JPH02293647A - Spectral analysis apparatus of radioactive liquid - Google Patents

Spectral analysis apparatus of radioactive liquid

Info

Publication number
JPH02293647A
JPH02293647A JP11372289A JP11372289A JPH02293647A JP H02293647 A JPH02293647 A JP H02293647A JP 11372289 A JP11372289 A JP 11372289A JP 11372289 A JP11372289 A JP 11372289A JP H02293647 A JPH02293647 A JP H02293647A
Authority
JP
Japan
Prior art keywords
fiber
light
sample
spectrometer
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11372289A
Other languages
Japanese (ja)
Inventor
Haruo Fujimori
治男 藤森
Tetsuya Matsui
哲也 松井
Yukio Wada
幸男 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Power Reactor and Nuclear Fuel Development Corp
Original Assignee
Hitachi Ltd
Power Reactor and Nuclear Fuel Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Power Reactor and Nuclear Fuel Development Corp filed Critical Hitachi Ltd
Priority to JP11372289A priority Critical patent/JPH02293647A/en
Publication of JPH02293647A publication Critical patent/JPH02293647A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To recover a light transmitting fiber and a light receiving fiber from radiation damages and to spectrochemically analyze a radioactive liquid sample accurately over a long period of time in a high radiation field by periodically and alternately switching the fibers and passing stimulating light therein. CONSTITUTION:A valve 10 is opened and a liquid sample contg. a radioactive material is taken into an analyzing cell 9 from a process piping 12. The stimulating light from a laser 1 is then passed through the light transmitting fiber 7 and is projected to the sample. The fluorescence generated from the sample is passed through the light receiving fiber 8 and is transmitted to a spectroscope 2. Since the quantity of the fluorescence passing the fiber 8 during this time is slight, the fiber receives the radiation damages and is colored as time passes by. The fibers 7, 8 are, therefore, switched periodically by using a fiber switching mechanism 5 to use the light receiving fiber as the light transmitting fiber, by which the fibers are recovered from the radiation damages. The spectrochemical analysis of the sample is accurately executed over a long period of time in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は放射性物質を多量に含むか、又は、高放射線場
で使用される液体の遠隔分光分析に係り,特に,簡便に
光ファイバの放射線損傷の回復・抑制に適相な分光分析
装置に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to remote spectroscopic analysis of liquids that contain a large amount of radioactive substances or are used in high radiation fields, and in particular, relates to the remote spectroscopic analysis of liquids that contain a large amount of radioactive substances or are used in high radiation fields. This article relates to a spectroscopic analysis device suitable for damage recovery and suppression.

〔従来の技術〕[Conventional technology]

従来、遠隔分光分析装置には、例えば、特開昭58−1
74832号公報に記載のように、光ファイバを利用し
たものが考えられている。しかし,試料、又は、環境が
放゜射線を出す場合には,光ファイバが着色し、光伝送
効率が大きく低下する問題があった。
Conventionally, remote spectroscopic analyzers include, for example, Japanese Patent Application Laid-Open No. 58-1
As described in Japanese Patent No. 74832, a device using an optical fiber has been considered. However, if the sample or the environment emits radiation, there is a problem that the optical fiber becomes colored and the light transmission efficiency is greatly reduced.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は光ファイバの放射線損傷については考慮
していないため、核燃料再処理プラントのような高放射
線場では、光の伝送効率が著しく低下して計測が困難に
なる問題があった。
Since the above-mentioned conventional technology does not take into account radiation damage to optical fibers, there is a problem in that in high radiation fields such as those in nuclear fuel reprocessing plants, the light transmission efficiency decreases significantly and measurement becomes difficult.

