JPS60263838A - Photometer - Google Patents

Photometer

Info

Publication number
JPS60263838A
JPS60263838A JP59120235A JP12023584A JPS60263838A JP S60263838 A JPS60263838 A JP S60263838A JP 59120235 A JP59120235 A JP 59120235A JP 12023584 A JP12023584 A JP 12023584A JP S60263838 A JPS60263838 A JP S60263838A
Authority
JP
Japan
Prior art keywords
light
photometer
slit
measurement channel
metal halide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59120235A
Other languages
Japanese (ja)
Other versions
JPH0249645B2 (en
Inventor
Taro Nogami
野上 太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59120235A priority Critical patent/JPS60263838A/en
Publication of JPS60263838A publication Critical patent/JPS60263838A/en
Publication of JPH0249645B2 publication Critical patent/JPH0249645B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To measure absorbance and fluorescent intensity by using a metal hydride lamp as a light source and composing a detection system of a transmitted light and a fluorescence measurement channel. CONSTITUTION:The metal hydride lamp 2 illuminates and light emitted with an arc 3 which is perpendicularly long enters a spectroscope through lenses 4 and 5 and an incidence slit 6. The light from the slit 6 which is dispersed by a diffraction grating 7 enters a microflow cell 12 through a mirror 8, projection slit 9, mirror 10, and lens 11. Light transmitted through a sample in the cell 12 is converged 13 and enters a detector 20 for transmitted light measurement of the transmitted light measurement channel. Fluorescent light emitted by the sample in the cell 12, on the other hand, enters the spectroscope through a lens 14, mirror 15, and incidence slit 16. Then, light diffracted by a diffraction grating 17 exits from a projection slit 18 and is detected by a detector 19 for fluorescence measurement of the fluorescence measurement channel. The output signal of the detector 19 is amplified 21 and recorded 25. The output signal of the detector 20, on the other hand, is amplified 22, LOG-converted 23, and recorded 23 through a damping circuit 24.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は光度計に係り、特に定性、定量分析を行う蛍光
測定と吸収測定を同時に行うのに好適な光度計に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a photometer, and particularly to a photometer suitable for simultaneously performing fluorescence measurement and absorption measurement for qualitative and quantitative analysis.

〔発明の背景〕[Background of the invention]

従来、特開昭58−174833号公報に示しであるよ
うに、透過光測定チャネルと蛍光測定チャネルの双方を
設けた蛍光光度計が提案されている。
Conventionally, as shown in Japanese Unexamined Patent Publication No. 58-174833, a fluorometer has been proposed that is provided with both a transmitted light measurement channel and a fluorescence measurement channel.

しかし、これの主たる目的は、透過光信号を用いて蛍光
信号に補正を加えるものであり、透過光測定そのものを
d11]定対象とする場合には問題が多い。
However, the main purpose of this is to correct the fluorescence signal using the transmitted light signal, and there are many problems when the transmitted light measurement itself is targeted for d11].

すなわち、蛍光測定に使用可能な高輝度ランプにおいて
は、キセノンランプに代表されるように、統計的に把握
できない不規則な変動(non −5tationar
yな変動)が存在し、測光値に不規則なノイズが重畳す
る。したがって、特に試料濃度が高い場合を除き、ブラ
ンク透過光と試料透過光とのレベルの差よりも光源変動
にもとづく変動値の方が大きくなり、測定不能となる。
In other words, high-intensity lamps that can be used for fluorescence measurements, as typified by xenon lamps, suffer from irregular fluctuations that cannot be grasped statistically.
y fluctuations), and irregular noise is superimposed on the photometric values. Therefore, unless the sample concentration is particularly high, the variation value based on the light source variation becomes larger than the difference in level between the blank transmitted light and the sample transmitted light, making measurement impossible.

すなわち、ブランク透過光強度をIO1試料透過光強度
をIとしだとき、吸光度Aは、 ■ A = −log□7 ・・・・旧べ1)で表わされ、
キセノンプラン等においては、丁。
In other words, when the blank transmitted light intensity is IO1 and the sample transmitted light intensity is I, the absorbance A is expressed as: ■ A = -log□7...formerly 1),
For xenon plans etc., Ding.

Ioの各々に±3チ程度の変動があり、I / I 。There is a variation of about ±3 chi in each of Io, and I/I.

