JPS62289747A - Concentration analyzing device - Google Patents

Concentration analyzing device

Info

Publication number
JPS62289747A
JPS62289747A JP13434086A JP13434086A JPS62289747A JP S62289747 A JPS62289747 A JP S62289747A JP 13434086 A JP13434086 A JP 13434086A JP 13434086 A JP13434086 A JP 13434086A JP S62289747 A JPS62289747 A JP S62289747A
Authority
JP
Japan
Prior art keywords
sample cell
sample
optical fiber
excitation light
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13434086A
Other languages
Japanese (ja)
Other versions
JPH07113602B2 (en
Inventor
Yutaka Kato
豊 加藤
Hironobu Kawamura
川村 博信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61134340A priority Critical patent/JPH07113602B2/en
Publication of JPS62289747A publication Critical patent/JPS62289747A/en
Publication of JPH07113602B2 publication Critical patent/JPH07113602B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/11Filling or emptying of cuvettes

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To take an in-line analysis by installing a sample cell in the middle of branch pipes which return a sample after the sample is sampled from piping where the sample to be analyzed flows and analyzed. CONSTITUTION:A solution 1 to be analyzed is nuclear matter used in nuclear power facilities, etc., and flow in the piping 4 installed in a chamber 3 partitioned by a wall 2 which has the ability to cut off radiation. This device employs an in-line system where in the solution 1 is never taken out of the piping 4 and returned to the piping 4 after a concentration analysis is taken, so branch pipes 61 and 62 are provided so that the solution 1 is guided from the piping 4 to the sample cell 5 at an analytical position and returned to the piping 4 again. Exciting light is made incident on the sample cell 5 to obtain surface fluorescent light from the incidence surface, flank fluorescent light from the flank, and transmitted light for absorption analysis from a surface passing through the sample, thereby selecting those analytic light beams according to the state of the sample.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は、1度分析装置に係り、特に、人間が直接立入
ることができないような環境において、核物質等を遠隔
的に分析するのに好適な濃度分析装置に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an analytical device that is used to analyze nuclear materials, etc., in an environment where humans cannot directly enter. The present invention relates to a concentration analyzer suitable for remotely analyzing.

〔従来の技術〕[Conventional technology]

薬品を添加しないで、溶液中の微量の物質の濃度をイン
ライン方式に分析する方法としては、蛍光分析法と吸光
分析法が知られている。
Fluorescence analysis and absorption analysis are known as in-line methods for analyzing the concentration of trace amounts of substances in solutions without adding chemicals.

再処理溶液中の核物質の分析法として蛍光分析法を示す
文献には、「ニューフレア セーフガーズ テクノロジ
ーJ  (Nucl、Safeguards Tech
nol、。
Literature describing fluorescence analysis as a method for analyzing nuclear materials in reprocessing solutions includes ``Nucl, Safeguards Tech.
nol,.

voQ、l、 279.1983)のモジエン(P、M
auchien)らによる「ドザージエ ド トラーセ
 ドユラニオム ダン ズユヌ ユーズイング ド ル
トレトマン パー スペクトロフルオリメトリー スー
ル ツルジオンJ(Dosage de Traces
 d’Uraniumdans une Using 
de Retraite+m5nt par Spec
trof−guorimetrie sur 5olu
tion)がある。
voQ, l, 279.1983) modien (P, M
Dosage de Traces J
d'Uraniumdans une Using
de Retraite+m5nt par Spec
trof-guorimetrie sur 5 olu
tion).

また、同じく吸光分析法を示す文献には、「アナリテイ
ク ニューフレア テクノロジーJ(Anal。
In addition, the literature that also describes the absorption spectrometry method includes ``Analytake New Flare Technology J (Anal.

Nucl、Technol、、 225 、1982)
のボスティク(D、T。
Nucl, Technol, 225, 1982)
Bostik (D, T.

Bostick)らによる「アン インライン マルチ
ウェーブレングス フォトメータ フォー ザ デタミ
ネーション オブ ベビー メタル コンセントレーシ
ョンズJ(an In−1ine  Multiwav
elengthPhotometer for the
Determination of fleaνyMe
tal Concentrations)がある。
"An In-1ine Multiwave Length Photometer for the Determination of Baby Metal Concentrations" by Bostick et al.
lengthPhotometer for the
Determination of fleaνyMe
tal Concentrations).

〔発明が解決しようとする間圧点〕[The pressure point that the invention seeks to solve]

ここで吸光分析法とは対象i8液に単色光を照射し、透
過した光の強度から光の吸収量を求め、それにより濃度
を測定する方法で、分析法としては原理が単純であり、
取扱いが容易である利点がある。しかし、入射光の吸収
による減衰分を観甜するため、微量測定にはあまり適さ
ないこと、及び分析対象物以外(溶媒及び不純物)によ
る光の吸収が人きいと透過光を測定できないなどの欠点
がある。
Here, absorption analysis is a method in which the target i8 liquid is irradiated with monochromatic light, the amount of light absorbed is determined from the intensity of the transmitted light, and the concentration is thereby measured.As an analytical method, the principle is simple.
It has the advantage of being easy to handle. However, since it accounts for the attenuation due to the absorption of incident light, it is not very suitable for trace measurement, and it has drawbacks such as the inability to measure transmitted light if light is absorbed by substances other than the analyte (solvent and impurities). There is.

一方、蛍光分析法とは、励起光により励起された原子・
分子が基底状態に戻る時に発する蛍光を測定し、蛍光の
強度から物質の濃度を測定する方法であり、その分析感
度は吸光分析法に比べ一般に1〜2桁程度良く、微量分
析に適していることが知られている。しかし、蛍光を発
生する過程で溶媒や不純物へのエネルギー移動が生じて
無輻射緩和したり、溶液温度によりこれらの緩和の程度
が変化したりなど、吸光分析法と比較して試料条件に敏
感であるという欠点がある。
On the other hand, fluorescence analysis is a method in which atoms are excited by excitation light.
This method measures the fluorescence emitted when molecules return to their ground state and determines the concentration of a substance from the intensity of the fluorescence.The analytical sensitivity is generally one to two orders of magnitude better than that of absorption spectroscopy, making it suitable for trace analysis. It is known. However, compared to absorption spectrometry, it is more sensitive to sample conditions, such as energy transfer to the solvent and impurities during the process of generating fluorescence, resulting in non-radiative relaxation, and the degree of relaxation changing depending on the solution temperature. There is a drawback.