本発明の目的は、再処理プラントのような高放射線環境
下でも光ファイバの伝送効率の低下を防ぐことができる
遠隔分光分析装置を提供することにある。
An object of the present invention is to provide a remote spectroscopic analysis device that can prevent a decrease in optical fiber transmission efficiency even in a high radiation environment such as a reprocessing plant.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、試料セルと二本の光ファイバの配置が光学
的に等しく,一方の光ファイバへの励起光の伝送と、他
方の光ファイバからの分析光の分光器への伝送とを、光
学素子を駆動して交互に切り換えることにより達成され
る. 〔作用〕 二本の光ファイバのうち、励起光送光ファイバは、レー
ザ等の高強度の励起光を伝送することにより、放射線損
傷で生じた着色中心に光励起により解消・回復し、かつ
、新たな着色中心の発生を防止する。この間、分析光受
光ファイバは低強度の分析光しか伝送しないため、放射
線損傷が進行する。そこで、反射鏡等の光学素子を駆動
して分析光受光ファイバに励起光を送り、この損傷を回
復させ、試料液体に励起光を照射すると、分析光はこれ
まで励起光送光用であった光ファイバを通って伝送され
る。この分析光は,光学素子の駆動により分光器に導か
れる。
The above purpose is to make the arrangement of the sample cell and the two optical fibers optically equal, so that the transmission of excitation light to one optical fiber and the transmission of analysis light from the other optical fiber to the spectrometer are optically equal. This is achieved by driving the elements and switching them alternately. [Function] Of the two optical fibers, the excitation light transmitting fiber transmits high-intensity excitation light such as a laser, so that the colored center caused by radiation damage is removed and recovered by optical excitation, and new Prevents the occurrence of colored centers. During this time, the analytical light receiving fiber transmits only low-intensity analytical light, so radiation damage progresses. Therefore, by driving an optical element such as a reflector to send excitation light to the analytical light receiving fiber, this damage can be repaired and the sample liquid is irradiated with excitation light. Transmitted through optical fiber. This analysis light is guided to a spectrometer by driving an optical element.

この操作を繰り返すことにより、光ファイバの放射線損
傷を適当に回復し、計測を継続することができる。
By repeating this operation, radiation damage to the optical fiber can be appropriately recovered and measurement can be continued.

[実施例〕 本発明の実施例を、以下、図を用いて説明する。[Example〕 Embodiments of the present invention will be described below with reference to the drawings.

第1図は装置の全体構成を示す。励起光源であるレーザ
1,分光器2,光検出器3,データ処理装置4、及び、
ファイバ切換え機構5は放射線しやへい壁6で囲まれた
分析室内に設置される。送光ファイバ7、及び受光ファ
イバ8は分析セル9と接続される。分析セル9はバルブ
1o及びサンプリング配管11を介してプロセス配管1
2に連結される。分析セル9の断面は第2図のようにな
っている。送光ファイバ7及び受光ファイバ8はファイ
バコネクタ13で分析セル9に接続されている。分析セ
ル9の内部には液体試料14を取り込む石英セル15が
設置され、サンプリング配管11と連結されている, 分析手段は,まず、バルブ10を開放してプロセス配管
10から放射性物質を含む液体試料を分析セル9内の石
英セル15内に取り込む。次にレーザ1から励起光16
を送出ファイバ7を通して伝送し,液体試料14に照射
する。液体試料14から発生する蛍光17を受光ファイ
バ8を通して分光器2へ伝送し、光検出器3及びデータ
処理装置4を用いて蛍光スペクトルを得る。ここでレー
ザ1の出力が充分大きければ送光ファイバ7の中に放射
線によって生成する励起準位を消失して着色を防ぐこと
ができるが、受光ファイバ8を通る蛍光量は微弱なので
、時間経過につれて着色する.そのため、ファイバ切換
え機構5を用いて周期的に送光ファイバ7と受光ファイ
バ8の役目を切換える。すなわち、受光ファイバとして
用いていたファイバを送出ファイバとして用い、放送線
損傷を回復する。ファイバ切換え機構−は、機械的にコ
ネクタを切換えればよい。すなわち、第3図に示すよう
に、回転コネクタ18,固定コネクタ19、及び中間レ
ンズ20より成り,回転コネクタ18の回転によりファ
イバの役目を切換える。第2図において送光ファイバ、
受光ファイバ及びコネクタと石英セルとの位置関係は光
学的に同一なので、ファイバの切換えが分析結果に影響
を与えることはない。
FIG. 1 shows the overall configuration of the device. A laser 1 as an excitation light source, a spectrometer 2, a photodetector 3, a data processing device 4, and
The fiber switching mechanism 5 is installed in an analysis chamber surrounded by a radiation-shielding wall 6. The light transmitting fiber 7 and the light receiving fiber 8 are connected to an analysis cell 9. The analysis cell 9 is connected to the process pipe 1 via the valve 1o and the sampling pipe 11.
2. The cross section of the analysis cell 9 is as shown in FIG. The light transmitting fiber 7 and the light receiving fiber 8 are connected to an analysis cell 9 by a fiber connector 13. A quartz cell 15 that takes in a liquid sample 14 is installed inside the analysis cell 9 and is connected to the sampling pipe 11.The analysis means first opens the valve 10 and collects the liquid sample containing radioactive substances from the process pipe 10. is taken into the quartz cell 15 in the analysis cell 9. Next, excitation light 16 from laser 1
is transmitted through the delivery fiber 7 and irradiates the liquid sample 14. Fluorescence 17 generated from liquid sample 14 is transmitted to spectrometer 2 through light receiving fiber 8, and a fluorescence spectrum is obtained using photodetector 3 and data processing device 4. If the output of the laser 1 is sufficiently large, the excitation level generated by the radiation in the light transmitting fiber 7 can be eliminated and coloring can be prevented, but since the amount of fluorescence passing through the light receiving fiber 8 is weak, as time passes, Color. Therefore, the roles of the light transmitting fiber 7 and the light receiving fiber 8 are periodically switched using the fiber switching mechanism 5. That is, the fiber used as the receiving fiber is used as the transmitting fiber to recover from damage to the broadcasting line. The fiber switching mechanism may mechanically switch the connectors. That is, as shown in FIG. 3, it consists of a rotary connector 18, a fixed connector 19, and an intermediate lens 20, and the role of the fiber is switched by the rotation of the rotary connector 18. In Fig. 2, the transmission fiber,
Since the positional relationship between the light-receiving fiber and connector and the quartz cell is optically the same, switching the fiber does not affect the analysis results.