の不確定度が約6俤となる。これにより、吸光度Aには
約0.03のノイズが重畳する。特に、試料濃度が低く
、光路長が短い液体クロマトグラフ用吸光光度計として
は使用不可能である。
The uncertainty of is approximately 6 yen. As a result, noise of approximately 0.03 is superimposed on the absorbance A. In particular, the sample concentration is low and the optical path length is short, making it unusable as an absorption photometer for liquid chromatography.

また、このような光源変動は、多くの場合、non −
s ta t 1onaryな変動であり、周波数成分
等づゝ゛ が不確定で、統計的取り扱いをでき々いものである。最
悪の場合、ノイズという形態を示さず、信号レベルに段
がつくような一方向の動きを示すこともある。このため
、信号処理系において平滑化することも困難である。
In addition, such light source fluctuations are often non-
This is a linear fluctuation, and the frequency components are uncertain, making it difficult to handle statistically. In the worst case, it may not show any form of noise, but may show unidirectional movement, such as a step in the signal level. Therefore, it is difficult to smooth the signal in a signal processing system.

他方、上記のような変動を避ける方法として、ランプと
して安定性1こすぐれた重水素ランプを用いるのが有効
な方法のように思われるが、蛍光強度測定において使用
頻度が高い270〜400I〕mの波畏域においては、
輝度がキセノンランプより1桁から2桁以上低く、蛍光
強度測定における感度は励起光強度に比例することから
、これは蛍光強度測定に関しては致命的な欠点となる。
On the other hand, as a way to avoid the above-mentioned fluctuations, it seems to be an effective method to use a deuterium lamp with excellent stability. In the wave area,
The luminance is one to two orders of magnitude lower than that of a xenon lamp, and the sensitivity in fluorescence intensity measurement is proportional to the excitation light intensity, which is a fatal drawback when it comes to fluorescence intensity measurement.

〔発明の目的〕[Purpose of the invention]

本発明は上記に鑑みてなされたもので、その目的とする
ところは、吸光度測定と蛍光強度測定とを行うことがで
き、しかも、低濃度試料の吸光度測定および極低濃度試
料の蛍光強度測定を高精度で行うことができる光度計を
提供することにある。
The present invention has been made in view of the above, and its purpose is to be able to perform absorbance measurement and fluorescence intensity measurement, and to be able to perform absorbance measurement of low concentration samples and fluorescence intensity measurement of extremely low concentration samples. The object of the present invention is to provide a photometer that can perform measurements with high precision.

〔発明の概要〕[Summary of the invention]

本発明は、メタルハライドランプが一般に輝度が高く安
定性にすぐれており、特にヨウ化タンタルと水銀を封入
したヨウ化タンタルメタルハライドランプは紫外域にお
いて高輝度、高安定を示すことに着目してなされたもの
で、光源としてメタルハライドランプを用い、検知シス
テムを透過光測定チャネルと蛍光測定チャネルより構成
したことを特徴としている。
The present invention was made based on the fact that metal halide lamps generally have high brightness and excellent stability, and in particular, tantalum iodide metal halide lamps containing tantalum iodide and mercury exhibit high brightness and high stability in the ultraviolet region. It uses a metal halide lamp as a light source, and its detection system consists of a transmitted light measurement channel and a fluorescence measurement channel.

〔発明の実施例〕[Embodiments of the invention]

第1図に示した実施例および第2図〜第7図を用いて詳
細に説明する。
This will be explained in detail using the embodiment shown in FIG. 1 and FIGS. 2 to 7.

第1図は本発明の光度計の一実施例を示す構成説明図で
ある。第1図において、1はランプ電源、2はランプ電
源1によって点灯されるヨウ化タンタルメタルハライド
ランプである。
FIG. 1 is a configuration explanatory diagram showing an embodiment of the photometer of the present invention. In FIG. 1, 1 is a lamp power source, and 2 is a tantalum iodide metal halide lamp that is lit by the lamp power source 1. In FIG.

