このため入力漏洩電流が生ぜず
見かけ上極めて高い入力インピーダンスを保つことにな
る。次に除細動器を併用し生体に高電圧を印加した場合
は「前述の如くッェナーダィオード53,54が動作し
アースに導かれるためインピーダンス変換器6は損壊を
防止される。
Accordingly, this operational amplifier is driven by a power supply connected to the terminal 8, and the biopotential is impedance-converted and derived from the output side 62 thereof. At this time, since this output side 62 is connected to the guard electrode 3 at the same time, even if leakage impedance Zs due to stray capacitance Cs and leakage resistance Rs exists between the sensitive electrode 2 and the guard electrode 3, the guard electrode 3 is connected to the input It is kept at the same potential as the voltage. Therefore, no input leakage current occurs and an apparently extremely high input impedance is maintained. Next, when a high voltage is applied to the living body using a defibrillator, the impedance converter 6 is prevented from being damaged because the Zener diodes 53 and 54 operate as described above and are connected to the ground.

第3図は本発明の他の実施例を示したものでガード電極
3は、電極保持体4の背面を被覆するように一体に結合
され、感電極2の環状に外側からシールドするようにし
たものである。
FIG. 3 shows another embodiment of the present invention, in which a guard electrode 3 is integrally bonded to cover the back surface of an electrode holder 4, and shields the sensitive electrode 2 from the outside in an annular shape. It is something.

第4図はさらに他の実施例で、電極保持体4内にガード
電極3をはめ込み、感電極2を中心にして環状に配した
ものである。
FIG. 4 shows yet another embodiment in which a guard electrode 3 is fitted into an electrode holder 4 and arranged in a ring shape with the sensing electrode 2 at the center.

第5図はこのときの底面図である。第6図は本発明のさ
らに他の実施例で電極保持体4の感電極2とガード電極
3との間の溝10の任意の箇所に穴11を貫通して設け
てある。
FIG. 5 is a bottom view at this time. FIG. 6 shows still another embodiment of the present invention, in which a hole 11 is provided at an arbitrary location in a groove 10 between a sensing electrode 2 and a guard electrode 3 of an electrode holder 4.

これによって感電極2及びガード電極3に付着した汗が
、穴11を介して電極外に発散され感電圧2とガード軍
極3との間の電気的接続を避けるようにしたもので所期
の目的である出力信号の低インピーダンス化より促進さ
せるものである。尚、本発明においては高電圧保護回路
5を設けず、且つシールド線のシールド側をアースせず
にインピーダンス変換器6の出力と直接接続したもので
も、出力インピーダンスが極めて低いために各種のアー
チフアクトに対してはシールド線のシールド側をアース
に接続したのと同様の効果が得られることは当然である
As a result, sweat adhering to the sensitive electrode 2 and the guard electrode 3 is released to the outside of the electrode through the hole 11, and electrical connection between the sensitive voltage 2 and the guard electrode 3 is avoided. This promotes the purpose of lowering the impedance of the output signal. In the present invention, even if the high voltage protection circuit 5 is not provided and the shielded side of the shielded wire is directly connected to the output of the impedance converter 6 without being grounded, various artifacts may occur due to the extremely low output impedance. Naturally, the same effect as when the shielded side of the shielded wire is connected to the ground can be obtained.

このように本発明を用いれば、インピーダンス変換によ
り出力が低インピーダンスとされているため、電極ペー
ストを用いて接触インピーダンスを下げるようなことを
しなくてもよい。
As described above, when the present invention is used, the output is made low impedance by impedance conversion, so there is no need to lower the contact impedance using electrode paste.

しかもこのガード電極は極めて低い出力インピーダンス
のインピーダンス変換器で駆動されるため、各種のアー
チフアクトに対し強力なシールド作用を示しハムの混入
は皆無である。又、本発明の生体用電極は、ガード電極
によって感電極をシールドしたと同機の効果が得られる
こと、さらには体動によるアーチフアクトに対しても影
響がないことが期待できる。
Moreover, since this guard electrode is driven by an impedance converter with an extremely low output impedance, it has a strong shielding effect against various artifacts, and no hum is mixed in. In addition, the biological electrode of the present invention can be expected to have the same effect when the sensitive electrode is shielded by a guard electrode, and also to have no effect on artifacts caused by body movement.

又、ガード電極は感電極と同電位に保たれるため、漏洩
電流のガード電極への流入がなく電極の入力インピーダ
ンスを極めて高くすることが可能となった。
Furthermore, since the guard electrode is kept at the same potential as the sensitive electrode, no leakage current flows into the guard electrode, making it possible to make the input impedance of the electrode extremely high.