ファイバ切換え機構、第4図のように両面反射鏡21ま
たは片面反射鏡22を用いてもよい。第4図において、
上側のファイバが送光ファイバ7,下側のファイバが受
光ファイバ8であるが、次に,両面反射鏡21を紙面の
上・下方向に移動するか、又は、紙面内で他面反射鏡2
2の位置に移動すると、励起光16はファイバ8に入射
することになり、二本のファイバの役割が逆転する。
As a fiber switching mechanism, a double-sided reflective mirror 21 or a single-sided reflective mirror 22 as shown in FIG. 4 may be used. In Figure 4,
The upper fiber is the light transmitting fiber 7 and the lower fiber is the light receiving fiber 8.Next, the double-sided reflector 21 is moved upwards and downwards in the paper, or the other-sided reflector 2 is moved in the plane of the paper.
When moving to position 2, the excitation light 16 enters the fiber 8, and the roles of the two fibers are reversed.

第5図は第2図の分析セルの変形例である。これは、集
光!123を用いて励起光16の光路を曲げて液体試料
に照射し、発生する蛍光17も集光鏡23を用いて光路
を曲げて受光ファイバ8へ集光する。ファイバ端面には
放射線じゃへい24を配置してある。この分析セルの場
合、ファイバ端面の放射線損傷を低減することができ、
また、蛍光を集光して感度を向上することができる。受
光及び送光ファイバの切換えについては、第2図の分析
セルと同様に行う。
FIG. 5 is a modification of the analysis cell shown in FIG. 2. This is light gathering! 123 is used to bend the optical path of the excitation light 16 to irradiate the liquid sample, and the generated fluorescence 17 is also focused onto the light receiving fiber 8 by bending the optical path using the condensing mirror 23. A radiation shield 24 is arranged on the fiber end face. In the case of this analysis cell, radiation damage on the fiber end face can be reduced,
In addition, sensitivity can be improved by focusing fluorescence. Switching of the light receiving and light transmitting fibers is carried out in the same manner as in the analysis cell shown in FIG. 2.

このように、本実施例によれば、送光,受光ファイバの
コネクタの回転,又は、反射鏡の移動により二本のファ
イバに交互にレーザ光を伝送して放射線損傷を回復しな
がら分析可能であり、再処理プラントのように高放射線
管におけるインライン遠隔分光分析に適切である。
As described above, according to this embodiment, it is possible to perform analysis while recovering radiation damage by transmitting laser light alternately to two fibers by rotating the connector of the light transmitting and receiving fibers, or by moving the reflecting mirror. suitable for in-line remote spectroscopy in high-radiation tubes such as reprocessing plants.

