JPS62167286A - Heating device - Google Patents

Heating device

Info

Publication number
JPS62167286A
JPS62167286A JP813286A JP813286A JPS62167286A JP S62167286 A JPS62167286 A JP S62167286A JP 813286 A JP813286 A JP 813286A JP 813286 A JP813286 A JP 813286A JP S62167286 A JPS62167286 A JP S62167286A
Authority
JP
Japan
Prior art keywords
heating element
temperature
lower heating
electrode terminal
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP813286A
Other languages
Japanese (ja)
Inventor
Takashi Kobayashi
隆 小林
Keigo Hoshikawa
圭吾 干川
Hiroki Koda
拡樹 香田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP813286A priority Critical patent/JPS62167286A/en
Publication of JPS62167286A publication Critical patent/JPS62167286A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To grow high-quality crystal in a device necessitating temp. gradient in the vertical direction by providing a pair of up-and-down heating elements adjacently and eliminating an up-and-down temp. gap and enabling precise temp. control. CONSTITUTION:A pair of up-and-down heating elements 18, 19 capable of heating control independently are provided respectively and both the under end of the upper heating element 18 and the top part of the lower heating element 19 are made adjacent. An electrode terminal 20 of the above-mentioned upper heating element 18 is provided to the top end part of this heating element 18. Also an electrode terminal 21 of the above-mentioned lower heating element 19 is provided to the under end part of this heating element 19.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はチョクラルスキー法ガどの回転引上法や垂直ブ
リッジマン法などのように、垂直方向に温度勾配が必要
とされる結晶成長法などに用いる加熱装置に関するもの
である。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is applicable to crystal growth methods that require a temperature gradient in the vertical direction, such as the Czochralski method, the rotational pulling method, and the vertical Bridgman method. This relates to a heating device used for such purposes.

〔従来の技術〕[Conventional technology]

ガリウム砒素(GaAa )やインジウム燐(InP)
などの化合物半導体結晶は、集積回路や光デバイス用基
板として広く用いられているが、最近、上記結晶中に含
まれる格子欠陥、とくに転位が、デバイス特性の劣化ま
たは不均一の原因となっていることが明らかにされてお
シ、転位を極力低減した高品質結晶が強く要求されてい
る。そこで、とのような高品質結晶を実現するために種
々の方法が提案されておシ、なかでも結晶育成時の熱環
境を制御し、転位発生、増殖の原因となる結晶内熱応力
を緩和する方法が最小基本的でかつ重要な研究課題とな
っている。この理想的熱環境を得るためには、結晶成長
時における炉内温度分布を精密に制御する必要がある。
Gallium arsenide (GaAa) and indium phosphide (InP)
Compound semiconductor crystals such as these are widely used as substrates for integrated circuits and optical devices, but recently, lattice defects, particularly dislocations, contained in these crystals have become a cause of deterioration or non-uniformity in device characteristics. It has become clear that high-quality crystals with as few dislocations as possible are strongly required. Therefore, various methods have been proposed to realize high-quality crystals such as . How to do this has become the most basic and important research topic. In order to obtain this ideal thermal environment, it is necessary to precisely control the temperature distribution within the furnace during crystal growth.

そこで従来、複数個の発熱体を炉内に設置したり、保温
材の形状や構成を工夫したシするなど種々な試みがなさ
れている。
Therefore, various attempts have been made in the past, such as installing a plurality of heating elements in the furnace and devising the shape and structure of the heat insulating material.