以下、第1図の構成を説明する前にメタルハライドラン
プ2について説明する。第2図はヨウ化タンタルメタル
ハライドランプの輝度と通常の分光蛍光光度計に使用さ
れているキセノンランプの輝度との比較を示す線図で、
メタルハライドランプは70W、キセノンランプは15
0Wのものを使用しである。各波長におけるキセノンラ
ンプの輝度を1に規へして示すと、それに対応するメタ
ルハライドランプの輝度は図示のようになり、紫外域に
おけるメタンハライドランプの輝度はキセノンランプの
輝度に劣らず、蛍光測定に十分使用可能であることがわ
かる。なお、第2図はバンド幅10nmの発光度を用い
て測定した結果である。
The metal halide lamp 2 will be explained below before explaining the configuration shown in FIG. Figure 2 is a diagram showing a comparison between the brightness of a tantalum iodide metal halide lamp and the brightness of a xenon lamp used in a normal spectrofluorometer.
Metal halide lamp is 70W, xenon lamp is 15W.
I used a 0W one. If the brightness of a xenon lamp at each wavelength is shown on a scale of 1, the corresponding brightness of a metal halide lamp will be as shown in the diagram.The brightness of a methane halide lamp in the ultraviolet region is as good as that of a xenon lamp, It can be seen that it is fully usable. Note that FIG. 2 shows the results measured using luminous intensity with a band width of 10 nm.

第3図、第4図はそれぞれキセノンランプ、メタルハラ
イドランプのアークの形状の説明図である。第3図にお
いて、31は陽極、32は陰極、33はアークで、キセ
ノンランプのアーク33は、約2 X 1.5簡の大き
さを有しているが、輝度最高部34は陰極32の付近に
あって、直径0,5順以下の微小形状をしている。そし
て、キセノンランプにおいては、陰極32の先端の部分
的なインビーダンスが刻々変化するに応じて、輝度最高
部34の位置が刻々変化し、分光器を通した場合、スリ
ット上で光源の像が動き、これにより分光器通過後の光
量レベルが安定せず、吸収測定には使用できない。
FIGS. 3 and 4 are explanatory diagrams of the arc shapes of a xenon lamp and a metal halide lamp, respectively. In FIG. 3, 31 is an anode, 32 is a cathode, and 33 is an arc. The arc 33 of a xenon lamp has a size of about 2 x 1.5 cm, but the highest brightness part 34 is at the cathode 32. It is located nearby and has a microscopic shape with a diameter of 0.5 or less. In a xenon lamp, as the partial impedance at the tip of the cathode 32 changes every moment, the position of the highest brightness part 34 changes every moment, and when passed through a spectroscope, the image of the light source appears on the slit. moves, and as a result, the light intensity level after passing through the spectrometer is unstable and cannot be used for absorption measurements.

これに対して第4図に示したメタルハライドランプ(ヨ
ウ化タンタル)は、陽極41と陰極42の間に発生する
アーク43が10 X :1mmと長く、また、この形
および位置があまり変化しないという特徴を有する。こ
のことは、分光器を通した際にも安定性が高く、吸収測
定に使用可能であることを意味する。ただし、このよう
な細長い発光体の光を効果的に利用するためには、各光
学素子の設置に配慮を必要とする。
On the other hand, in the metal halide lamp (tantalum iodide) shown in Fig. 4, the arc 43 generated between the anode 41 and the cathode 42 is as long as 10 x 1 mm, and its shape and position do not change much. Has characteristics. This means that it is highly stable even when passed through a spectrometer and can be used for absorption measurements. However, in order to effectively utilize the light from such an elongated light emitter, consideration must be given to the installation of each optical element.

第5図はメタルハライドランプの光を分光器に通した場
合に観測されるわずかな光量変動にもとづく雑音(相対
値)の周波数特性を示す線図である。第5図に示すよう
に、周波数の高い成分が多く、IHz以下の雑音は無視
し得る。したがって、信号処理系にダンピング回路を設
け、周波数の高い雑音を平滑化するようにすれば、安定
度がよくなり、吸光度が小さい試料の吸収測定が可能に
々ることかわかる。この点は、キセノンランプの輝度変
動がnon −s tat 1onaryな変動で統計
的把握が困難で、ダンピング回路の効果が少ないことと
対象的である。
FIG. 5 is a diagram showing the frequency characteristics of noise (relative values) based on slight variations in the amount of light observed when light from a metal halide lamp is passed through a spectrometer. As shown in FIG. 5, there are many high frequency components, and noise below IHz can be ignored. Therefore, it can be seen that if a damping circuit is provided in the signal processing system to smooth out high frequency noise, stability will be improved and absorption measurement of samples with low absorbance will be possible. This point is in contrast to the fact that the brightness fluctuations of a xenon lamp are non-stat uniary fluctuations that are difficult to understand statistically, and that the effect of the damping circuit is small.