本発明の別な実施例を第6図及び第7図を用いて説明す
る。第6図,第7図はそれぞれ第2図及び第5図につい
て吸光分析を併用した例である。
Another embodiment of the present invention will be described using FIGS. 6 and 7. FIGS. 6 and 7 are examples of using absorption analysis in conjunction with FIGS. 2 and 5, respectively.

この場合、蛍光分析用の受光ファイバが二本になるので
,蛍光分析の検出感度も二倍になる.受光用の二本のフ
ァイバを通って伝送される光は分光器側で光学的に結合
する。ファイバの切換えは前記実施例と同様に行う. 本実施例によれば、蛍光及び吸光分析を同時に高感度で
実施できる利点である。
In this case, there are two receiving fibers for fluorescence analysis, so the detection sensitivity of fluorescence analysis is also doubled. The light transmitted through the two receiving fibers is optically combined on the spectrometer side. Fiber switching is performed in the same manner as in the previous example. According to this embodiment, the advantage is that fluorescence and absorption analysis can be performed simultaneously with high sensitivity.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、送光ファイバと受光ファイバを交互に
切換えて励起光を通すことにより、一組の励起光源及び
分光・検出系のみで、ファイバの放射線損傷をフオトブ
リーチしながら、放射性液体試料の分光分析を,高放射
線場において長時間精度良く実施することができる。
According to the present invention, by alternately switching the light transmitting fiber and the light receiving fiber to pass the excitation light, only one set of excitation light source and spectroscopy/detection system is required to photobleach the radiation damage of the fiber and remove the radioactive liquid sample. spectroscopic analysis can be performed with high accuracy over long periods of time in high radiation fields.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実旅例の全体構成図、第2図は分析
セルの断面図,第3図,第4図はそれぞれ二種のファイ
バ切換機構の断面図、第5図ないし第7図はそれぞれ第
2図と別な分析セルの断面図である。 1・・・レーザ,2・・・分光器、3・・・光検出器,
5・・・ファイバ切換機構、7・・・送光ファイバ、8
・・・受光ファイバ,9・・・分析セル、14・・・液
体試料、18・・・回転コネクタ,21・・・両面反射
鏡、22・・・片面反射鏡、23・・・集光鏡。
Fig. 1 is an overall configuration diagram of an actual example of the present invention, Fig. 2 is a sectional view of an analysis cell, Figs. 3 and 4 are sectional views of two types of fiber switching mechanisms, and Figs. FIG. 7 is a sectional view of an analysis cell different from FIG. 2, respectively. 1... Laser, 2... Spectrometer, 3... Photodetector,
5... Fiber switching mechanism, 7... Light transmission fiber, 8
... Light receiving fiber, 9 ... Analysis cell, 14 ... Liquid sample, 18 ... Rotating connector, 21 ... Double-sided reflecting mirror, 22 ... Single-sided reflecting mirror, 23 ... Condensing mirror .

Claims (1)

【特許請求の範囲】 1、励起光源、分光器、光検出器、液体試料セル、前記
励起光源からの励磁光を試料へ伝送する送光ファイバと
、前記試料を通過した透過光又は前記試料から発する蛍
光等の分析光を前記分光器へ伝送する受光ファイバとか
ら成る液体の遠隔分光分析装置において、 試料セルと、前記送光ファイバと前記受光ファイバとの
配置が光学的に等しく、前記励起光源から一方の光ファ
イバの前記励起光の伝送と、他方の光ファイバからの分
析光の前記分光器への伝送とを光学素子を駆動して交互
に切換えることにより、前記送光ファイバと前記受光フ
ァイバの放射線損傷を励起光で交互にフオトブリーチす
ることを特徴とする放射性液体の分光分析装置。
[Claims] 1. An excitation light source, a spectrometer, a photodetector, a liquid sample cell, a light transmission fiber that transmits excitation light from the excitation light source to the sample, and transmitted light that has passed through the sample or from the sample. A liquid remote spectrometer comprising a sample cell and a light receiving fiber that transmits analytical light such as emitted fluorescence to the spectrometer, wherein the arrangement of the light transmitting fiber and the light receiving fiber is optically equal, and the excitation light source By driving an optical element to alternately switch the transmission of the excitation light from one optical fiber to the spectrometer and the transmission of analysis light from the other optical fiber to the spectrometer, A radioactive liquid spectrometer that uses excitation light to photobleach radiation damage alternately.
JP11372289A 1989-05-08 1989-05-08 Spectral analysis apparatus of radioactive liquid Pending JPH02293647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11372289A JPH02293647A (en) 1989-05-08 1989-05-08 Spectral analysis apparatus of radioactive liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11372289A JPH02293647A (en) 1989-05-08 1989-05-08 Spectral analysis apparatus of radioactive liquid