第4図は、このよう表結晶成長時の炉内温度分布を精密
制御するために複数個の発熱体を上下に配列した従来に
おける液体封止引上式結晶成長横用加熱装置の縦断面図
であって、これを同図に基いて説明すると、るつぼ1の
周囲には、上下一対の発熱体2,3が、るつぼ1の周囲
に配設されており、各発熱体2,3の下端部には、電極
端子4゜5がそれぞれ一体的に設けられている。6は発
熱体2.3によって溶融されたCaAs融液、7はるつ
ぼ1の中心部に回転自在に垂下されたGaAsの種子結
晶、8は酸化硼素(Bt Os )である。
Figure 4 is a vertical cross-sectional view of a conventional liquid-sealed pulling-type crystal growth horizontal heating device in which multiple heating elements are arranged vertically in order to precisely control the temperature distribution in the furnace during surface crystal growth. To explain this based on the figure, a pair of upper and lower heating elements 2 and 3 are arranged around the crucible 1, and the lower end of each heating element 2 and 3 is disposed around the crucible 1. Electrode terminals 4.degree. 5 are integrally provided in each portion. 6 is a CaAs melt melted by a heating element 2.3, 7 is a GaAs seed crystal suspended rotatably from the center of the crucible 1, and 8 is boron oxide (BtOs).

このように構成されていることにより、発熱体2.3で
るつぼ1を加熱し、種子結晶7を回転させながら引上げ
ると、GaAs融液6が固化して単結晶が成長する。こ
の場合、上下の発熱体2,3は別々に温度制御されるの
で、上下方向に適切な温度勾配が得られる。
With this configuration, when the crucible 1 is heated by the heating element 2.3 and the seed crystal 7 is pulled up while rotating, the GaAs melt 6 solidifies and a single crystal grows. In this case, since the temperature of the upper and lower heating elements 2 and 3 is controlled separately, an appropriate temperature gradient can be obtained in the vertical direction.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、このような従来の加熱装置においては、
上部の電極端子4が上下の発熱体2.3の間にくるよう
な配置になっているので、発熱しない間隙が数mぐらい
でき、一般に上部発熱体2の下端部が固液界面近傍にく
る本装置においては、固液界面近傍での温度が例えば5
℃以上低下してしまい、さらにこの低温面内では電極端
子4のある2個所だけが特に低温になってしまう。との
ように結晶育成中、固液界面で液相側が固相側よりも低
温になると、液相中でランダムな固化が起ζ9、単結晶
が育成できなくなる。また、固液界面内の温度分布が非
対称になると、結晶の回転中に結晶の固液界面上の部分
が、温度の高い部分と温度の低い部分とを交互に通過す
ることになシ、このために結晶の成長速度にむらができ
て結晶欠陥や不純物分布の不均一性が生じることになる
。このように、従来の発熱体構造では、固液界面近傍で
の温度低下とこの面内における温度分布の非対称性が避
けられず、結晶欠陥や不純物分布の不均一が生じて精密
な温度制御ができないという問題があった。なお、第4
図の右側には、横軸に温度をと9縦軸に左側の縦断面図
との対応位置をとって示す温度分布図を示したが、図か
ら明らかなように、上下の発熱体2,3間の空間部に対
応する箇所の温度が低くなっている。
However, in such conventional heating devices,
Since the upper electrode terminal 4 is arranged between the upper and lower heating elements 2.3, there is a gap of several meters where no heat is generated, and the lower end of the upper heating element 2 is generally located near the solid-liquid interface. In this device, the temperature near the solid-liquid interface is, for example, 5
℃ or more, and furthermore, within this low-temperature surface, only two locations where the electrode terminals 4 are located become particularly low-temperature. During crystal growth, if the liquid phase side becomes lower temperature than the solid phase side at the solid-liquid interface, random solidification occurs in the liquid phase ζ9, making it impossible to grow a single crystal. Additionally, if the temperature distribution within the solid-liquid interface becomes asymmetric, the portion of the crystal on the solid-liquid interface will alternately pass through high-temperature areas and low-temperature areas during crystal rotation. This results in uneven crystal growth rate, resulting in crystal defects and non-uniform impurity distribution. In this way, in conventional heating element structures, a drop in temperature near the solid-liquid interface and an asymmetry in the temperature distribution within this plane are unavoidable, resulting in crystal defects and uneven impurity distribution, making precise temperature control difficult. The problem was that I couldn't do it. In addition, the fourth
On the right side of the figure, there is a temperature distribution diagram showing the temperature on the horizontal axis and the corresponding position with the vertical cross-sectional view on the left side on the vertical axis.As is clear from the figure, the upper and lower heating elements 2, The temperature of the area corresponding to the space between 3 is low.