又、感電極とガード電極間に溝を設けこの溝の任意箇所
に穴を穿けてなるため、これらの電極間が汗により電気
的に接触されることが無いため極めて長時間に亘り安定
した使用が可能である。
In addition, since a groove is provided between the sensitive electrode and the guard electrode, and holes are made at arbitrary points in this groove, there is no electrical contact between these electrodes due to sweat, so it can be used stably for an extremely long time. is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の生体用電極の断面図。 第2図は第1図の等価回路図。第3図、第4図、第6図
は本発明の他の実施例を示す断面図である。第5図は第
4図生体用電極の底面図。第7図は第6図の生体用電極
の底面図を示す。2・・・・・・感電極、3・・・・・
・ガード電極、4・・・・・・電極保持体、6・…・・
インピーダンス変換器、10・・・・・・溝。 第1図 第2図 第3図 第5図 第4図 第6図 第7図
FIG. 1 is a sectional view of the biological electrode of the present invention. FIG. 2 is an equivalent circuit diagram of FIG. 1. FIGS. 3, 4, and 6 are cross-sectional views showing other embodiments of the present invention. FIG. 5 is a bottom view of the biological electrode shown in FIG. 4. FIG. 7 shows a bottom view of the biological electrode of FIG. 6. 2... Sensing electrode, 3...
・Guard electrode, 4... Electrode holder, 6...
Impedance converter, 10... groove. Figure 1 Figure 2 Figure 3 Figure 5 Figure 4 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】 1 生体に装着され電位を抽出する感電極と、該感電極
にて抽出された生体信号を低インピーダンス出力に変換
するインピーダンス変換器と、該インピーダンス変換器
の出力側に接続され前記感電極と離間させ環状に配した
ガード電極と、前記感電極の生体装着面を露出させイン
ピーダンス変換器及びガード電極を絶縁体で一体に保持
した電極保持体とからなる生体用電極。 2 生体に装着され電位を抽出する感電極と、該感電極
にて抽出された生体信号を低インピーダンス出力に変換
するインピーダンス変換器と、該インピーダンス変換器
の出力側に接続され前記感電極と離間させ環状に配した
ガード電極と、前記感電極の生体装着面を露出させイン
ピーダンス変換器及びガード電極を絶縁体で一体に保持
した電極保持体と、該電極保持体上の感電極とこれに環
状に配されたガード電極との間に溝を設けこの溝の任意
の箇所に生体で発生した汗を外部に発散させる穴を穿け
た生体用電極。
[Scope of Claims] 1. A sensitive electrode attached to a living body to extract electric potential, an impedance converter that converts the biological signal extracted by the sensitive electrode into a low impedance output, and a connection to the output side of the impedance converter. A biological electrode comprising a guard electrode arranged in a ring shape and spaced apart from the sensitive electrode, and an electrode holder which exposes the biologically attached surface of the sensitive electrode and integrally holds an impedance converter and the guard electrode with an insulator. 2. A sensitive electrode attached to a living body to extract electric potential, an impedance converter that converts the biological signal extracted by the sensitive electrode into a low impedance output, and an impedance converter connected to the output side of the impedance converter and separated from the sensitive electrode. a guard electrode arranged in a ring shape, an electrode holder which exposes the biological attachment surface of the sensitive electrode and holds the impedance converter and the guard electrode together with an insulator; A biological electrode that has a groove between it and a guard electrode placed on the body, and a hole bored in any part of the groove to allow sweat generated in the living body to escape to the outside.
JP56050577A 1981-04-06 1981-04-06 Biological electrode Expired JPS6026527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56050577A JPS6026527B2 (en) 1981-04-06 1981-04-06 Biological electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56050577A JPS6026527B2 (en) 1981-04-06 1981-04-06 Biological electrode

Publications (2)

Publication Number Publication Date
JPS57166142A JPS57166142A (en) 1982-10-13
JPS6026527B2 true JPS6026527B2 (en) 1985-06-24

Family

ID=12862834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56050577A Expired JPS6026527B2 (en) 1981-04-06 1981-04-06 Biological electrode

Country Status (1)

Country Link
JP (1) JPS6026527B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0395435U (en) * 1990-01-22 1991-09-30
JPH0636136Y2 (en) * 1990-04-26 1994-09-21 ナショナル住宅産業株式会社 Balcony drainage structure

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5971738A (en) * 1982-10-19 1984-04-23 インタ−・ノバ株式会社 Ample including body inserted into living body
JPS6031731A (en) * 1983-07-29 1985-02-18 日本光電工業株式会社 Electrode for living body
JPS6031732A (en) * 1983-07-31 1985-02-18 日本光電工業株式会社 Electrode for living body
JPH03228738A (en) * 1990-02-01 1991-10-09 Tsukuhide Harada Living body potential measuring electrode
JP2633809B2 (en) * 1994-07-21 1997-07-23 ソニー株式会社 Disc auto changer
JP6209958B2 (en) * 2013-12-03 2017-10-11 Tdk株式会社 Biosensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0395435U (en) * 1990-01-22 1991-09-30
JPH0636136Y2 (en) * 1990-04-26 1994-09-21 ナショナル住宅産業株式会社 Balcony drainage structure

Also Published As

Publication number Publication date
JPS57166142A (en) 1982-10-13

Similar Documents

Publication Publication Date Title
US4448199A (en) Electrode for detecting bioelectrical signals
US3744482A (en) Dry contact electrode with amplifier for physiological signals
Sullivan et al. A low-noise, non-contact EEG/ECG sensor
AU2008329623B2 (en) Non-contact biopotential sensor
US5237995A (en) Concentric electrode for use in detecting low level bioelectric signals
US6708051B1 (en) FMRI compatible electrode and electrode placement techniques
US4669479A (en) Dry electrode system for detection of biopotentials
US5217013A (en) Patient sensor for optical cerebral oximeter and the like
US4852572A (en) Multi-electrode type electrocardiographic electrode structure
US20070270678A1 (en) Wireless Electrode for Biopotential Measurement
US20050215916A1 (en) Active, multiplexed digital electrodes for EEG, ECG and EMG applications
JP2005110801A (en) Biomedical measurement sensor and biomedical measurement method
EP1631189A1 (en) Sensor system for measuring biopotentials
WO2010003175A1 (en) A system for sensing electrophysiological signals
US5099856A (en) Electrode isolation amplifier
KR20110135296A (en) Apparatus and method for measuring biological signal
US4503860A (en) Electroencephalography electrode assembly
JPS6026527B2 (en) Biological electrode
US3464404A (en) Bio-medical instrumentation electrode
JP2004057704A (en) Electrode device
US4067321A (en) Electrodes for electroencephalographic examinations
US3052232A (en) Voltage sensing apparatus
JPS5813182B2 (en) X-ray transparent electrode and lead wire
Ko Active electrodes for EEG and evoked potential
JPH052163Y2 (en)