次に、第1図について再び説明する。メタルハライドラ
ンプ2が点灯し、鉛直方向に長いアーク3より発せられ
る光がレンズ4,5により集光されて励起側分光器の入
射スリット6より分光器内に入る。回折格子7により分
散された入射スリット6からの光は、ミラー8、出射ス
リット9、ミラー10を経由してレンズ11により集光
されてミクロフローセル12に入る。ミクロフローセル
12内の試料を通過した透過光は、レンズ13により集
光されて透過光測定チャネルの透過光測定用検知器20
に入る。一方、ミクロフローセル12内の試料が発する
蛍光は、レンズ14により集光されて、ミラー15を経
由し、蛍光側分光器の入射スリット16より分光器内に
入る。その後、回折格子17により分散された光が出射
スリット18より出て蛍光測定チャネルの蛍光測定用検
知器19により検知される。
Next, FIG. 1 will be explained again. The metal halide lamp 2 is turned on, and light emitted from a vertically long arc 3 is focused by lenses 4 and 5 and enters the spectrometer through the entrance slit 6 of the excitation side spectrometer. The light from the input slit 6 that has been dispersed by the diffraction grating 7 passes through the mirror 8, the output slit 9, and the mirror 10, and is focused by the lens 11 and enters the micro flow cell 12. The transmitted light that has passed through the sample in the micro flow cell 12 is focused by a lens 13 and sent to a transmitted light measurement detector 20 in a transmitted light measurement channel.
to go into. On the other hand, the fluorescence emitted by the sample in the micro flow cell 12 is focused by the lens 14, passes through the mirror 15, and enters the spectrometer through the entrance slit 16 of the fluorescence side spectrometer. Thereafter, the light dispersed by the diffraction grating 17 exits from the output slit 18 and is detected by the fluorescence measurement detector 19 of the fluorescence measurement channel.

なお、メタルハライドランプ2はアーク3の長手方向が
鉛直になるように設置してあり、これにともない入射ス
リット6、出射スリット9、ミクロフローセル12内の
流路、すなわち、試料が測定される部分、入射スリット
16、出射スリット18はすべて鉛直方向に細長い形状
としてあり、入射スリット6以降の光学累子上にアーク
3の像が結像するようにしである。これらにより、メタ
ルハライドランプ2のアーク3より発する光を最大限に
利用することができる。
Note that the metal halide lamp 2 is installed so that the longitudinal direction of the arc 3 is vertical, and accordingly, the entrance slit 6, the exit slit 9, the flow path in the micro flow cell 12, that is, the part where the sample is measured, The entrance slit 16 and the exit slit 18 are all elongated in the vertical direction, so that the image of the arc 3 is formed on the optical element after the entrance slit 6. With these, the light emitted from the arc 3 of the metal halide lamp 2 can be utilized to the fullest.

蛍光測定用検知器19の出力信号は、増幅器21により
増幅処理されて記録装置25によりチャート上に記録さ
れる。
The output signal of the fluorescence measurement detector 19 is amplified by an amplifier 21 and recorded on a chart by a recording device 25.

一方、透過光測定用検知器20の出力信号は、増幅器2
2で増幅処理された後、LOG変換器23でLOG変換
され、ダンピング回路24で周波数の高い雑音が除去さ
れた後、記録装置25によりチャート上に記録される。
On the other hand, the output signal of the transmitted light measurement detector 20 is transmitted to the amplifier 2.
After being amplified in step 2, LOG conversion is performed in an LOG converter 23, and high frequency noise is removed in a damping circuit 24, the signal is recorded on a chart by a recording device 25.

なお、ダンピング回路24を設けたことにより、光源変
動にもとづく雑音を吸光度lXl0’−’相当レベル以
下とすることができだ。
By providing the damping circuit 24, it is possible to reduce noise due to light source fluctuations to a level equivalent to the absorbance lXl0'-' or less.