一般的には、分析対象溶液の透明度が高く、対象物質の
′a度も高い場合には吸光分析法が、その他条件では蛍
光分析法が適切といえる。
In general, absorption spectrometry is appropriate when the solution to be analyzed has high transparency and the substance to be analyzed has a high degree of α, while fluorescence analysis is appropriate under other conditions.

これら蛍光分析法と吸光分析法は、微意物質の濃度分析
法として広く利用されているが、核物質を含むような試
料を対象とした場合は、被ばくの問題があり、人間が試
料を直接取扱うことは難しく、また、分析後の試料の処
理についても特別の対策を講じなればならない。更に、
再処理溶液のようにF、p、(JF分裂生成物)やクラ
ッドを含む溶液の分析では、分析法を一意的に決定する
ことが困難であり、透明度や濃度等の溶液の条件に合せ
て使い分ける必要があるが、従来はひとつの装置で、複
数の分析法を簡単に選択できるものでなかった。
Fluorescence analysis and absorption analysis are widely used as methods for analyzing the concentration of sensitive substances, but when dealing with samples containing nuclear materials, there is a problem of radiation exposure, and humans must directly handle the samples. In addition, special measures must be taken for processing the sample after analysis. Furthermore,
When analyzing solutions containing F, p, (JF fission products) and cladding, such as reprocessed solutions, it is difficult to uniquely determine the analytical method, and it is difficult to uniquely determine the analytical method, and it is difficult to uniquely determine the analytical method. It is necessary to use different analytical methods, but in the past it was not possible to easily select multiple analytical methods using a single device.

更に、励起光、蛍光、透過光を伝送する糸路にガラス材
を用いた場合、放射線環境下で長時間使用すると、ガラ
ス材が劣化し、その透過率が低下して、測定値に誤差を
生ずることが予想される。
Furthermore, when glass material is used for the thread path that transmits excitation light, fluorescence, and transmitted light, if it is used for a long time in a radiation environment, the glass material deteriorates and its transmittance decreases, causing errors in measured values. It is expected that this will occur.

本発明の目的は、人間が直接試料を取扱うことなく、ま
た分析後に試料を取出した場所に戻せて、しかも試料の
状態に合せ最適な分析方法を選択でき、ガラス材の劣化
等による誤差も排除可能な濃度分析装置を提供すること
である。
The purpose of the present invention is to allow humans to return the sample to the place from which it was taken after analysis without having to handle the sample directly, to select the most suitable analysis method according to the condition of the sample, and to eliminate errors caused by deterioration of glass materials, etc. It is an object of the present invention to provide a concentration analyzer that is capable of analyzing concentration.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記目的を達成するために、試料セルに励起
光を入射し、その入射面から表面蛍光を。
In order to achieve the above object, the present invention injects excitation light into a sample cell and emits surface fluorescence from the incident surface.

側面から側面蛍光を、試料を通過した面からは吸光分析
用の透過光が得られるようにして、試料の状態に応じこ
られの分析光を選択できるようにしたものである。試料
セルは、分析すべき試料が流れる配管から試料を取込み
分析後に試料を戻す分岐管の途中に設置しであるので、
インライン分析が可能である。
Side fluorescence is obtained from the side surface, and transmitted light for absorption analysis is obtained from the surface that has passed through the sample, so that the analysis light can be selected depending on the condition of the sample. The sample cell is installed in the middle of a branch pipe that takes the sample from the pipe through which the sample to be analyzed flows and returns the sample after analysis.
Inline analysis is possible.

また、試料分析に試料セルおよび光ファイバの透過率の
低下と試料温度とが影響しないように誤差を補正する手
段を設けである。
Further, a means for correcting errors is provided so that sample analysis is not affected by the decrease in transmittance of the sample cell and the optical fiber and the sample temperature.

〔作用〕[Effect]

本発明では、核物質等の処理をインライン方式で試料セ
ルに直接導き分析可能であり、また、表面蛍光、側面蛍
光、吸光のうち試料の状態に最も適した光による分析法
を選択して分析でき、光ファイバの透過率低下の影響も
排除できる。
In the present invention, it is possible to process nuclear materials directly into the sample cell in an in-line manner for analysis, and it is also possible to select the light-based analysis method most suitable for the state of the sample from among surface fluorescence, side fluorescence, and absorption. This also eliminates the influence of reduced transmittance of the optical fiber.

〔寡得と’J1 次に、本発明の一実施例を第1図により説明する。[Original and 'J1 Next, one embodiment of the present invention will be described with reference to FIG.

第1図は、本発明による濃度分析装置の全体端成図であ
る9分析対象となる溶液1は、原子力施設等で使用され
る核物質で、放射線遮蔽能力を有する壁2で隔てられた
室内3に設置されている配管4の中を流れている。本装
置では、この溶液1を配管4の外部へ取出すことなく、
濃度分析終了後は再び配管4に戻すインライン方式とす
るため、配管4から分析箇所である試料セル5まで溶液
1を導き、再び配管4に溶液1を戻すように、配管4に
分岐配管61及び62を設けである。溶液1は、配管4
から分岐配?r!61を通り試料セル5に入り、分析終
了後は分岐配管62を通り配管4に戻されるため、試料
セル5は設置したままで溶液1を受入れ排出できるフロ
ーセル構造であり、溶液1を配管4から外部に取出すこ
となく分析可能である。
Figure 1 is an overall diagram of the concentration analyzer according to the present invention.9 The solution 1 to be analyzed is nuclear material used in nuclear facilities, etc., and is located in a room separated by a wall 2 having radiation shielding ability. It flows through the pipe 4 installed at 3. In this device, this solution 1 is not taken out to the outside of the pipe 4.
In order to use an in-line method in which the solution is returned to the pipe 4 after the concentration analysis is completed, a branch pipe 61 and a 62 is provided. Solution 1 is connected to pipe 4
Branch distribution from? r! 61 and enters the sample cell 5, and after the analysis is completed, it passes through the branch pipe 62 and returns to the pipe 4. Therefore, the sample cell 5 has a flow cell structure that can receive and discharge the solution 1 while it is installed, and the solution 1 is transferred from the pipe 4. It can be analyzed without taking it outside.