さらに、上記欠点を補うために、発熱体2,3以外の保
温材などに種々の工夫を加えることが提案されているが
、保温材の形状や構造が複雑化するなど、実用化の面に
おいて必ずしも満足した解決法とは言えなかった。
Furthermore, in order to compensate for the above-mentioned drawbacks, it has been proposed to add various innovations to heat insulating materials other than the heating elements 2 and 3, but the shapes and structures of the heat insulating materials become complicated, making it difficult to put them into practical use. This was not necessarily a satisfactory solution.

本発明は以上のよう力点に鑑みなされたもので、精密な
炉内温度分布制御を可能にした加熱装置を提供すること
を目的としている。
The present invention has been made in view of the above-mentioned points, and an object of the present invention is to provide a heating device that enables precise control of temperature distribution in a furnace.

〔問題点を解決するための手段〕[Means for solving problems]

このよう表目的を達成するために本発明では、それぞれ
独立した加熱制御が可能な上下一対の発熱体を、上部発
熱体の下端と下部発熱体の上端とを近接させて設けると
ともに、上記発熱体の電極端子をこの上部発熱体の上端
部に設け、下部発熱体の電極端子をこの下部発熱体の下
端部に設けた。
In order to achieve this objective, the present invention provides a pair of upper and lower heating elements that can be independently heated, with the lower end of the upper heating element and the upper end of the lower heating element close to each other, and An electrode terminal was provided at the upper end of the upper heating element, and an electrode terminal of the lower heating element was provided at the lower end of the lower heating element.

〔作用〕[Effect]

上下発熱体の境界部に空間部がなくまた電極端子が存在
しないので、この箇所での温度低下がなく上下に均−力
温度勾配が得られる。
Since there is no space at the boundary between the upper and lower heating elements and no electrode terminals are present, there is no temperature drop at this location and an even temperature gradient can be obtained in the upper and lower directions.

〔実施例〕〔Example〕

第1図および第2図は本発明に係る加熱装置の実施例を
示し、第1図はその縦断面図とこれに対応する温度分布
線図、第2図は発熱体の配置を示す断面図である。本実
施例は本発明を什介物半道体の一つであるGaAsを液
体封止引上法(LEC法)において育成する装置に実施
した例を示し、黒鉛るつぼ11と熱分解窒化硼素るつ埋
12とで二重に形成されたるつぼ13内には、後述する
加熱装置で溶融されたGaAs融液14が入れられてお
9、その上方には上下動自在な種子結晶15がるつぼ1
3の中心部に垂下されている。16は種子結晶15の周
囲に入れられた酸化硼素(n*os )である。
1 and 2 show an embodiment of the heating device according to the present invention, FIG. 1 is a longitudinal sectional view thereof and a corresponding temperature distribution diagram, and FIG. 2 is a sectional view showing the arrangement of heating elements. It is. This example shows an example in which the present invention is applied to an apparatus for growing GaAs, which is one of the intervening half-domains, by the liquid confinement drawing method (LEC method). A GaAs melt 14 melted by a heating device (to be described later) is placed in a crucible 13 which is double-formed with a crucible 12 .
It hangs down from the center of 3. 16 is boron oxide (n*os) placed around the seed crystal 15.

るつは13を加熱する加熱装置17は、上部発熱体18
と下部発熱体19との上下一対の発熱体で形成されてお
り、上部発熱体18の下端と下部発熱体1Bの上端とは
すき間が#1とんど形成されないように近接している。
The heating device 17 that heats the heating element 13 includes an upper heating element 18
It is formed of a pair of upper and lower heating elements, ie, a lower heating element 19 and a lower heating element 19, and the lower end of the upper heating element 18 and the upper end of the lower heating element 1B are close to each other so that a gap #1 is hardly formed.

そして、上部発熱体18の電極端子20は、この上部発
熱体18の上端部に一体形成されており、また下部発熱
体19の電極端子21は、この下部発熱体19の下端部
に一体形成されている。第2図では第1図から発熱体1
8.19と電極端子20.21のみを取出し第4図に対
応して図示している。
The electrode terminal 20 of the upper heating element 18 is integrally formed with the upper end of this upper heating element 18, and the electrode terminal 21 of the lower heating element 19 is integrally formed with the lower end of this lower heating element 19. ing. Figure 2 shows heating element 1 from Figure 1.
Only the electrode terminals 8.19 and 20.21 are taken out and illustrated corresponding to FIG.

このように構成されていることによシ、加熱装置17で
るつぼ13を加熱し、種子結晶15を回転させながら引
上げると、GaAs融液15が固化し単結晶が成長する
。第1図の右側は、横軸に温度をと9縦軸には左側の縦
断面図との対応位置をとって示す温度分布線図であって
、本装置の場合には上下の発熱体18.19の境界部に
ほとんどすき間がなく、またここには電極端子20.2
1が存在しないので、第4図に示すような境界部での温
度低下が彦<、温度分布曲線22がほとんど直線状にな
ってなめらかな温度勾配が得られる。
With this configuration, when the crucible 13 is heated by the heating device 17 and the seed crystal 15 is pulled up while rotating, the GaAs melt 15 solidifies and a single crystal grows. The right side of FIG. 1 is a temperature distribution diagram showing the temperature on the horizontal axis and the corresponding position with the longitudinal cross-sectional view on the left side on the vertical axis. In the case of this device, the upper and lower heating elements 18 There is almost no gap at the boundary between .19 and electrode terminal 20.2.
1 does not exist, the temperature decreases at the boundary as shown in FIG. 4, and the temperature distribution curve 22 becomes almost linear, resulting in a smooth temperature gradient.

さらに、GaAs種子結晶15とGaAs融液14との
境界面である固液界面での温度勾配や酸化硼素16中の
温度勾配が容易に制御され、かつ上下発熱体18.19
間の温度ギャップが存在しないので、結晶育成時に結晶
上方への熱の流れが均一化される。本実施例ではGaA
s融液14の温度勾配が15℃7へ、酸化硼素16中の
温度勾配が20℃/馴の温度条件下で、2インチ径アン
ドープGaAs結晶育成を行なった結果、転位密度はI
X103cm−″!以下の低転位結晶が得られるし、ま
た上方への熱の流れが均一であるため、高精度の直径制
御が可能である。この結果、固液界面近傍の熱環境を局
所的な不均一を生じさせることなく容易に制御できる。
Furthermore, the temperature gradient at the solid-liquid interface between the GaAs seed crystal 15 and the GaAs melt 14 and the temperature gradient in the boron oxide 16 can be easily controlled, and the upper and lower heating elements 18, 19
Since there is no temperature gap between the two, the flow of heat toward the top of the crystal becomes uniform during crystal growth. In this example, GaA
The dislocation density was
A crystal with low dislocations of less than can be easily controlled without causing significant non-uniformity.

第3図は本発明の他の実施例を第1図に対応して示す加
熱装置の縦断面図であって、第1図に示す実施例と同構
成のものには同符号を付してその説明を省略する。本実
施例においては上部発熱体18の下端部と、下部発熱体
19の上端部とが、一部室なっている。こうすることに
より、前記実施例と同様に々めらかな温度勾配が得られ
るとともに、上部発熱体18が下部発熱体19よりもる
つぼ13に近接しているので、特に酸化硼素16中の温
度分布制御が容易になる。前記実施例において示した転
位密度に与える効果は、本実施例の場合も同じである。
FIG. 3 is a longitudinal cross-sectional view of a heating device showing another embodiment of the present invention corresponding to FIG. 1, and parts having the same structure as the embodiment shown in FIG. The explanation will be omitted. In this embodiment, the lower end of the upper heating element 18 and the upper end of the lower heating element 19 form a part of the chamber. By doing this, a smooth temperature gradient can be obtained as in the previous embodiment, and since the upper heating element 18 is closer to the crucible 13 than the lower heating element 19, the temperature distribution in the boron oxide 16 is particularly improved. Easier to control. The effect on dislocation density shown in the previous example is the same in this example.

さらに酸化硼素内での温度分布制御が容易になることか
ら、熱履歴によって生じる結晶上下間の電気特性の不均
一を改善するための酸化硼素中における育成後の熱処理
にもきわめて有効である。
Furthermore, since the temperature distribution within boron oxide can be easily controlled, it is extremely effective for post-growth heat treatment in boron oxide to improve non-uniformity of electrical properties between the top and bottom of the crystal caused by thermal history.

なお、前記各実施例においては、本発明を実施する結晶
成長装置としてLEC式の結晶成長装置を例示し、これ
をGaAs結晶育成に適用した例を示したが、チョクラ
ルスキ一式や垂直ブリッジマン式の結晶成長装置にも同
様に実施することができ、またStやcap、InPな
どの結晶育成にも同様に適用できることは言うまでもな
い。
In each of the above embodiments, an LEC type crystal growth apparatus was exemplified as a crystal growth apparatus for carrying out the present invention, and an example was shown in which this was applied to GaAs crystal growth. It goes without saying that the same method can be applied to a crystal growth apparatus, and can also be applied to crystal growth of St, cap, InP, and the like.

〔発明の効果〕〔Effect of the invention〕

以上の説明により明らか々ように、本発明によれば加熱
装置において、それぞれ独立した加熱制御が可能な上下
一対の発熱体を、上部発熱体の下端と下部発熱体の上端
とを近接させて設けるとともに、上部発熱体の電極端子
をこの上部発熱体の上部に設け、下部発熱体の電極端子
をこの下部発熱体の下部に設けたことにより、上下方向
に形成されることにより、上下方向に形成される温度勾
配が、上下の発熱体間に発生する温度ギャップすなわち
固液界面近傍での温度低下のないなめらかな温度勾配と
なり、かつ固液界面内での温度分布が対称になるので、
結晶欠陥や不純物分布の不均一のないきわめて高品質の
結晶が得られるとともに、発熱体以外の複雑々保温体構
造を必要とせず、構造が簡素化される。
As is clear from the above description, in the heating device according to the present invention, a pair of upper and lower heating elements capable of independent heating control are provided with the lower end of the upper heating element and the upper end of the lower heating element close to each other. At the same time, the electrode terminals of the upper heating element are provided on the upper part of this upper heating element, and the electrode terminals of the lower heating element are provided on the lower part of this lower heating element, so that the electrode terminals are formed in the vertical direction. The temperature gradient generated between the upper and lower heating elements is a smooth temperature gradient with no temperature drop near the solid-liquid interface, and the temperature distribution within the solid-liquid interface is symmetrical.
Extremely high quality crystals without crystal defects or non-uniform impurity distribution can be obtained, and the structure can be simplified without requiring a complicated heat insulator structure other than the heating element.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図は本発明に係る加熱装置の実施例を
示し、第1図はその縦断面図とこれに対応する温度分布
線図、第2図は発熱体の配置を示す断面図、第3図は本
発明の他の実施例を第1図に対応して示す縦断面図、第
4図は従来の加熱装置の縦断面図とこれに対応する温度
分布線図である。 13・・・・るつぼ、14・・・・G&A11融液、1
5・・・・種子結晶、16・・・・酸化硼素、17・・
・・加熱装置、18・・・・上部発熱体、19拳・―・
下部発熱体、20.21・・・・電極端子、22・・・
・温度勾配曲線。 特許出願人 日本電信電話株式会社 代 理 人 山 川 政 樹(ほか1名)第1図 第2図      第3図 第4図
1 to 3 show an embodiment of the heating device according to the present invention, FIG. 1 is a longitudinal cross-sectional view and a corresponding temperature distribution diagram, and FIG. 2 is a cross-sectional view showing the arrangement of heating elements. 3 is a longitudinal sectional view showing another embodiment of the present invention corresponding to FIG. 1, and FIG. 4 is a longitudinal sectional view of a conventional heating device and a temperature distribution diagram corresponding thereto. 13... Crucible, 14... G&A11 melt, 1
5...Seed crystal, 16...Boron oxide, 17...
... Heating device, 18... Upper heating element, 19 fist...
Lower heating element, 20.21... Electrode terminal, 22...
・Temperature gradient curve. Patent applicant: Nippon Telegraph and Telephone Corporation Agent: Masaki Yamakawa (and one other person) Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] それぞれ独立した加熱制御が可能な上下一対の発熱体を
、上部発熱体の下端と下部発熱体の上端とを近接させて
設けるとともに、前記上部発熱体の電極端子をこの上部
発熱体の上端部に設け、前記下部発熱体の電極端子をこ
の下部発熱体の下端部に設けたことを特徴とする加熱装
置。
A pair of upper and lower heating elements each capable of independent heating control is provided with the lower end of the upper heating element and the upper end of the lower heating element close to each other, and the electrode terminal of the upper heating element is connected to the upper end of the upper heating element. and an electrode terminal of the lower heating element is provided at a lower end of the lower heating element.
JP813286A 1986-01-20 1986-01-20 Heating device Pending JPS62167286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP813286A JPS62167286A (en) 1986-01-20 1986-01-20 Heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP813286A JPS62167286A (en) 1986-01-20 1986-01-20 Heating device

Publications (1)

Publication Number Publication Date
JPS62167286A true JPS62167286A (en) 1987-07-23

Family

ID=11684761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP813286A Pending JPS62167286A (en) 1986-01-20 1986-01-20 Heating device

Country Status (1)

Country Link
JP (1) JPS62167286A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6093913A (en) * 1998-06-05 2000-07-25 Memc Electronic Materials, Inc Electrical heater for crystal growth apparatus with upper sections producing increased heating power compared to lower sections
JP2015129091A (en) * 2003-05-07 2015-07-16 住友電気工業株式会社 indium phosphide substrate and indium phosphide crystal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6093913A (en) * 1998-06-05 2000-07-25 Memc Electronic Materials, Inc Electrical heater for crystal growth apparatus with upper sections producing increased heating power compared to lower sections
JP2015129091A (en) * 2003-05-07 2015-07-16 住友電気工業株式会社 indium phosphide substrate and indium phosphide crystal

Similar Documents

Publication Publication Date Title
US4944925A (en) Apparatus for producing single crystals
JPH0212920B2 (en)
JPS62167286A (en) Heating device
KR930006955B1 (en) Apparatus for growing single-crystal
JP3018738B2 (en) Single crystal manufacturing equipment
JP2612897B2 (en) Single crystal growing equipment
JP2758038B2 (en) Single crystal manufacturing equipment
CN105970286A (en) Method for multi-crucible LPE (liquid phase epitaxy) of SiC crystals
JP2679708B2 (en) Organic film fabrication method
JP2645491B2 (en) Method for growing compound semiconductor single crystal
JPS59137399A (en) Method and apparatus of growing low-dislocation density single crystal
JPS5938184B2 (en) Manufacturing method of saphia single crystal
JP3788077B2 (en) Semiconductor crystal manufacturing method and manufacturing apparatus
KR100359229B1 (en) Method for Growing n-Type GaAs Monocrystal by Means of VFG
JP3042168B2 (en) Single crystal manufacturing equipment
JPS5997591A (en) Method and apparatus for growing single crystal
KR950013004B1 (en) Method for controlling temparature gradient in according with increasing the length of single crystil by vb
JP2864808B2 (en) III-V compound semiconductor single crystal
JP2757865B2 (en) Method for producing group III-V compound semiconductor single crystal
JP2773441B2 (en) Method for producing GaAs single crystal
JPH0316988A (en) Production device of single crystal of compound semiconductor
JPS63185885A (en) Crystal growing device of horizontal type
JPS63295498A (en) Production of single-crystal of group iii-v compound semiconductor
JPH0367996B2 (en)
JPH0449185Y2 (en)