第6図は第1図のメタルハライドランプ2をキセノンラ
ンプに置きかえ、蓑た、ダンピング回路24を設けない
で、時定数組0.3秒としたときの出力信号の時間的変
化を示した線図で、この場合は、non −5tati
onaryな雑音が現れており、たとえばダンピング回
路を設けても大きな効果は期待できない。これに対して
、第7図は本発明に係る第1図の構成の場合の出力信号
の時間的変化を示した線図で、この場合は、点灯後3分
以降は観測される雑音は存在しない。
FIG. 6 is a diagram showing the temporal change in the output signal when the metal halide lamp 2 in FIG. 1 is replaced with a xenon lamp, the damping circuit 24 is not provided, and the time constant set is 0.3 seconds. In this case, non-5tati
Onary noise appears, and even if a damping circuit is provided, for example, no great effect can be expected. On the other hand, FIG. 7 is a diagram showing temporal changes in the output signal in the case of the configuration shown in FIG. 1 according to the present invention. In this case, there is no noise observed after 3 minutes after lighting. do not.

上記した本発明の実施例によれば、1つの光度計で吸光
度測定と蛍光強度抑]定が可能であり、しかも、微弱蛍
光強度測定、吸光度が小さい試料の吸光度測定が可能で
ある。すなわち、個々の機能が蛍光測定専用器、吸光度
測定専用器に劣らないものにできる。これは、一般の分
析分野において有効であり、特に、試料濃度が低く、試
料セルの光路長が短い液体クロマトグラフ用光度計に適
用した場合、効果が大きい。液体クロマトグラフ分野に
おいては、吸光度測定と蛍光強度測定の両者が重要視さ
れており、しかも、液体クロマトグラフ本体の上部ある
いは周辺に2台の光度計を設置することは通常困難でお
るから、本発明に係る光度計は最適である。また、吸光
光度計と蛍光光度計をシリーズに接続して液体クロマト
グラフにおける検出システムとして使用し、吸光度と蛍
光強度の同時検出を行った場合、後方の光度計より出力
されるクロマトグラフにおける分離が悪くなるという欠
点を生ずるが、本発明に係る1つの光度計によって吸光
度と蛍光強度の双方を測定した場合には、分離不良を生
ずることがない、。
According to the embodiments of the present invention described above, it is possible to measure absorbance and suppress fluorescence intensity with one photometer, and also to measure weak fluorescence intensity and measure the absorbance of a sample with low absorbance. That is, the individual functions can be made comparable to those of a device exclusively for fluorescence measurement and a device exclusively for absorbance measurement. This is effective in the general analysis field, and is particularly effective when applied to a liquid chromatograph photometer where the sample concentration is low and the optical path length of the sample cell is short. In the field of liquid chromatography, both absorbance measurement and fluorescence intensity measurement are considered important, and it is usually difficult to install two photometers above or around the liquid chromatograph body, so this book The photometer according to the invention is optimal. In addition, if an absorption photometer and a fluorometer are connected in series and used as a detection system in a liquid chromatograph, and simultaneous detection of absorbance and fluorescence intensity is performed, separation in the chromatograph output from the rear photometer will be difficult. However, if both absorbance and fluorescence intensity are measured by one photometer according to the present invention, poor separation will not occur.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、吸光度測定と蛍
光強度測定とを行うことができ、しかも、低濃度試料の
吸光度測定および極低濃度試料の蛍光強度測定を高精度
で行うことができるという効果がある。
As explained above, according to the present invention, it is possible to perform absorbance measurement and fluorescence intensity measurement, and moreover, it is possible to perform absorbance measurement of a low concentration sample and fluorescence intensity measurement of an extremely low concentration sample with high accuracy. There is an effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光匿計の一実施例を示す構成説明図、
第2図はヨウ化夕/タルメタルハライドランプの輝度と
キセノンランプの輝度との比較を示す線図、第3図、第
4図はそれぞれキセノンランプ、メタルハライドランプ
のアークの形状の説明図、第5図はメタルハライドラン
プの光量変動にもとづく雑音の周波数特性を示す線図、
第6図は光源としてキセノンランプを用いたときの出力
信号の時間的変化を示す線図、第7図は本発明に係る光
度計の出力信号の時間的変化を示す線図である。 2・・・メタルハライドランプ、3・・・アーク、4,
5゜11.13.14・・・レンズ、6.16・・・入
射スリット、7,17・・・回折格子、8,10.15
・・・ミラー、9.18・・・出射スリ゛ット、12・
・・ミクロ70−セル、19・・・蛍光測定用検知器、
20・・・透過光測定用検知器、21.22・・・増幅
器、23・・・LOG変換器、24・・・ダンピング回
路、25・・・記録装置。 $1t3 fLI色(M9片ン 茶4 図 I!;!; 図 ノ旨音−シ邦む誤k(s、=)
FIG. 1 is a configuration explanatory diagram showing an embodiment of the optical anonymizer of the present invention,
Figure 2 is a diagram showing a comparison between the brightness of an iodide lamp/tal metal halide lamp and the brightness of a xenon lamp, Figures 3 and 4 are illustrations of the arc shapes of a xenon lamp and a metal halide lamp, respectively. The figure is a diagram showing the frequency characteristics of noise based on variations in the light intensity of a metal halide lamp.
FIG. 6 is a diagram showing temporal changes in the output signal when a xenon lamp is used as a light source, and FIG. 7 is a diagram showing temporal changes in the output signal of the photometer according to the present invention. 2...Metal halide lamp, 3...Arc, 4,
5゜11.13.14...Lens, 6.16...Incidence slit, 7,17...Diffraction grating, 8,10.15
... Mirror, 9.18 ... Output slit, 12.
... Micro 70-cell, 19 ... Fluorescence measurement detector,
20... Detector for measuring transmitted light, 21.22... Amplifier, 23... LOG converter, 24... Damping circuit, 25... Recording device. $1t3 fLI color (M9 Katancha 4 Figure I!;!; Figure no Uchion-Shibanmu error k (s, =)