本分析装置の分析は原理的に次のようにしてなされる。Analysis using this analyzer is performed in principle as follows.

壁2の外側で作業員が通常自由に立入ることのできる操
作室7に設置された励起光g8から、励起光用光ファイ
バ9を用いて溶液1の入った試料セル5に励起光を導き
、後述するように励起光により照射された溶液1から発
せられた表面蛍光、側面蛍光、及び溶液間を通り吸光さ
れた後の光(以下、透過光という)の各分析光を集光さ
せ、それぞれ表面蛍光用光ファイバ101.側面蛍光用
光ファイバ102.透過光用光ファイバ103により操
作室7の分析光用検出器に導く。
The excitation light g8 installed in the operation room 7 outside the wall 2 that workers can usually freely enter is guided to the sample cell 5 containing the solution 1 using the excitation light optical fiber 9. , as described below, each analysis light of surface fluorescence, side fluorescence, and light after passing through the solution and being absorbed (hereinafter referred to as transmitted light) emitted from the solution 1 irradiated with excitation light is focused, Optical fiber 101 for surface fluorescence, respectively. Side fluorescence optical fiber 102. The transmitted light is guided to a detector for analysis light in the operating room 7 by an optical fiber 103 for transmitted light.

次に励起光源8からの励起光の一部をハーフミラ−12
等で励起先月検出器13に導き、励起光の   −強度
を求め、これと分析光用検出器11により検出された分
析光強度との比較をデータ処理部14により行い濃度を
求める。
Next, a part of the excitation light from the excitation light source 8 is transferred to the half mirror 12.
etc., the excitation light is guided to the detector 13 to determine the -intensity of the excitation light, and the data processing section 14 compares this with the intensity of the analysis light detected by the analysis light detector 11 to determine the concentration.

また、分析精度を向上させるために、溶液1の温度を測
定しデータを補正する。そのため後述するように試料セ
ル5に温度測定器を設置し、これを温度検出用光ファイ
バ15で伝送し、温度検出器16で検出し、データ処理
部14で温度補正を行う。
Furthermore, in order to improve analysis accuracy, the temperature of the solution 1 is measured and the data is corrected. Therefore, as will be described later, a temperature measuring device is installed in the sample cell 5, the temperature is transmitted through the temperature detection optical fiber 15, the temperature is detected by the temperature detector 16, and the data processing section 14 performs temperature correction.

更に、室内3は放射線環境下であるため、試料セル5.
励起光用光ファイバ9.及び分析光用光ファイバ10(
表面蛍光用光ファイバ101.側面蛍光用光ファイバ1
02.透過光用光ファイバ103を全て含む)は放射線
の影響で劣化し、光透過度が低下する。この低下を考慮
し分析精度を向上させるため、透過度低下分により生じ
た励起光及び分析光(表面蛍光、側面蛍光、透過光の全
て)の強度補正が必要であり、後述するように°放射線
損傷モニター用として試料セルの損傷を検出する試料セ
ル損傷モニター用光ファイバ17と光ファイバ自身の損
傷を検出する光ファイバ損傷モニター用光ファイバ18
とを設けである。
Furthermore, since the room 3 is under a radiation environment, the sample cell 5.
Optical fiber for excitation light9. and analytical light optical fiber 10 (
Optical fiber for surface fluorescence 101. Side fluorescence optical fiber 1
02. (including all the optical fibers 103 for transmitted light) deteriorate due to the influence of radiation, and the light transmittance decreases. In order to take this decrease into account and improve analysis accuracy, it is necessary to correct the intensity of the excitation light and analysis light (all surface fluorescence, side fluorescence, and transmitted light) caused by the decrease in transmittance. A sample cell damage monitoring optical fiber 17 for detecting damage to a sample cell and an optical fiber damage monitoring optical fiber 18 for detecting damage to the optical fiber itself.
This is provided.

尚、励起光′g8側と分析光用検出器11側では。Note that on the excitation light 'g8 side and the analysis light detector 11 side.

各光ファイバ(励起光源側・・・9,17,18.分析
光用検出器側・・・101,102,103,17゜1
8)の切換えが必要なので、モード切換器19を設けで
ある。
Each optical fiber (excitation light source side...9, 17, 18; analysis light detector side...101, 102, 103, 17゜1
8) is necessary, so a mode switch 19 is provided.

以上は本分析装置の構成である0次に各部の詳細と分析
手順について述べる。
The details of each part of the zero-order configuration of this analyzer and the analysis procedure will be described above.

第2図に分析光学部の構造を示す。励起光用光ファイバ
9で送られてきた光は、励起光反射ミラー20を介して
試料セル5に照射される。試料セル5の中の溶液は励起
光により蛍光を発するが、このとき励起光入射側から発
せられる蛍光は、表面蛍光として表面蛍光反射ミラー2
11と表面蛍光集光レンズ221を介して表面蛍光用光
ファイバ101で捕えられる。また、励起光が試料セル
5の中を透過中に発せられる蛍光は、側面蛍光として側
面蛍光反送ミラー112と側面蛍光集光レンズ222を
介して側面蛍光用光ファイバ102で捕えられる。更に
、試料セル5を通過した励起光は透過光反射ミラー21
3と透過光集光レンズ223を介して透過光用光ファイ
バ103で捕えられる。
Figure 2 shows the structure of the analytical optical section. The light sent through the excitation light optical fiber 9 is irradiated onto the sample cell 5 via the excitation light reflection mirror 20. The solution in the sample cell 5 emits fluorescence due to the excitation light, and at this time, the fluorescence emitted from the excitation light incident side is reflected as surface fluorescence by the surface fluorescence reflection mirror 2.
11 and a surface fluorescence condensing lens 221, the surface fluorescence is captured by the optical fiber 101 for surface fluorescence. Further, the fluorescence emitted while the excitation light is passing through the sample cell 5 is captured as side fluorescence by the side fluorescence optical fiber 102 via the side fluorescence reflection mirror 112 and the side fluorescence condensing lens 222. Furthermore, the excitation light that has passed through the sample cell 5 is transmitted through a transmitted light reflecting mirror 21.
3 and the transmitted light condensing lens 223, the transmitted light is captured by the optical fiber 103 for transmitted light.

