JPS60264391A - Crystallizer - Google Patents

Crystallizer

Info

Publication number
JPS60264391A
JPS60264391A JP11793684A JP11793684A JPS60264391A JP S60264391 A JPS60264391 A JP S60264391A JP 11793684 A JP11793684 A JP 11793684A JP 11793684 A JP11793684 A JP 11793684A JP S60264391 A JPS60264391 A JP S60264391A
Authority
JP
Japan
Prior art keywords
melt
crystal
crucible
heater
stages
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11793684A
Other languages
Japanese (ja)
Inventor
Toshihiko Ayusawa
鮎澤 俊彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP11793684A priority Critical patent/JPS60264391A/en
Publication of JPS60264391A publication Critical patent/JPS60264391A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/30Mechanisms for rotating or moving either the melt or the crystal
    • C30B15/305Stirring of the melt

Abstract

PURPOSE:In a crystallizer where a crystal is allowed to grow, as the temperature of the melt heated is controlled in the crucible, the structure of the heater is specified to inhibit the factors relating to the qualities of the cystal from flacuating whereby crystals of good qualities are obtained. CONSTITUTION:Two or more heater elements 6, 7 are arranged vertically in plural stages, e.g., 2 stages. The heaters 6, 7 in each stages is composed of a plurality of elements and the elements are connected triangularly as anticlockwise shown in the figure and the 3 terminals of the upper heater R1(6) are connnected to three-phase power source in the order of U-V-W. Further, other 3 terminals of the lower heater R2(7) are connected to another 3-phase electric source in the order of U-W-V. Crucibles 2, 3 are heated with heaters 6, 7 and the temperature is controlled to allow the crystal on the surface of the melt to grow outside the melt 1. At this time, the melt is influenced by the magnetic field to rotate in different directions in the upper part and in the lower part to improve the quality of the crystal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、溶融液より成分化学物質を凝固させて結晶成
長させる結晶製造装置に関するものであるO 〔従来技術とその問題点〕 近年、半導体装置が多量に、かつ多方面に使用されるの
に伴ない、半導体装置に要求される特性が多様化し、ま
た精緻な構造が要求されるようになってきており、必然
的に半導体装置製造にも高度の制御性と、効率性とが要
求される」=うになってきた。さらに、これらの要求を
満たすために、半導体装置の基礎をなす結晶には高度の
均一性、完全性、不純物制御性がめられている。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a crystal manufacturing apparatus for growing crystals by solidifying component chemicals from a melt. [Prior Art and Problems thereof] In recent years, semiconductors have been As devices are used in large quantities and in a wide variety of fields, the characteristics required of semiconductor devices are diversifying, and more sophisticated structures are being required. Increasingly, a high degree of controllability and efficiency are required. Furthermore, in order to meet these demands, the crystals that form the basis of semiconductor devices are required to have a high degree of uniformity, integrity, and impurity control.

溶融液から結晶成長させる例として、元素周律表■族及
び■族元素からなる砒化ガリウムの融液封止チョクラル
スキ法による単結晶成長を例に挙げて従来装置について
説明する。第6図において、1は結晶成長母体融液、2
は石英或いは窒化硼素よりなるルツボ、3は炭素製ルツ
ボ、4は封止融液相、5は成長結晶である。また8はリ
ング状の発熱体で、ルツボを全周から加熱するものであ
る。
As an example of growing a crystal from a melt, a conventional apparatus will be described using a single crystal growth of gallium arsenide, which is composed of elements of groups (1) and (2) of the periodic table, by the melt-sealed Czochralski method. In FIG. 6, 1 is a crystal growth host melt, 2
3 is a crucible made of quartz or boron nitride, 3 is a carbon crucible, 4 is a sealed melt phase, and 5 is a grown crystal. Further, 8 is a ring-shaped heating element that heats the crucible from the entire circumference.