Claims (1)

【特許請求の範囲】 1、 光源、光学系、試料セルおよび検知システムとよ
りなる光度d゛において、前記光源としてメタルハライ
ドランプを用い、前記検知システムを透過光測定チャネ
ルと蛍光測定チャネルより構成したことを特徴とする光
度計1゜ 2 前812メタルハライドランプは、ヲウ化タンタル
と水銀を刺入したものであり、アークの長手方向が鉛直
になるように設置しである特許請求の範囲第1項記載の
光度計。 3、前記光学系は励起側分光器と蛍光側分光器を有し、
前記各分光器内の各スリットは長手方向が前記メタルハ
ライドランプのアークの長手方向に一致するように釦j
¥iに設置してあり、前記試料セルも鉛直方向に長い形
状にしである特許請求の範囲第1項または第2項記載の
光度計。 4、 前記検知システムの透逼光測定チャネルには周波
数1秒以上の雑音を軽減させるダンピング回路が設けで
ある特許請求の範囲第1項または第2項または第3項記
載の光度計。 5、前記検知システムの透過光測定チャネルにはL O
G変換手段とダンピング回路とが設けである特許請求の
範囲第1項または第2項または第3項記載の光度計。 6、 前記検出システムは、透過光測定チャネルに出す
るように構成しである特許請求の範囲第1項または第2
項まだは第3項才たは第4項才たは第5項記載の光度計
[Scope of Claims] 1. At a luminous intensity d' consisting of a light source, an optical system, a sample cell, and a detection system, a metal halide lamp is used as the light source, and the detection system is composed of a transmitted light measurement channel and a fluorescence measurement channel. The photometer 1°2 812 metal halide lamp is characterized by having tantalum uride and mercury inserted therein, and is installed so that the longitudinal direction of the arc is vertical. photometer. 3. The optical system has an excitation side spectrometer and a fluorescence side spectrometer,
Each slit in each of the spectrometers is pressed with a button so that its longitudinal direction coincides with the longitudinal direction of the arc of the metal halide lamp.
3. The photometer according to claim 1 or 2, wherein the sample cell is arranged in a vertically elongated shape. 4. The photometer according to claim 1, 2, or 3, wherein the transmission light measurement channel of the detection system is provided with a damping circuit for reducing noise with a frequency of 1 second or more. 5. The transmitted light measurement channel of the detection system has L O
The photometer according to claim 1, 2, or 3, further comprising a G conversion means and a damping circuit. 6. The detection system is configured to output to a transmitted light measurement channel.
The photometer described in Section 3, Section 4, or Section 5.
JP59120235A 1984-06-12 1984-06-12 Photometer Granted JPS60263838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59120235A JPS60263838A (en) 1984-06-12 1984-06-12 Photometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59120235A JPS60263838A (en) 1984-06-12 1984-06-12 Photometer