ここで励起光及び各分析光の光路を20,211゜21
2、及び213の各反射ミラーを用いて変えているのは
、試料セル5中の溶液からの一次放射線が、221,2
22,223の各集光レンズ及び9,101,102,
103(7)各光ニア7−1’/<に直接入らないよう
にするためであり、これにより集光レンズ及び光ファイ
バの放射線劣化を低減している。また、放射線劣化の低
減には、試料セル5と221,222,223の集光レ
ンズ及び9゜101.102,103の光ファイバとの
間に放射線遮蔽板を取付けることも有効である。
Here, the optical path of the excitation light and each analysis light is 20,211°21
The primary radiation from the solution in the sample cell 5 is changed by using the reflecting mirrors 221 and 213.
Each condenser lens 22, 223 and 9, 101, 102,
103(7) This is to prevent the light from entering directly into each light near 7-1'/<, thereby reducing radiation deterioration of the condenser lens and optical fiber. Furthermore, in order to reduce radiation deterioration, it is also effective to install a radiation shielding plate between the sample cell 5 and the condenser lenses 221, 222, 223 and the optical fibers 9° 101, 102, 103.

第3図は第2図の変形例であり、第2図における211
,212.213の反射ミラーと221゜222.22
3の集光レンズの組合せを、それぞれ一つの集光ミラー
231,232,233で代用させたものである。すな
わち表面蛍光集光ミラー231は試料セル5からの表面
蛍光を捕えかつ集光させ、光路を変えて表面蛍光用光フ
ァイバ101に送る。このため表面蛍光集光ミラー23
1は非対称球面ミラーであり、かつその中央部には、励
起光の通過用に励起光反射ミラー20と試料セル5を結
ぶ軸上に小口径孔24がおいている。側面蛍光集光ミラ
ー232及び吸光集光ミラー233も同様に非対称球面
ミラーであるが、小口径孔はおいていない。集光ミラー
231,232,233を用いれば、各分析光が第2図
において221゜222.223のレンズを通ることに
より生ずる光強度損失を低減でき、かつ放射線劣化を低
減するためにガラス部材であるレンズを削除可能である
。レンズ材は一般にガラス部材であり放射線に弱いが、
231,232,233の集光ミラーの表面は金属蒸着
により作られるので、ガラスと比べて放射線に対しては
強い。
FIG. 3 is a modification of FIG. 2, and 211 in FIG.
, 212.213 reflection mirror and 221°222.22
The three combinations of condenser lenses are replaced by one condenser mirror 231, 232, and 233, respectively. That is, the surface fluorescence condensing mirror 231 captures and condenses the surface fluorescence from the sample cell 5, changes the optical path, and sends it to the surface fluorescence optical fiber 101. For this reason, the surface fluorescence condensing mirror 23
Reference numeral 1 designates an asymmetric spherical mirror, and a small diameter hole 24 is placed in the center of the mirror on the axis connecting the excitation light reflecting mirror 20 and the sample cell 5 for the passage of excitation light. The side fluorescence condensing mirror 232 and the light absorption condensing mirror 233 are also asymmetric spherical mirrors, but do not have small diameter holes. By using the condensing mirrors 231, 232, and 233, it is possible to reduce the light intensity loss caused by each analytical light passing through the lenses 221°, 222, and 223 in FIG. It is possible to delete certain lenses. Lens materials are generally glass materials and are susceptible to radiation.
Since the surfaces of the condensing mirrors 231, 232, and 233 are made by metal vapor deposition, they are more resistant to radiation than glass.

次に第4図に試料セル5の構造を示す。試料セル5には
、試料セル材25の放射線損傷をモニターするために試
料セル損傷モニター用端板26を設けである。また試料
セル5は試料セル材25により組立てられているが、励
起光の入射及び分析光の出力に関係のない斜線部の面は
、分析精度を向上させるために試料セル5内の光の散乱
を防ぐ非透過セル材27を用いている。この非透過セル
材27には温度検出部28が埋め込まれている。
Next, FIG. 4 shows the structure of the sample cell 5. The sample cell 5 is provided with a sample cell damage monitoring end plate 26 in order to monitor radiation damage to the sample cell material 25. The sample cell 5 is assembled using a sample cell material 25, and the shaded surface, which is not related to the incidence of excitation light and the output of analysis light, is used to scatter light within the sample cell 5 in order to improve analysis accuracy. A non-transparent cell material 27 is used to prevent this. A temperature detection section 28 is embedded in this non-transparent cell material 27.

物質の励起・緩和現象が温度により変化し、蛍光分析・
吸光分析に影響を与えるので、温度検出部28により非
透過セル材27の温度を測定し、非透過セル材27の外
伝4率を用いて試料セル5中の溶液の温度を検知するた
めである。温度検出部28は温度検出用光ファイバ15
を介して温度検出器1Gにつながっている。濃度分析に
おいては温度検欣線をあらかじめ作成しておけばよい。
The excitation and relaxation phenomena of substances change depending on the temperature, and fluorescence analysis and
This is because the temperature of the non-transmissive cell material 27 is measured by the temperature detection unit 28, and the temperature of the solution in the sample cell 5 is detected using the external conduction rate of the non-transmissive cell material 27, since this affects the absorption analysis. . The temperature detection unit 28 is the temperature detection optical fiber 15
It is connected to temperature detector 1G via. In concentration analysis, it is sufficient to create a temperature detection line in advance.