砒化ガリウム単結晶成長には、砒化ガリウム凝固点付近
の温度条件下で、蒸気圧の高い砒素を含むため、砒化ガ
リウム融液1上に低融点ガラス物質、例えば酸化硼素(
B203)よりなる封止融液相4を設け、成長容器P内
に不活性ガスを与えて内部を、砒素の蒸発の抑制に充分
な圧力に保ちつつ結晶成長がなされる。かかる状況で結
晶の品質に大きな影響を及ぼすものは温度及びその源泉
である熱移動、特に結晶成長の母液たるGaAs融液の
温度及びその変化、封止融液−母液界面付近及び母液−
結晶界面伺近、封止融液−容器内外気界面伺近の温度勾
配である。しかし、従来は1個の発熱体で温度コントロ
ールするため、結晶成長方向の温度分布を制御するには
限度があり、しかも融液内の対流による物質及び熱移動
はコントロールすることができず、結晶の品質を向上さ
せることができなかつ/ζ。
Since gallium arsenide single crystal growth involves arsenic with a high vapor pressure under temperature conditions near the freezing point of gallium arsenide, a low melting point glass substance such as boron oxide (
A sealed melt phase 4 made of B203) is provided, and crystal growth is performed while an inert gas is supplied to the inside of the growth container P to keep the inside at a pressure sufficient to suppress evaporation of arsenic. In such a situation, the factors that greatly affect the quality of the crystal are temperature and its source, heat transfer, especially the temperature of the GaAs melt, which is the mother liquid for crystal growth, and its changes, the sealing melt - near the mother liquid interface, and the mother liquid.
This is the temperature gradient near the crystal interface and near the sealing melt-air interface inside and outside the container. However, conventionally, the temperature is controlled using a single heating element, so there is a limit to controlling the temperature distribution in the direction of crystal growth.Moreover, it is not possible to control mass and heat transfer due to convection within the melt, resulting in crystallization. Unable to improve the quality of /ζ.

〔発明の目的〕[Purpose of the invention]

本発明は前記問題点を解決し、結晶の品質に影響を与え
る要因の変動を抑制し、良質の結晶を得る結晶製造装置
を提供するものである。
The present invention solves the above-mentioned problems and provides a crystal manufacturing apparatus that suppresses fluctuations in factors that affect the quality of crystals and obtains high-quality crystals.

〔発明の構成〕[Structure of the invention]

本発明は2以上の発熱体をルツボの外周に沿って配設す
るとともに、上下に複数段設け、上下段の発熱体を逆位
相の多相電源に結線し7たことを特暑 徴とする結晶製
造装置である。
The present invention is characterized by arranging two or more heating elements along the outer periphery of the crucible, providing multiple stages above and below, and connecting the heating elements in the upper and lower stages to a multi-phase power source with opposite phases. This is a crystal manufacturing device.

〔実施例〕〔Example〕

以下に、本発明の一実施例を図により説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図に示すように、融液1を収容するルツボ2が、炭
素製ルツボ3に支えられている点は従来と同様である。
As shown in FIG. 1, a crucible 2 containing a melt 1 is supported by a carbon crucible 3, similar to the conventional method.

図において、本発明では2以上の発熱体6,7を用い、
この発熱体6,7をルツボ2,3の外周に上下に配設す
る。尚、発熱体を上下二段に配設した場合を図示したが
、これに限定されるものでない。第2図(a) 、 (
b)に示すように、各段の発熱体6.7は2以上あるか
ら、これらの発熱体R1,・・・R2・・・(6,7)
を各段毎に△結線し、上段の発熱体R1(6)の3つの
端子を反時計方向廻りに三相電源9aにU−V−W相の
順序でそれぞれ結線するとともに、下段の発熱体R2(
7)の3つの端子を三相電源9bにU−W−■相の順序
でそれぞれ結線する。
In the figure, in the present invention, two or more heating elements 6, 7 are used,
The heating elements 6 and 7 are arranged above and below the outer periphery of the crucibles 2 and 3. Although the illustration shows a case in which the heating elements are arranged in two stages, upper and lower, the present invention is not limited to this. Figure 2 (a), (
As shown in b), since there are two or more heating elements 6.7 in each stage, these heating elements R1,...R2...(6,7)
△ for each stage, connect the three terminals of the upper heating element R1 (6) counterclockwise to the three-phase power supply 9a in the order of U-V-W phases, and connect the lower heating element R2(
Connect the three terminals of 7) to the three-phase power supply 9b in the order of U-W-■ phases.

発熱体6,7の具体例を第3図(a) 、 (b)に示
す。
Specific examples of the heating elements 6 and 7 are shown in FIGS. 3(a) and 3(b).

各発熱体6,7は図に示すように上下に蛇行しつつ筒状
に形成された線状の炭素製抵抗体がらなり、周方向の長
さを3等分する位置にそれぞれ端子6a。
As shown in the figure, each of the heating elements 6 and 7 consists of a linear carbon resistor formed in a cylindrical shape while meandering up and down, and each has a terminal 6a at a position dividing the length in the circumferential direction into three equal parts.

6b、6c+7a、7b+7cが設けられ、各端子を通
して三相電源に結線したものである。
6b, 6c+7a, and 7b+7c are provided, and are connected to a three-phase power source through each terminal.

発熱体6,7でルツボを加熱し、かつその温度を制御す
ることにより、融液1の表面で成長した結晶は封止融液
相4を通して育成され、結晶5として融液外へ成長され
る。この点は従来と同様である。
By heating the crucible with heating elements 6 and 7 and controlling the temperature, the crystals grown on the surface of the melt 1 are grown through the sealing melt phase 4 and grown out of the melt as crystals 5. . This point is the same as before.

本発明は発熱体6,7を△結線し、上下段をそれぞれ逆
位相となるように三相電源9a 、 9bに結線させて
いるため、上下段の発熱体6,7に加えられた多相電流
によりルツボの部分に逆向きの三相回転磁界が生じ、第
4図に示すようにこの磁界の影響を受けてルツボ2内の
融液1が上下で相異なる方向に誘導回転される。したが
って、本発明によれば、1)融液及び結晶における巨視
的温度分布は上下段両発熱体6,7からの発熱量をそれ
らに加える電力を制御することにより、調節して所望の
温度分布になる。2)融液内の対流による物質及び熱移
動は第5図に示すように発熱体に加えられたそれぞれの
位相の電流で生ずる逆向きの三相回転磁界により融液を
上下に分断して相異なる方向に誘導回転させる方法で抑
制される。
In the present invention, the heating elements 6 and 7 are connected in a Δ manner, and the upper and lower stages are connected to the three-phase power supplies 9a and 9b so that the phases are opposite to each other. The current generates a three-phase rotating magnetic field in opposite directions in the crucible, and as shown in FIG. 4, under the influence of this magnetic field, the melt 1 in the crucible 2 is induced to rotate in different directions at the top and bottom. Therefore, according to the present invention, 1) the macroscopic temperature distribution in the melt and the crystal can be adjusted to a desired temperature distribution by controlling the amount of heat generated from both the upper and lower heating elements 6 and 7 and the electric power applied thereto; become. 2) Material and heat transfer due to convection within the melt is achieved by dividing the melt into upper and lower parts by a three-phase rotating magnetic field in opposite directions generated by currents of each phase applied to the heating element, as shown in Figure 5. This is suppressed by inducing rotation in different directions.

尚、実施例では△結線型二段三相発熱体による融液封止
チョクラルスキ法について説明したが、これに限定され
るものではない。例えば、二相電源または4相以」二の
ものにより回転磁界を生じさせても良い。また、本発明
は例えばブリッジマン結晶方法、常圧或いは減圧の通常
のチョクラルスキ法等にも適用できる。
In addition, although the melt-sealed Czochralski method using a Δ-connection type two-stage three-phase heating element has been described in the embodiment, the present invention is not limited thereto. For example, the rotating magnetic field may be generated by a two-phase power source or a four-phase power source or more. Further, the present invention can be applied to, for example, the Bridgman crystal method, the ordinary Czochralski method under normal pressure or reduced pressure, and the like.