Publications (1)

Publication Number Publication Date
JPH02293647A true JPH02293647A (en) 1990-12-04

Family

ID=14619483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11372289A Pending JPH02293647A (en) 1989-05-08 1989-05-08 Spectral analysis apparatus of radioactive liquid

Country Status (1)

Country Link
JP (1) JPH02293647A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5206701A (en) * 1991-09-20 1993-04-27 Amoco Corporation Apparatus for near-infrared spectrophotometric analysis
JP2004531742A (en) * 2001-06-28 2004-10-14 オンデオ ナルコ カンパニー Spectrofluorimeter
JP2010032317A (en) * 2008-07-28 2010-02-12 Nippon Electric Glass Co Ltd Greenhouse effect gas measuring instrument

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62130340A (en) * 1985-12-03 1987-06-12 Power Reactor & Nuclear Fuel Dev Corp Method and instrument for spectrochemical analysis of material in radioactive atmosphere
JPS62289747A (en) * 1986-06-10 1987-12-16 Hitachi Ltd Concentration analyzing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62130340A (en) * 1985-12-03 1987-06-12 Power Reactor & Nuclear Fuel Dev Corp Method and instrument for spectrochemical analysis of material in radioactive atmosphere
JPS62289747A (en) * 1986-06-10 1987-12-16 Hitachi Ltd Concentration analyzing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5206701A (en) * 1991-09-20 1993-04-27 Amoco Corporation Apparatus for near-infrared spectrophotometric analysis
JP2004531742A (en) * 2001-06-28 2004-10-14 オンデオ ナルコ カンパニー Spectrofluorimeter
JP2011047949A (en) * 2001-06-28 2011-03-10 Nalco Co Mirror fluorometer
JP2010032317A (en) * 2008-07-28 2010-02-12 Nippon Electric Glass Co Ltd Greenhouse effect gas measuring instrument

Similar Documents

Publication Publication Date Title
Lewis et al. Raman spectrometry with fiber-optic sampling
US5751416A (en) Analytical method using laser-induced breakdown spectroscopy
US4771629A (en) System for chemical analysis
EP0148497B1 (en) Device for guiding and collecting light in photometry or the like
US6661512B2 (en) Sample analysis system with fiber optics and related method
JPH0131130B2 (en)
JPH03202754A (en) Atomic absorption spectrophotometer for simultaneous analysis of many elements and simultaneous analysis method of many elements
JPH06273333A (en) Fluorescence spectrophotometer
CN113804671A (en) High-sensitivity Raman spectrum detection system
Moulin et al. Uranium determination by remote time-resolved laser-induced fluorescence
JPH02293647A (en) Spectral analysis apparatus of radioactive liquid
RU2695091C2 (en) Laser system for measuring heat carrier parameters of nuclear power reactor
CN1243233C (en) Analyser for spark through spectrum medium by laser induced
JPH04223261A (en) Reading device of fluorescent pattern
JP4052398B2 (en) Multiple measurement analyzer
GB2062889A (en) Fluorimetry
RU10462U1 (en) LASER GAS ANALYZER
CN202837171U (en) Spectrophotometer optical system and specialized optical filter poking mechanism thereof
JPS62289747A (en) Concentration analyzing device
JPH0319503B2 (en)
CN216082493U (en) High-sensitivity Raman spectrum detection system
RU2080568C1 (en) Luminescent photometer
CN118067645A (en) Analysis system for post-treatment process plutonium valence state
CN218885741U (en) Dual-wavelength high-precision Raman spectrometer
SU1716403A1 (en) Photometer