次に第5図を用いて、本濃度分析装置における放射線の
影響のモニタ一方法について述べる。
Next, using FIG. 5, a method for monitoring the effects of radiation in this concentration analyzer will be described.

第5図は本濃度分析装置の光ファイバと試料セルの構成
を示したものである0本図において、壁2内の室内3は
放射線環境下にあり、光ファイバ及び試料セルは長時間
の使用で劣化することが予想される。これらの劣化は光
の透過率低下として現われ、分析精度に影響を与える。
Figure 5 shows the configuration of the optical fiber and sample cell of this concentration analyzer. expected to deteriorate. These deteriorations appear as a decrease in light transmittance and affect analysis accuracy.

そこで、透過率がどの程度低下したかを知ることができ
れば、分析時のデータ処理において補正可能である。
Therefore, if it is possible to know how much the transmittance has decreased, correction can be made in data processing during analysis.

まず、濃度分析において補正しなければならないのは、
励起光用光ファイバ9と試料セル5及び各分析光用光フ
ァイバ101,102,103の透過率低下である。光
ファイバについては、励起光用光ファイバ及び各分析光
用光ファイバとほぼ同一の引回しになるように光ファイ
バ損傷モニター用光ファイバ18を設置しである。放射
線損傷の無い初期の状態での光ファイバ損傷モニター用
光ファイバ18の透過率と、放射線環境下で使用された
後の透過率とを比較すれば、どの程度の放射線損傷があ
ったかを測定できる。そして、この損イ1から、励起光
用光ファイバ9.各分析光用光ファイバ101.io2
,103の透過率低下を、長さの比等により、算出でき
る。
First, what must be corrected in concentration analysis is
This is a decrease in the transmittance of the excitation light optical fiber 9, the sample cell 5, and each of the analysis light optical fibers 101, 102, and 103. As for the optical fibers, the optical fiber damage monitoring optical fiber 18 is installed so as to be routed in almost the same way as the excitation light optical fiber and each analysis light optical fiber. By comparing the transmittance of the optical fiber damage monitoring optical fiber 18 in its initial state with no radiation damage and the transmittance after it has been used in a radiation environment, it is possible to measure how much radiation damage has occurred. From this loss A1, a pumping light optical fiber 9. Each analytical light optical fiber 101. io2
, 103 can be calculated from the length ratio.

また、照射試験等によりこの放射線損傷モニター用光フ
ァイバの透過率低下を調べておけば、逆に梨積線量を知
ることもできる。すなわち、第2図における励起光反射
ミラー20.各分析光用の反射ミラー211,212,
213及び集光レンズ221,222,223.あるい
は第3図における集光ミラー231,232.233に
ついて。
In addition, by examining the decrease in transmittance of this optical fiber for radiation damage monitoring through irradiation tests, it is also possible to find out the cumulative dose. That is, the excitation light reflecting mirror 20 in FIG. Reflection mirrors 211, 212 for each analysis light,
213 and condenser lenses 221, 222, 223. Or regarding the condensing mirrors 231, 232, 233 in FIG.

あらかじめ照射試験等により集積線量とその損傷の関係
を知っておけば、放射線損傷モニター用光ファイバ18
から得られた集積線量を基にそれぞれの放射線損傷の程
度を知ることができる。これは、第4図で述べた温度検
出部28についても同様である。
If you know the relationship between the integrated dose and its damage in advance through irradiation tests, etc., you can use the optical fiber 18 for radiation damage monitoring.
It is possible to know the degree of each radiation damage based on the integrated dose obtained from the This also applies to the temperature detection section 28 described in FIG. 4.

次に試料セルの放射線損傷を31q定するために、試料
セル5には試料セルの材質と同一の試料セル損傷モニタ
ー用端板26を設けておき、これに試料セル損傷モニタ
ー用光ファイバ17から光を照射し端板を通過させる。
Next, in order to determine the radiation damage to the sample cell 31q, the sample cell 5 is provided with a sample cell damage monitor end plate 26 made of the same material as the sample cell, and a sample cell damage monitor optical fiber 17 is connected to this end plate 26 which is made of the same material as the sample cell. Light is irradiated and passed through the end plate.

これも光ファイバ損傷モニター用光ファイバ18と同様
の用い方で、初期の透過率との比較により試料セルの放
射線損傷を(Iす定できる。尚、試料セル損傷モニター
用光ファイバ17自身の放射線損傷は、光ファイバ損傷
モニター用光ファイバ18により算出できるので、この
値を用いて試料セル5の損傷程度をより正確に補正可能
である。
This is also used in the same way as the optical fiber 18 for monitoring optical fiber damage, and radiation damage to the sample cell can be estimated by comparing it with the initial transmittance. Since the damage can be calculated using the optical fiber 18 for monitoring optical fiber damage, the degree of damage to the sample cell 5 can be corrected more accurately using this value.

また、試料セル5の内部には、試料中に含まれる不純物
(クラッド等)が付着し光の透過率を低下させる場合も
ある。これを知るには、試料セル5内の試料を空にし、
励起光用光ファイバ9から光を照射し、この時の透過光
強度を透過光用光ファイバ103で捕えてやればよい。
Furthermore, impurities (such as cladding) contained in the sample may adhere to the inside of the sample cell 5 and reduce the light transmittance. To know this, empty the sample in the sample cell 5,
Light may be emitted from the excitation light optical fiber 9 and the transmitted light intensity at this time may be captured by the transmitted light optical fiber 103.

前述の光ファイバ、試料セル、反射ミラー、レンズ等の
放射線損傷の合計値から不純物が付着していない場合の
試料セル5の透過率を求め、これと試料を空にした状態
での実際の試料セル5の透過率を求め比較すると、不純
物の付着を検知できる。
Determine the transmittance of the sample cell 5 when no impurities are attached from the total value of radiation damage to the optical fiber, sample cell, reflection mirror, lens, etc. mentioned above, and compare this with the actual sample with the sample empty. By determining and comparing the transmittance of the cell 5, adhesion of impurities can be detected.