Publications (2)

Publication Number Publication Date
JPS60263838A true JPS60263838A (en) 1985-12-27
JPH0249645B2 JPH0249645B2 (en) 1990-10-30

Family

ID=14781187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59120235A Granted JPS60263838A (en) 1984-06-12 1984-06-12 Photometer

Country Status (1)

Country Link
JP (1) JPS60263838A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0228716A2 (en) * 1986-01-08 1987-07-15 Hitachi, Ltd. Apparatus for measuring fluorescence of solid
JPS62289747A (en) * 1986-06-10 1987-12-16 Hitachi Ltd Concentration analyzing device
JPH01144851U (en) * 1988-03-28 1989-10-04
US5094531A (en) * 1990-05-07 1992-03-10 General Atomics Spectrophotometer to fluorometer converter
KR101031647B1 (en) 2008-12-30 2011-04-29 (주)비앤피테크 absorbance and fluorescence measuring apparatus
CN104865331A (en) * 2015-03-09 2015-08-26 俞嘉德 High-performance liquid chromatography dual-purpose ultraviolet visible light and fluorescence dual-spectrum dual-detector
WO2016104601A1 (en) * 2014-12-26 2016-06-30 立山マシン株式会社 Method for analyzing nucleic acid, and fluorescence/turbidity measurement device used therein

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0228716A2 (en) * 1986-01-08 1987-07-15 Hitachi, Ltd. Apparatus for measuring fluorescence of solid
JPS62289747A (en) * 1986-06-10 1987-12-16 Hitachi Ltd Concentration analyzing device
JPH01144851U (en) * 1988-03-28 1989-10-04
US5094531A (en) * 1990-05-07 1992-03-10 General Atomics Spectrophotometer to fluorometer converter
KR101031647B1 (en) 2008-12-30 2011-04-29 (주)비앤피테크 absorbance and fluorescence measuring apparatus
WO2016104601A1 (en) * 2014-12-26 2016-06-30 立山マシン株式会社 Method for analyzing nucleic acid, and fluorescence/turbidity measurement device used therein
JPWO2016104601A1 (en) * 2014-12-26 2017-10-12 立山マシン株式会社 Nucleic acid analysis method and fluorescence / turbidity measuring apparatus used therefor
CN104865331A (en) * 2015-03-09 2015-08-26 俞嘉德 High-performance liquid chromatography dual-purpose ultraviolet visible light and fluorescence dual-spectrum dual-detector

Also Published As

Publication number Publication date
JPH0249645B2 (en) 1990-10-30

Similar Documents

Publication Publication Date Title
US2847899A (en) Method of and apparatus for spectrochemical analysis
JPS6116010B2 (en)
EP0091126B1 (en) Fluorimeter
US5689114A (en) Gas analyzing apparatus
JP4536754B2 (en) Spectrophotometer and liquid chromatography
CN101408503B (en) Method for automatically detecting and dynamically substracting stray light of spectrometer and spectrometer
Milano et al. Evaluation of a vidicon scanning spectrometer for ultraviolet molecular absorption spectrometry
JP2936947B2 (en) Spectrofluorometer
WO2016129033A1 (en) Multi-channel spectrophotometer and data processing method for multi-channel spectrophotometer
JPS60263838A (en) Photometer
JPS5811567B2 (en) Back ground
GB2026687A (en) Measurement of oxygen by differential absorption of uv radiation
US4266872A (en) Method of measuring the amount of reduction of a dot film, and device for practicing same
WO1998052020A1 (en) Self normalizing radiant energy monitor and apparatus for gain independent material quantity measurements
JP2001516016A (en) NDIR photometer for measuring multiple components
JP2002098631A (en) Smaller sample concentration measuring apparatus
JP3755997B2 (en) Liquid chromatograph
JPS62278436A (en) Fluorescence light measuring method and apparatus
CN217155593U (en) Sample preposed optical system of spectrophotometer
JPH02227637A (en) Fluorophotometer
JPS601528A (en) Spectrophotometer
JPS63243726A (en) Photodiode array detector
EP0826957A1 (en) Gas analyzing apparatus
Borresen et al. Some Precautions Required in the Calibration of Fluorescence Spectrometers in the Ultraviolet Region.
Kaltenbach A high-sensitivity diode array detector for on-column detection in capillary electrophoresis