〔発明の効果〕〔Effect of the invention〕

本発明は以上説明したように、ルツボの外周に周方向に
分割された発熱体を上下に複数段配設して温度をコント
ロールし、かつ発熱体を多相電源に結線して回転磁界を
生じさせて融液の動きをコントロールするようにしたの
で、結晶成長方向の温度分布制御性、結晶成長に垂直な
面内における温度のよりよい均一性を保つことができ、
かつ対流による不純物移動の抑制ができ、特に結晶成長
界面付近の急峻な温度勾配による熱歪に起因する成長結
晶の不完全性を避けることができる効果を有するもので
ある。
As explained above, the present invention controls the temperature by arranging heating elements divided in the circumferential direction in multiple stages above and below the outer periphery of the crucible, and generates a rotating magnetic field by connecting the heating elements to a multiphase power source. Since the movement of the melt is controlled by controlling the temperature distribution in the direction of crystal growth, it is possible to maintain better temperature uniformity in the plane perpendicular to the crystal growth.
In addition, it is possible to suppress the movement of impurities due to convection, and in particular, it has the effect of avoiding imperfections in the grown crystal caused by thermal distortion due to the steep temperature gradient near the crystal growth interface.

【図面の簡単な説明】[Brief explanation of drawings]

゛第1図は本発明の一実施例を示す構成図、第2図(a
) 、 (b)は発熱体の結線図、第3図(a)は本発
明に係る発熱体の具体的構造を示す斜視図、(b)はそ
の平面図、第4図は融液の回転を示す構成図、第5図は
融液内の物質の移動を示す図、第6図は従来装置の構成
図である。 2.3・・・ルツボ、6,7・・・発熱体、9a 、 
9b・・三相電源特許出願人 日本電気株式会社 第1図 第2図
゛Figure 1 is a configuration diagram showing one embodiment of the present invention, Figure 2 (a
), (b) is a wiring diagram of the heating element, FIG. 3(a) is a perspective view showing the specific structure of the heating element according to the present invention, (b) is a plan view thereof, and FIG. 4 is a rotation of the melt. FIG. 5 is a diagram showing the movement of substances in the melt, and FIG. 6 is a diagram showing the configuration of a conventional device. 2.3... Crucible, 6,7... Heating element, 9a,
9b... Three-phase power supply patent applicant NEC Corporation Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)ルツボ内の溶融液の加熱温度を制御しつつ、核液
中の成分化学物質を凝固させて結晶成長さ仕る結晶製造
装置において、2以上の発熱体をルツボの外周に沿って
配設するとともに上下に複数段設け、上下段の発熱体を
逆位相の多相電源にそれぞれ結線したことを特徴とする
結晶製造装置。
(1) In a crystal manufacturing device that controls the heating temperature of the molten liquid in the crucible and solidifies component chemicals in the nuclear liquid to grow crystals, two or more heating elements are arranged along the outer periphery of the crucible. 1. A crystal manufacturing apparatus characterized in that a plurality of upper and lower stages are provided, and the heating elements of the upper and lower stages are respectively connected to multiphase power supplies with opposite phases.
JP11793684A 1984-06-08 1984-06-08 Crystallizer Pending JPS60264391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11793684A JPS60264391A (en) 1984-06-08 1984-06-08 Crystallizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11793684A JPS60264391A (en) 1984-06-08 1984-06-08 Crystallizer

Publications (1)

Publication Number Publication Date
JPS60264391A true JPS60264391A (en) 1985-12-27

Family

ID=14723877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11793684A Pending JPS60264391A (en) 1984-06-08 1984-06-08 Crystallizer

Country Status (1)

Country Link
JP (1) JPS60264391A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0532479A (en) * 1991-02-20 1993-02-09 Sumitomo Metal Ind Ltd Crystal growth device and method for growing crystal using the same device
EP1225255A1 (en) * 2001-01-18 2002-07-24 Wacker Siltronic Gesellschaft für Halbleitermaterialien Aktiengesellschaft Process and apparatus for producing silicon single crystal
WO2005041278A2 (en) * 2003-10-23 2005-05-06 Crystal Growing Systems Gmbh Crystal growing unit
DE102009045680A1 (en) 2009-10-14 2011-04-28 Forschungsverbund Berlin E.V. Device, useful for producing silicon blocks from a melt by directional solidification, comprises growth chamber with melt absorbable rectangular melt container surrounded from mantle- and cover heating devices, and floor-heating device
DE102009046845A1 (en) 2009-11-18 2011-06-01 Forschungsverbund Berlin E.V. Crystallization plant and crystallization process

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0532479A (en) * 1991-02-20 1993-02-09 Sumitomo Metal Ind Ltd Crystal growth device and method for growing crystal using the same device
EP1225255A1 (en) * 2001-01-18 2002-07-24 Wacker Siltronic Gesellschaft für Halbleitermaterialien Aktiengesellschaft Process and apparatus for producing silicon single crystal
US7771530B2 (en) 2001-01-18 2010-08-10 Siltronic Ag Process and apparatus for producing a silicon single crystal
WO2005041278A2 (en) * 2003-10-23 2005-05-06 Crystal Growing Systems Gmbh Crystal growing unit
WO2005041278A3 (en) * 2003-10-23 2005-07-07 Crystal Growing Systems Gmbh Crystal growing unit
US7179331B2 (en) 2003-10-23 2007-02-20 Crystal Growing Systems Gmbh Crystal growing equipment
JP2007509026A (en) * 2003-10-23 2007-04-12 クリスタル グロウイング システムズ ゲゼルシヤフト ミット ベシュレンクテル ハフツング Crystal growth equipment
JP4654193B2 (en) * 2003-10-23 2011-03-16 クリスタル グロウイング システムズ ゲゼルシヤフト ミット ベシュレンクテル ハフツング Crystal growth equipment
EP2105522A3 (en) * 2003-10-23 2011-11-02 PVA TePla AG Crystal growing device
DE102009045680A1 (en) 2009-10-14 2011-04-28 Forschungsverbund Berlin E.V. Device, useful for producing silicon blocks from a melt by directional solidification, comprises growth chamber with melt absorbable rectangular melt container surrounded from mantle- and cover heating devices, and floor-heating device
DE102009046845A1 (en) 2009-11-18 2011-06-01 Forschungsverbund Berlin E.V. Crystallization plant and crystallization process

Similar Documents

Publication Publication Date Title
JP7025395B2 (en) Reflective screen of single crystal growth furnace and single crystal growth furnace
EP0140565B1 (en) Method for growing multicomponent compound semiconductor crystals
KR101574749B1 (en) Upper heater for manufacturing single crystal, single crystal manufacturing apparatus and single crystal manufacturing method
JPS60264391A (en) Crystallizer
KR960000062B1 (en) Apparatus for growing dentritic web crystals of constant width
US4619811A (en) Apparatus for growing GaAs single crystal by using floating zone
JPH10287488A (en) Pulling up of single crystal
JPS60176995A (en) Preparation of single crystal
JP3595977B2 (en) Crystal growth apparatus and single crystal manufacturing method
CN1015649B (en) Apparatus for manufacturing semiconductor single crystals
TWI771781B (en) A kind of positive axis silicon carbide single crystal growth method
JP2758038B2 (en) Single crystal manufacturing equipment
JPH07165488A (en) Apparatus for producing single crystal and method therefor
JPH05319973A (en) Single crystal production unit
JPS6033297A (en) Pulling device for single crystal semiconductor
JP3557690B2 (en) Crystal growth method
JP2830392B2 (en) Method and apparatus for manufacturing compound semiconductor single crystal
JPS59131593A (en) Apparatus for producing compound semiconductor single crystal
JPS62167286A (en) Heating device
JPH0283297A (en) Production of compound semiconductor single crystal and device therefor
JPS6256394A (en) Method for growing compound semiconductor single crystal
JP2601204B2 (en) Solid-state recrystallization of compound semiconductors
JPH03103386A (en) Semiconductor single crystal production unit
JPH0316988A (en) Production device of single crystal of compound semiconductor
JPS6016891A (en) Preparation of crystal by application of magnetic field and its device