尚、第1図において29は試料セル洗浄液用配管であり
、分析が終了した後あるいは長時間分析が行われない場
合はここから洗浄液を注入できるようにしである。
In FIG. 1, reference numeral 29 is a sample cell cleaning liquid pipe from which the cleaning liquid can be injected after the analysis is completed or when no analysis is performed for a long time.

第6図は本濃度分析装置における試料セル周辺を具体的
に示す斜視図である。
FIG. 6 is a perspective view specifically showing the vicinity of a sample cell in this concentration analyzer.

試料セル5の周辺機器は試料セルボックス30に収納さ
れており、配管4からは分岐配管61゜62で結ばれて
いるが、途中、試料セルボックスごと交換可能なように
、分岐配管にはマニピュレータ等の遠隔操作機器で操作
可能な配管コネクタ311.312を設けである。また
各光ファイバも試料セルボックス30に遠隔で脱着可能
にコネクタ接続されている。32は励起光用光ファイバ
のコネクタ、33は表面蛍光用光ファイバのコネクタ、
34は側面蛍光用光ファイバのコネクタ、35は透過光
用光ファイバのコネクタ、36は試料セル損傷モニター
用光ファイバのコネクタ、37は光ファイバ損傷モニタ
ー用光ファイバのコネクタ、38は温度検出用光ファイ
バのコネクタである。
The peripheral equipment of the sample cell 5 is housed in a sample cell box 30, which is connected to the pipe 4 through branch pipes 61 and 62. However, a manipulator is attached to the branch pipe so that the sample cell box can be replaced along the way. Piping connectors 311 and 312 that can be operated with remote control equipment such as the like are provided. Further, each optical fiber is also connected to the sample cell box 30 with a connector so that it can be connected and detached remotely. 32 is a connector for an optical fiber for excitation light, 33 is a connector for an optical fiber for surface fluorescence,
34 is an optical fiber connector for side fluorescence, 35 is an optical fiber connector for transmitted light, 36 is an optical fiber connector for sample cell damage monitoring, 37 is an optical fiber connector for optical fiber damage monitoring, and 38 is a temperature detection light. It is a fiber connector.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、核物質等の試料をインライン方式で試
料セルに直接導き分析可能であり、また、表面蛍光、側
面蛍光、吸光のうち試料の状態に最も適した光による分
析法を選択して分析できる。
According to the present invention, it is possible to directly lead a sample such as a nuclear material to a sample cell in an in-line method for analysis, and also to select the most suitable light-based analysis method for the state of the sample from among surface fluorescence, side fluorescence, and absorption. can be analyzed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による濃度分析装置の全体構成を示す図
、第2図及び第3図は分析光学部の構造を示す図、第4
図は試料セルの構造を示す図、第5図は光ファイバと試
料セルの系統構成を示す図、第6図は試料セル周辺の構
成を示す斜視図である91・・・溶液、2・・・壁、3
・・・室内、4・・・配管、5・・・試料セル、61.
62・・・分岐配管、7・・・操作室、8・・・励起光
源、9・・励起光用光ファイバ、101・・・表面蛍光
用光ファイバ、102・・・側面蛍光用光ファイバ、1
03・・・透過光用光ファイバ、11・・・分析光用検
出器、12・・・ハーフミラ−113・・・励起光用検
出器、14・・・データ処理部、15・・・温度検出用
光ファイバ、16・・・温度検出器、17・・・試料セ
ル損傷モニター用光ファイバ、18・・・光ファイバ損
傷モニター用光ファイバ、19・・・モード切換器、2
0・・・励起光反射ミラー、211・・・表面蛍光反射
ミラー、212・・・側面蛍光反射ミラー、213・・
・透過光反射ミラー、221・・・表面蛍光集光レンズ
、222・・・側面蛍光集光レンズ、223・・・透過
光集光レンズ、231・・・表面蛍光集光ミラー、23
2・・・側面蛍光集光ミラー、233・・・透過光集光
ミラー、24・・・小口径孔、25・・・試料セル材、
26・・・試料セル損傷モニター用端板、27・・・非
透過セル材、28・・・温度検出部、29・・・試料セ
ル洗浄液用配管、30・・・試料セルボックス、311
゜312・・・配管コネクタ、32・・・励起光用光フ
ァイバのコネクタ、33・・・表面蛍光用光ファイバの
コネクタ、34・・・側面蛍光用光ファイバのコネクタ
、35・・・透過光用光ファイバのコネクタ、36・・
・試料セル損傷モニター用光ファイバのコネクタ、37
・・・光ファイバ損傷モニター用光ファイバのコネクタ
、38・・・温度検呂用光ファイバのコネクタ。
FIG. 1 is a diagram showing the overall configuration of the concentration analyzer according to the present invention, FIGS. 2 and 3 are diagrams showing the structure of the analytical optical section, and FIG.
The figure shows the structure of the sample cell, FIG. 5 shows the system configuration of the optical fiber and the sample cell, and FIG. 6 shows a perspective view of the structure around the sample cell.・Wall, 3
...Indoor, 4...Piping, 5...Sample cell, 61.
62... Branch piping, 7... Operation room, 8... Excitation light source, 9... Optical fiber for excitation light, 101... Optical fiber for surface fluorescence, 102... Optical fiber for side fluorescence, 1
03... Optical fiber for transmitted light, 11... Detector for analysis light, 12... Half mirror 113... Detector for excitation light, 14... Data processing section, 15... Temperature detection 16... Temperature detector, 17... Optical fiber for sample cell damage monitoring, 18... Optical fiber for optical fiber damage monitoring, 19... Mode switch, 2
0... Excitation light reflecting mirror, 211... Front fluorescent reflecting mirror, 212... Side fluorescent reflecting mirror, 213...
- Transmitted light reflecting mirror, 221... Surface fluorescence condensing lens, 222... Side fluorescence condensing lens, 223... Transmitted light condensing lens, 231... Surface fluorescence condensing mirror, 23
2... Side fluorescence condensing mirror, 233... Transmitted light condensing mirror, 24... Small diameter hole, 25... Sample cell material,
26... End plate for sample cell damage monitoring, 27... Non-transparent cell material, 28... Temperature detection section, 29... Piping for sample cell cleaning liquid, 30... Sample cell box, 311
312... Piping connector, 32... Optical fiber connector for excitation light, 33... Optical fiber connector for surface fluorescence, 34... Optical fiber connector for side fluorescence, 35... Transmitted light Optical fiber connector for use, 36...
・Optical fiber connector for sample cell damage monitoring, 37
... Optical fiber connector for optical fiber damage monitoring, 38... Optical fiber connector for temperature checking.

Claims (1)

【特許請求の範囲】 1、分析すべき試料が流れる配管から試料を取込み分析
後に配管に戻す分岐配管と、分岐配管の途中に設置され
た試料セルと、励起光源と、励起光源からの光を試料セ
ルに導く光伝送路と、この光伝送路の途中の励起光を検
出する検出器と、試料セルで発生した蛍光および透過光
を検出する検出器と、試料セルとこの検出器とを結ぶ光
伝送路と、蛍光分析、吸光分析等のモードに応じて検出
器と伝送路とを切換え接続するモード切換え器と、前記
励起光検出器と試料セルからの光の検出器の出力を取込
み両者の比から試料の濃度を算出するデータ処理部とを
含むことを特徴する濃度分析装置。 2、特許請求の範囲第1項において、試料セルが、励起
光入射方向に表面蛍光を、入射方向と直角方向に側面蛍
光を、試料通過方向に吸収された残りの光(透過光)を
出力する面を有し、試料セルとこれら分析用光検出器と
を結ぶ光伝送路が3本であることを特徴とする濃度分析
装置。 3、特許請求の範囲第1項または第2項において、光伝
送路が光ファイバを含むことを特徴とする濃度分析装置
。 4、上記特許請求の範囲のいずれか一項において、試料
セルが励起光入射面を延設した試料セル損傷モニター用
端板を含み、光伝送路がこの試料セルに励起光を入射さ
せ透過光を受ける伝送路を含み、モード切換器が試料セ
ル損傷モニターモードを有し、データ処理部が試料セル
の透過率低下の影響を補正して検出濃度を算出すること
を特徴とする濃度分析装置。 5、上記特許請求の範囲のいずれか一項において、光伝
送路が励起光伝送路と検出光伝送路とを加えた長さと略
同じ長さで励起光源に接続可能な光ファイバ損傷モニタ
ー用光ファイバを含み、モード切換器が光ファイバ損傷
モニターモードを有し、データ処理部が光ファイバの透
過率低下の影響を補正して検出濃度を算出することを特
徴とする濃度分析装置。 6、上記特許請求の範囲のいずれか一項において、試料
セルが温度検出部を含み、データ処理部が試料セルの温
度変化の影響を補正して検出濃度を算出することを特徴
とする濃度分析装置。 7、上記特許請求の範囲のいずれか一項において、励起
光源がレーザ光源であることを特徴とする濃度分析装置
。 8、上記特許請求の範囲のいずれか一項において、光伝
送路が試料セルの囲りに表面鏡の反射系を含み、前記光
ファイバ等のガラスを用いた部材が試料からの放射線外
に配置されたことを特徴とする濃度分析装置。 9、上記特許請求の範囲のいずれか一項において、分岐
管が試料セル洗浄液供給系を含むことを特徴とする濃度
分析装置。 10、上記特許請求の範囲のいずれか一項において、試
料セル周りの部材が試料セルボックス内に配置され分岐
配管に着脱可能なユニットを形成していることを特徴と
する濃度分析装置。
[Claims] 1. A branch pipe that takes the sample from the pipe through which the sample to be analyzed flows and returns it to the pipe after analysis, a sample cell installed in the middle of the branch pipe, an excitation light source, and a light source from the excitation light source. An optical transmission path leading to the sample cell, a detector that detects excitation light along this optical transmission path, a detector that detects fluorescence and transmitted light generated in the sample cell, and a connection between the sample cell and this detector. an optical transmission line; a mode switcher that switches and connects the detector and the transmission line according to the mode of fluorescence analysis, absorption analysis, etc.; A concentration analyzer comprising: a data processing unit that calculates the concentration of a sample from the ratio of 2. In claim 1, the sample cell outputs surface fluorescence in the excitation light incident direction, side fluorescence in the direction perpendicular to the incident direction, and the remaining absorbed light (transmitted light) in the sample passing direction. What is claimed is: 1. A concentration analyzer characterized in that the concentration analyzer has three optical transmission paths connecting a sample cell and these analytical photodetectors. 3. A concentration analyzer according to claim 1 or 2, characterized in that the optical transmission path includes an optical fiber. 4. In any one of the above claims, the sample cell includes a sample cell damage monitoring end plate with an extended excitation light incident surface, and the optical transmission path makes the excitation light enter the sample cell and transmits the transmitted light. What is claimed is: 1. A concentration analyzer comprising: a transmission path for receiving a sample cell; 5. In any one of the above claims, an optical fiber damage monitoring light that can be connected to an excitation light source with an optical transmission line having approximately the same length as the sum of the excitation light transmission line and the detection optical transmission line. 1. A concentration analyzer comprising a fiber, a mode switch having an optical fiber damage monitoring mode, and a data processing unit calculating a detected concentration by correcting the influence of a decrease in transmittance of the optical fiber. 6. Concentration analysis according to any one of the above claims, characterized in that the sample cell includes a temperature detection section, and the data processing section calculates the detected concentration by correcting the influence of temperature changes in the sample cell. Device. 7. A concentration analyzer according to any one of the above claims, characterized in that the excitation light source is a laser light source. 8. In any one of the above claims, the optical transmission path includes a reflection system of a surface mirror around the sample cell, and the member using glass such as the optical fiber is arranged outside the radiation from the sample. A concentration analyzer characterized by: 9. A concentration analyzer according to any one of the above claims, characterized in that the branch pipe includes a sample cell cleaning liquid supply system. 10. A concentration analyzer according to any one of the above claims, characterized in that members surrounding the sample cell are arranged in a sample cell box and form a unit that can be attached to and detached from a branch pipe.
JP61134340A 1986-06-10 1986-06-10 Concentration analyzer Expired - Fee Related JPH07113602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61134340A JPH07113602B2 (en) 1986-06-10 1986-06-10 Concentration analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61134340A JPH07113602B2 (en) 1986-06-10 1986-06-10 Concentration analyzer

Publications (2)

Publication Number Publication Date
JPS62289747A true JPS62289747A (en) 1987-12-16
JPH07113602B2 JPH07113602B2 (en) 1995-12-06

Family

ID=15126061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61134340A Expired - Fee Related JPH07113602B2 (en) 1986-06-10 1986-06-10 Concentration analyzer

Country Status (1)

Country Link
JP (1) JPH07113602B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02293647A (en) * 1989-05-08 1990-12-04 Hitachi Ltd Spectral analysis apparatus of radioactive liquid
JPH03120465A (en) * 1989-10-02 1991-05-22 Fuji Photo Film Co Ltd Immunoassay device
JPH07506987A (en) * 1992-03-12 1995-08-03 ウォン,ヤコブ ワイ. Non-invasive blood chemistry measurement using infrared stimulated relaxed emission
JP2003287491A (en) * 2002-01-28 2003-10-10 Sysmex Corp Apparatus and method for analyzing particle
JP2008164621A (en) * 2002-01-28 2008-07-17 Sysmex Corp Particle analyzer
WO2010001700A1 (en) * 2008-06-30 2010-01-07 浜松ホトニクス株式会社 Spectrometer, spectrometry, and spectrometry program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5147480A (en) * 1974-10-22 1976-04-23 Tokyo Shibaura Electric Co DAKUDOSOKUTEIHOHO
JPS5454094A (en) * 1977-10-07 1979-04-27 Tokyo Keiki Kk Oil densitometer
JPS58151843U (en) * 1982-04-06 1983-10-12 柳生 迪 Fluorophotometer using microtiter plate
JPS60263838A (en) * 1984-06-12 1985-12-27 Hitachi Ltd Photometer
JPS617426A (en) * 1984-06-21 1986-01-14 Shimadzu Corp Photometer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5147480A (en) * 1974-10-22 1976-04-23 Tokyo Shibaura Electric Co DAKUDOSOKUTEIHOHO
JPS5454094A (en) * 1977-10-07 1979-04-27 Tokyo Keiki Kk Oil densitometer
JPS58151843U (en) * 1982-04-06 1983-10-12 柳生 迪 Fluorophotometer using microtiter plate
JPS60263838A (en) * 1984-06-12 1985-12-27 Hitachi Ltd Photometer
JPS617426A (en) * 1984-06-21 1986-01-14 Shimadzu Corp Photometer

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02293647A (en) * 1989-05-08 1990-12-04 Hitachi Ltd Spectral analysis apparatus of radioactive liquid
JPH03120465A (en) * 1989-10-02 1991-05-22 Fuji Photo Film Co Ltd Immunoassay device
JPH07506987A (en) * 1992-03-12 1995-08-03 ウォン,ヤコブ ワイ. Non-invasive blood chemistry measurement using infrared stimulated relaxed emission
JP2003287491A (en) * 2002-01-28 2003-10-10 Sysmex Corp Apparatus and method for analyzing particle
JP2008164621A (en) * 2002-01-28 2008-07-17 Sysmex Corp Particle analyzer
JP2010266472A (en) * 2002-01-28 2010-11-25 Sysmex Corp Particle-analyzing apparatus
JP4616360B2 (en) * 2002-01-28 2011-01-19 シスメックス株式会社 Particle analyzer
WO2010001700A1 (en) * 2008-06-30 2010-01-07 浜松ホトニクス株式会社 Spectrometer, spectrometry, and spectrometry program
JP2010008362A (en) * 2008-06-30 2010-01-14 Hamamatsu Photonics Kk Spectrometer, spectrometry, and spectrometry program
US8525989B2 (en) 2008-06-30 2013-09-03 Hamamatsu Photonics K.K. Spectrometer, spectrometry, and spectrometry program

Also Published As

Publication number Publication date
JPH07113602B2 (en) 1995-12-06

Similar Documents

Publication Publication Date Title
EP0480753B1 (en) Optical analytical instrument and method
US10359364B2 (en) Hybrid spectrophotometer with variable optical path length sampling cell and method of using same
EP0608101B1 (en) Scintillation counter
CN102809544B (en) Total plumbous online automatic monitor
US6515748B2 (en) Method and apparatus for in-situ spectroscopic analysis
WO2016170681A1 (en) Optical measurement device
JPH09281039A (en) Method and apparatus for measurement of concentration of alcohol in gas mixture by making use of absorption of radiation
JPH04335139A (en) Monitoring apparatus
JPH01253634A (en) Reflection density measuring apparatus
WO2017067971A1 (en) Measurement cell for saxs measurements and for dls measurements
JPS62289747A (en) Concentration analyzing device
CN101960292B (en) Total reflection attenuation type far-ultraviolet spectroscopy and concentration measurement device using the spectroscopy
Lee et al. A new sensor for detection of coolant leakage in nuclear power plants using off-axis integrated cavity output spectroscopy
JPH09500447A (en) Fluorescence detector and device for supporting replaceable sample cuvettes on the fluorescence detector
KR100922124B1 (en) Non-Invasive on-line system for measuring concentraton of optically active liquid
Holmes Dual‐beam, double‐pass absorption spectroscopy of shocked materials
JPH03214038A (en) Instrument for measuring aerosol, dust and the like spreaded in the air
JPH1062240A (en) Apparatus and method for measuring scattering
JPH0319503B2 (en)
JP2009128252A (en) End face inspection method and end face inspection apparatus
RU2460988C1 (en) Method of measuring particle size distribution in wide range of concentrations and apparatus for realising said method (versions)
JPH0781951B2 (en) Fluorometer
JPH0743291A (en) Probe for absorptiometric analysis
JPH02293647A (en) Spectral analysis apparatus of radioactive liquid
JPH04110750A (en) Liquid flow-cell for infrared spectral photometer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees