JPH02227637A - Fluorophotometer - Google Patents

Fluorophotometer

Info

Publication number
JPH02227637A
JPH02227637A JP4779889A JP4779889A JPH02227637A JP H02227637 A JPH02227637 A JP H02227637A JP 4779889 A JP4779889 A JP 4779889A JP 4779889 A JP4779889 A JP 4779889A JP H02227637 A JPH02227637 A JP H02227637A
Authority
JP
Japan
Prior art keywords
fluorescence
cell
light
optical
optical cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4779889A
Other languages
Japanese (ja)
Other versions
JPH0781951B2 (en
Inventor
Mitsuo Kitaoka
北岡 光夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP1047798A priority Critical patent/JPH0781951B2/en
Publication of JPH02227637A publication Critical patent/JPH02227637A/en
Publication of JPH0781951B2 publication Critical patent/JPH0781951B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To exactly measure fluorescence with high accuracy by providing a concave mirror around an optical cell which is transparent to UV and visible light, passing a sample to be measured in the direction of the central line of the optical cell and passing excitation light along the central line. CONSTITUTION:A cell 3 made of quartz, an elliptical mirror 4 and an optical system 5 are provided in a casing 2. The eluate from the column of high- performance liquid chromatograph is admitted from a stainless steel pipe 11 into the cell 3 and is discharged from a stainless steel pipe 16. The eluate is excited by the incident excitation laser light from an optical fiber 6 to emit the fluorescence 2 while flowing in the cell 3. This fluorescence 25 is reflected by a reflecting surface 26 of the mirror 4 and is condensed to a focus 27. The fluorescence 25 collected at the focus 27 is collimated by a collimator lens 17a and the unnecessary scattered light is removed therefrom by a filter 18. This light is condensed by a focusing lens 17b onto a photoelectron multiplier 19. The current proportional to the condensed fluorescence obtd. by the multiplier 19 is amplified by an amplifier 21. The fluorescent intensity is determined and is recorded in a recorder 22.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、蛍光光度計に関し、特に蛍光分析装置の蛍光
光度計に関する。また本発明は、液体クロマトグラフ分
析装置用のレーザー励起蛍光法による蛍光検出器に関し
、特に高速液体クロマトグラフ分析装置用のレーザー励
起蛍光法による蛍光検出器に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a fluorometer, and more particularly to a fluorometer for a fluorescence analyzer. The present invention also relates to a fluorescence detector using a laser-excited fluorescence method for a liquid chromatograph analyzer, and more particularly to a fluorescence detector using a laser-excited fluorescence method for a high-performance liquid chromatograph analyzer.

(ロ)従来の技術 例えば、高速液体クロマトグラフ分析装置においては、
蛍光検出法が高感度であるところから、蛍光を有する物
質はもとより、蛍光を有しない物質についても発蛍光試
薬を反応させて、蛍光を有する反応生成物として高感度
に測定する、所謂、誘導体化クロマトグラフィが行われ
ている。
(b) Conventional technology For example, in high performance liquid chromatography analyzers,
Because the fluorescence detection method is highly sensitive, it is possible to react not only fluorescent substances but also non-fluorescent substances with a fluorescent reagent and measure them as fluorescent reaction products with high sensitivity, so-called derivatization. Chromatography is being performed.

この場合、光源としてレーザーを使用するレーザー励起
蛍光法による蛍光分析では、一般に、紫外・可視光に対
し透明な光学セルを流れる溶離液の流れの方向に対し直
角にレーザーを当てて、溶離液の流れの方向及びレーザ
ーの方向に対して直角方向に出てくる蛍光を測定してい
る(例えば、分光研究第37巻第5号1988年第32
1頁参照、)、また、光学セルを流れる溶離液の流れの
方向に沿ってレーザーを通して、該溶離液の流れる方向
及びレーザーの方向に直角方向に出てくる蛍光を測定す
る方式も提案されている。
In this case, in fluorescence analysis using a laser-induced fluorescence method that uses a laser as a light source, the laser is generally applied perpendicular to the direction of flow of the eluent through an optical cell that is transparent to ultraviolet and visible light. The fluorescence emitted in the direction perpendicular to the direction of flow and the direction of the laser is measured (for example, Spectroscopy Research, Vol. 37, No. 5, 1988, No. 32).
), a method has also been proposed in which a laser is passed along the flow direction of the eluent flowing through an optical cell and the fluorescence emitted in a direction perpendicular to the flow direction of the eluent and the direction of the laser is measured. There is.

(ハ)発明が解決しようとする問題点 ところで、溶離液の流れの方向に沿ってレーザーを当て
る方式は、溶離液の流れ方向の周囲360度に線状にし
かも均等に出る蛍光が測定に等しく利用できるので、検
出する蛍光量を増大゛でき、より微量な試料についての
測定をすることができ、溶離液の流れの方向に対して直
角にレーザーを当てる方式に比して優れているが、蛍光
の一部をレンズで集め、光学フィルターを通して、光電
子増倍管で測光する光学配置を採っているために、蛍光
の有効利用率が低く、その利点が十分に活用されておら
ず問題とされている。
(c) Problems to be solved by the invention By the way, in the method of applying a laser along the direction of the flow of the eluent, the fluorescence emitted linearly and evenly in 360 degrees around the direction of the flow of the eluent is equivalent to the measurement. This method is superior to the method of applying a laser perpendicular to the direction of flow of the eluent, as it can increase the amount of fluorescence detected and measure smaller amounts of sample. Due to the optical arrangement in which a portion of the fluorescence is collected by a lens, passed through an optical filter, and then measured by a photomultiplier tube, the effective utilization rate of fluorescence is low, and its advantages are not fully utilized, which is a problem. ing.

本発明は、溶離液等の被測定液の流れ方向に励起光を当
てる蛍光光度計の蛍光の有効利用率に係る問題点を解決
することを目的としている。
An object of the present invention is to solve problems related to the effective utilization rate of fluorescence in a fluorometer that applies excitation light in the flow direction of a liquid to be measured such as an eluent.

(ニ)問題点を解決するための手段 本発明は、被測定液の流れ方向に励起光を当てて出てく
る蛍光を高い有効利用率で測光できる蛍光光度計を提供
することを目的としている。
(d) Means for Solving the Problems The present invention aims to provide a fluorometer that can measure the fluorescence emitted by applying excitation light in the flow direction of a liquid to be measured with a high effective utilization rate. .

本発明は、紫外及び可視光に対する透明体で形成され、
一端に透過面を有し、他端が不透明体に接して遮光され
ており、両端面の中心線の方向の異なる位置に被測定試
料の入口及び出口が設けられている円筒状の光学セルと
、該光学セルの両端面の中心線上の透過面側に位置して
設けられている励起用光源と、対称軸を有し、該対称軸
を該中心線と同方向に位置し、その凹部を光源側に位置
して鏡面部が前記光学セルを囲んで設けられている凹面
鏡と、該軸上で前記光学セルに対しその不透明体の後方
に位置して設けられている光検出器を具備することを特
徴とする蛍光光度計にある。
The present invention is made of a transparent body for ultraviolet and visible light,
A cylindrical optical cell that has a transmitting surface at one end, the other end is shielded from light by contacting an opaque body, and an inlet and an outlet for the sample to be measured are provided at different positions in the direction of the center line of both end faces. , has an excitation light source located on the transmission surface side on the center line of both end faces of the optical cell, and has an axis of symmetry, the axis of symmetry is located in the same direction as the center line, and the concave portion is located in the same direction as the center line. A concave mirror located on the light source side and having a mirror surface surrounding the optical cell, and a photodetector located on the axis behind the opaque body with respect to the optical cell. The fluorometer is characterized by:

本発明において、光学セルには、該光学セルの両端面の
中心線の方向に沿って被測定試料が流れるように、被測
定試料の入口及び出口は、該中心線の方向に沿って設け
られている6本発明において、光学セルは、レーザー等
の励起光の入射側端面は、該励起光に対して、透明に形
成されているが、他方の端面は入射した励起光が透過し
ないように、不透明体により被われている。
In the present invention, the optical cell is provided with an inlet and an outlet for the sample to be measured along the direction of the center line so that the sample to be measured flows along the center line of both end faces of the optical cell. 6 In the present invention, the optical cell has an end face on the incident side of the excitation light such as a laser that is transparent to the excitation light, but the other end face is formed so that the incident excitation light does not pass through. , covered by an opaque body.

本発明において、光学セルからは、蛍光と共に溶媒によ
るラマン散乱光も出るので、微量の蛍光を測定する場合
は、光検出器に設けられているフィルターでは、散乱光
の影響を避けるために、光学セルの周囲は、蛍光の出口
を除いて遮光塗料等で遮光される。
In the present invention, the optical cell emits not only fluorescence but also Raman scattered light due to the solvent, so when measuring a trace amount of fluorescence, the filter installed in the photodetector is The area around the cell is shielded from light with light-shielding paint, etc., except for the exit of the fluorescent light.

本発明において、光学セルから出る蛍光が有効に測定に
供せられるように1.光学セルの周囲は凹面鏡により囲
われている6本発明において、凹面鏡は、凹面鏡の囲み
内で光学セルから出る蛍光を反射して光検出器に集光す
るものであり、対称軸に対して対称に形成された球面又
は非球面形状の反射面を有し、例えば、回転楕円面、回
転放物線面、球面などの内側が反射面となっている楕円
面鏡、放物面鏡、球面鏡等がある。
In the present invention, 1. so that the fluorescence emitted from the optical cell can be effectively used for measurement. The optical cell is surrounded by a concave mirror 6 In the present invention, the concave mirror reflects the fluorescence emitted from the optical cell and focuses it on the photodetector within the concave mirror, and the concave mirror is symmetrical about the axis of symmetry. For example, there are ellipsoidal mirrors, parabolic mirrors, spherical mirrors, etc., which have a spherical or aspherical reflecting surface formed in .

これらの凹面鏡の中、楕円面鏡は、一方の焦点から出た
光は総て他方の焦点に集まるから、光学セルの蛍光出口
を楕円面鏡の一方の焦点に位置させ、他方の焦点の外側
に光検出器を設けることによって、光学セルの周囲から
出る蛍光の総てにっいての光検出器による測光が簡単か
つ容易に行うことができるので、本発明において使用す
るに好ましい。
Among these concave mirrors, the ellipsoidal mirror is such that all the light emitted from one focal point is concentrated at the other focal point, so the fluorescence exit of the optical cell is located at one focal point of the ellipsoidal mirror, and outside the other focal point. By providing a photodetector in the optical cell, it is possible to simply and easily perform photometry of all the fluorescence emitted from the periphery of the optical cell, which is preferable for use in the present invention.

本発明において、光源は、従来の蛍光分析と同様に、タ
ングステンランプ、キセノン電弧ランプ、水銀ランプ、
水銀−カドミウムランプ、Zn−Cd−H,ランプ及び
レーザー光等が使用される。
In the present invention, the light source may be a tungsten lamp, a xenon arc lamp, a mercury lamp, or a mercury lamp, as in conventional fluorescence analysis.
Mercury-cadmium lamps, Zn-Cd-H lamps, laser lights, etc. are used.

本発明において、光検出器には、光電子増倍管、フォト
hランジスタ及びその細光センサを使用することができ
る。
In the present invention, a photomultiplier tube, a phototransistor, and its narrow light sensor can be used as the photodetector.

(ホ)作用 本発明は、紫外・可視光に透明な光学セルの周囲に、凹
面鏡を設け、光学セルの中心線の方向に被測定試料を流
すと共に、該中心線に沿って励起光を通すので、被測定
試料によって光学セルの周囲に均等に発せられる蛍光は
、凹面鏡に反射して集光され、光検出器によって容易に
測定することができる。
(E) Function The present invention provides a concave mirror around an optical cell that is transparent to ultraviolet and visible light, allows the sample to be measured to flow in the direction of the center line of the optical cell, and allows excitation light to pass along the center line. Therefore, the fluorescence emitted uniformly around the optical cell by the sample to be measured is reflected by the concave mirror and collected, and can be easily measured by a photodetector.

しかも、本発明において、光学セルの励起光の出口側は
不透明体で遮光されるので、光検出器に励起光の散乱に
よる影響を少なくすることができ、微量の試料について
の蛍光の光度測定が、正確かつ高精度で、しかも容易に
行うことができる。
Moreover, in the present invention, since the exit side of the excitation light of the optical cell is shielded from light by an opaque material, the influence of scattering of the excitation light on the photodetector can be reduced, and the photometric measurement of fluorescence for a minute amount of sample is possible. , can be performed accurately, with high precision, and easily.

(へ)実施例 以下、添付図面を参照して、本発明の実施の態様の例に
ついて説明するが、本発明は、以下の説明及び例示によ
って、何等制限を受けるものではない。
(F) EXAMPLES Hereinafter, examples of embodiments of the present invention will be described with reference to the accompanying drawings, but the present invention is not limited in any way by the following explanations and exemplifications.

第1図は、本発明の一実施例についての概略の説明図で
あり、一部破断して示されている。
FIG. 1 is a schematic explanatory diagram of an embodiment of the present invention, shown partially broken away.

第1図において、蛍光光度計1は、ケーシング2に、石
英製のセル3、楕円面鏡4及び光学系5を備えている0
本例においては、励起光用の光源として、レーザー光が
使用されており、レーザー光はレーザー光源く図示され
ていない、)から光ファイバー6により導かれる。光フ
ァイバー6は、楕円面鏡4の凹部側7に取り付けられて
いるファイバージヨイント8にファイバー取り付は部材
9によって、例えば螺合等により、液密又は気密に固定
されている。ファイバージヨイント8には、光ファイバ
ー取り付は位置と対向する位置にセル取り付は部材10
によって、例えば螺合等により、液密又は気密に取り付
は固定されている。
In FIG. 1, a fluorometer 1 includes a casing 2, a quartz cell 3, an ellipsoidal mirror 4, and an optical system 5.
In this example, a laser beam is used as a light source for excitation light, and the laser beam is guided through an optical fiber 6 from a laser source (not shown). The optical fiber 6 is fixed in a liquid-tight or air-tight manner to a fiber joint 8 attached to the concave side 7 of the ellipsoidal mirror 4 by means of a member 9, for example, by screwing. The fiber joint 8 has a member 10 at which the cell is attached at a position opposite to the position at which the optical fiber is attached.
The mounting is fixed in a liquid-tight or air-tight manner, for example, by screwing.

ファイバージヨイント8に液密又は気密に取り付けられ
たセル3には、光ファイバー6の先端が接して、セル3
と光ファイバー6は同軸に接続される。したがって、光
ファイバー6からのレーザー光は無理なくセル3内に入
射でき、励起光としてセル3内の試料に作用する。
The tip of the optical fiber 6 is in contact with the cell 3 that is attached to the fiber joint 8 in a liquid-tight or air-tight manner, and the cell 3
and optical fiber 6 are coaxially connected. Therefore, the laser beam from the optical fiber 6 can easily enter the cell 3 and act on the sample within the cell 3 as excitation light.

ファイバージヨイント8には、高速液体クロマトグラフ
のカラム(図示されていない、)に接続するステンレス
管11がステンレス管取り付は部材12により取り付は
固定されている。このステンレス管取り付は部材12は
セル3の先端部13を囲む接続部材14に接続しており
、この接続部材14は光ファイバー6、ステンレス管1
1及びセル3を液密に接続している。
A stainless steel tube 11 connected to a column (not shown) of a high performance liquid chromatograph is fixedly attached to the fiber joint 8 by a stainless steel tube attachment member 12. In this stainless steel pipe attachment, the member 12 is connected to a connecting member 14 surrounding the tip 13 of the cell 3, and this connecting member 14 connects the optical fiber 6 to the stainless steel pipe 1.
1 and cell 3 are connected in a liquid-tight manner.

セル3の他端は、ステンレス管接続部材15によりステ
ンレス管16に接続している。
The other end of the cell 3 is connected to a stainless steel pipe 16 by a stainless steel pipe connecting member 15.

ステンレス管接続部材15の後方には、説明の便宜上、
コリメーターレンズt7m及び収束レンズ17b並びに
バンドパスフィルター又はシャープカットフィルター等
のフィルター18で構成される光学系5が設けられてお
り、その後方に、光電子増倍管19が設けられている。
For convenience of explanation, behind the stainless steel pipe connecting member 15,
An optical system 5 composed of a collimator lens t7m, a converging lens 17b, and a filter 18 such as a band pass filter or a sharp cut filter is provided, and a photomultiplier tube 19 is provided behind the optical system 5.

光電子増倍管19の出力部20は、増幅器21に接続し
ており、増幅器21は記録計22に接続している。また
、光電子増倍管19の入力部23は高圧電源24に接続
している。
The output section 20 of the photomultiplier tube 19 is connected to an amplifier 21, and the amplifier 21 is connected to a recorder 22. Further, the input section 23 of the photomultiplier tube 19 is connected to a high voltage power source 24.

本例は以上のように構成されているので、高速液体クロ
マトグラフのカラムからの溶離液を該カラムに接続する
ステンレス管11からセル3に流入させ、ステンレス管
16から排出させる。溶離液は、セル3を流れる間に、
光ファイバー6から入射される励起用レーザー光によっ
て励起され蛍光25を発する。この発せられた蛍光25
は楕円面鏡4の反射面26で反射して、焦点2フに集光
される。
Since the present example is constructed as described above, the eluent from the column of the high performance liquid chromatograph is caused to flow into the cell 3 through the stainless steel tube 11 connected to the column, and is discharged from the stainless steel tube 16. While the eluent flows through cell 3,
It is excited by the excitation laser light incident from the optical fiber 6 and emits fluorescence 25. This emitted fluorescence 25
is reflected by the reflecting surface 26 of the ellipsoidal mirror 4 and condensed at the focal point 2.

焦点27に集められた蛍光25は、最初のコリメーター
レンズ1フaで並行化され、フィルター18で不要の散
乱光が除去され、次の収束レンズ17bで光電子増倍管
19上に集光される。光電子増倍管19では、集光され
た蛍光に比例した電流が得られる1次いでこの電流は増
幅器21により増幅され、蛍光強度が求められ、記録計
22に記録される。
The fluorescence 25 collected at the focal point 27 is collimated by the first collimator lens 1a, unnecessary scattered light is removed by the filter 18, and is focused onto the photomultiplier tube 19 by the next converging lens 17b. Ru. In the photomultiplier tube 19, a current proportional to the focused fluorescence is obtained. This current is then amplified by an amplifier 21, and the fluorescence intensity is determined and recorded on a recorder 22.

本例においては、セル3の中心軸に対して周囲360度
の角度領域に発せられる蛍光は総て、楕円面鏡4により
、焦点27に集められて光電子増倍管19により測定さ
れるので、測定される蛍光量を増大させることができる
In this example, all the fluorescence emitted in an angular region of 360 degrees around the central axis of the cell 3 is focused by the ellipsoidal mirror 4 at the focal point 27 and measured by the photomultiplier tube 19. The amount of fluorescence measured can be increased.

本例においては、セル3にはマスクが設けられていない
が、セル3から線状に出る蛍光25が凹部側7の焦点2
8の付近のものは、他方の焦点2フ付近に集光されるが
、凹部側7の焦点28から外れる距離が大きくなると、
他方の焦点27付近に集光されなくなって、迷光となる
可能性があるので、セル3の四部側焦点28からの外れ
る距離が大きい箇所には、マスクを形成しておくのが好
ましい、また、このマスクの形成は、余り長い線状の蛍
光の測定により、高速液体クロマトグラフの分解能の低
下を防止するので好ましい。
In this example, the cell 3 is not provided with a mask, but the fluorescent light 25 linearly emitted from the cell 3 is reflected at the focal point 2 on the concave side 7.
8 is focused near the other focal point 2, but as the distance away from the focal point 28 on the concave side 7 increases,
Since there is a possibility that the light will not be focused near the other focal point 27 and become stray light, it is preferable to form a mask in the area where the distance from the four-side focal point 28 of the cell 3 is large. Formation of this mask is preferable because it prevents the resolution of the high performance liquid chromatograph from deteriorating due to the measurement of excessively long linear fluorescence.

本例においては、レーザー光源からのレーザー光を光フ
ァイバーにより導いて励起光と゛して使用するが、励起
光を導くのに、レンズや反射鏡を備える光学系を使用す
ることもできる。また励起光の光源としてはレーザーで
な(Xeランプなどの非コヒーレント光とすることもで
きる。また、本例においては、セルとして石英製のセル
を使用したが、パイレックスガラス等の光学ガラスなど
、励起光及び蛍光に対して透明で、かつ、非測定液に対
して耐食性の材料が使用できる。
In this example, laser light from a laser light source is guided through an optical fiber and used as excitation light, but an optical system including a lens or a reflecting mirror may also be used to guide the excitation light. In addition, the light source of the excitation light is not a laser (incoherent light such as a Xe lamp can also be used.Also, in this example, a cell made of quartz is used as a cell, but optical glass such as Pyrex glass etc. A material that is transparent to excitation light and fluorescence and corrosion resistant to non-measured liquids can be used.

(ト)発明の効果 本発明は、紫外・可視光に透明な光学セルの周囲に、凹
面鏡を設け、光学セルの中心線の方向に被測定試料を流
すと共に、該中心線に沿って励起光を通すので、従来の
蛍光光度計に比して、蛍光を有効に利用できることとな
り、測定できる蛍光量を飛躍的に増大させることができ
る。
(g) Effects of the invention The present invention provides a concave mirror around an optical cell that is transparent to ultraviolet and visible light, allows the sample to be measured to flow in the direction of the center line of the optical cell, and emits excitation light along the center line. Because it passes through the fluorescent light, fluorescence can be used more effectively than with conventional fluorometers, and the amount of fluorescence that can be measured can be dramatically increased.

したがって、本発明によると、従来の蛍光光度計におい
て、蛍光の測定が困難であった微量の試料についても、
正確かつ高精度の蛍光の測定が可能となり、蛍光分析の
分析精度及び分析可能範囲の拡大を図ることができる。
Therefore, according to the present invention, it is possible to measure even trace amounts of samples for which it is difficult to measure fluorescence using conventional fluorometers.
Accurate and highly accurate fluorescence measurement becomes possible, and the analysis accuracy and analytical range of fluorescence analysis can be expanded.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例についての概略の説明図で
あり、一部破断して示されている。 図中の符号は、1は蛍光光度計、2はケーシング、3は
石英製セル、4は楕円面鏡、5は光学系、6は光ファイ
バー、7は凹部側、8はファイバージヨイント、9はフ
ァイバー取り付は部材、10はセル取り付は部材、11
はステンレス管、12はステンレス管取り付は部材、1
3はセルの先端部、14は接続部材、15はステンレス
管接続部材、1Bはステンレス管、1フaはコリメータ
ーレンズ、17bは収束レンズ、18はフィルター、1
9は光電子増倍管、20は光電子増倍管の出力部、21
は増幅器、22は記録計、23は光電子増倍管の入力部
、24は高圧電源、25は蛍光、2Bは楕円面鏡の反射
面、27及び28は焦点である。
FIG. 1 is a schematic explanatory diagram of an embodiment of the present invention, shown partially broken away. The symbols in the figure are 1: fluorometer, 2: casing, 3: quartz cell, 4: ellipsoidal mirror, 5: optical system, 6: optical fiber, 7: concave side, 8: fiber joint, 9: Fiber attachment is a member, 10 is a cell attachment is a member, 11
1 is a stainless steel pipe, 12 is a stainless steel pipe installation member, 1
3 is the tip of the cell, 14 is a connecting member, 15 is a stainless steel tube connecting member, 1B is a stainless steel tube, 1a is a collimator lens, 17b is a converging lens, 18 is a filter, 1
9 is a photomultiplier tube, 20 is an output part of the photomultiplier tube, 21
22 is an amplifier, 22 is a recorder, 23 is an input part of a photomultiplier tube, 24 is a high voltage power supply, 25 is fluorescence, 2B is a reflecting surface of an ellipsoidal mirror, and 27 and 28 are focal points.

Claims (1)

【特許請求の範囲】[Claims] 紫外及び可視光に対する透明体で形成され、一端に透過
面を有し、他端が不透明体に接して遮光されており、両
端面の中心線の方向の異なる位置に被測定試料の入口及
び出口が設けられている円筒状の光学セルと、該光学セ
ルの両端面の中心線上の透過面側に位置して設けられて
いる励起用光源と、対称軸を有し、該対称軸を該中心線
と同方向に位置し、その凹部を光源側に位置して鏡面部
が前記光学セルを囲んで設けられている凹面鏡と、該軸
上で前記光学セルに対しその不透明体の後方に位置して
設けられている光検出器を具備することを特徴とする蛍
光光度計。
It is made of a material that is transparent to ultraviolet and visible light, has a transmitting surface at one end, and is shielded from light by contacting an opaque material at the other end, and has an inlet and an outlet for the sample to be measured at different positions in the direction of the center line of both end surfaces. A cylindrical optical cell is provided with a cylindrical optical cell, and an excitation light source is located on the transmission surface side on the center line of both end faces of the optical cell, and has an axis of symmetry, with the axis of symmetry being centered at the center. a concave mirror located in the same direction as the line, with its concave portion facing the light source side and having a mirror surface surrounding the optical cell; and a concave mirror located on the axis behind the opaque body with respect to the optical cell. A fluorometer characterized by comprising a photodetector provided with a photodetector.
JP1047798A 1989-02-28 1989-02-28 Fluorometer Expired - Fee Related JPH0781951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1047798A JPH0781951B2 (en) 1989-02-28 1989-02-28 Fluorometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1047798A JPH0781951B2 (en) 1989-02-28 1989-02-28 Fluorometer

Publications (2)

Publication Number Publication Date
JPH02227637A true JPH02227637A (en) 1990-09-10
JPH0781951B2 JPH0781951B2 (en) 1995-09-06

Family

ID=12785390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1047798A Expired - Fee Related JPH0781951B2 (en) 1989-02-28 1989-02-28 Fluorometer

Country Status (1)

Country Link
JP (1) JPH0781951B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100483706B1 (en) * 2002-04-04 2005-04-18 바디텍메드 주식회사 A Apparatus for the Detection of Laser-induced Epifluoresecne
JP2008180567A (en) * 2007-01-24 2008-08-07 Shimadzu Corp Fluorometric spectrophotometer
US7633620B2 (en) 2002-01-23 2009-12-15 Boditechmed Inc. Laser-induced fluorescence detection device and method
US20100294951A1 (en) * 2009-05-22 2010-11-25 Jeremy Parra Sensitive gas-phase flourimeter at ambient pressure for nitrogen dioxide

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5081396A (en) * 1973-11-13 1975-07-02

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5081396A (en) * 1973-11-13 1975-07-02

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7633620B2 (en) 2002-01-23 2009-12-15 Boditechmed Inc. Laser-induced fluorescence detection device and method
US7815853B2 (en) 2002-01-23 2010-10-19 Boditechmed Inc. Lateral flow quantitative assay method and strip and laser-induced fluorescence detection device therefor
KR100483706B1 (en) * 2002-04-04 2005-04-18 바디텍메드 주식회사 A Apparatus for the Detection of Laser-induced Epifluoresecne
JP2008180567A (en) * 2007-01-24 2008-08-07 Shimadzu Corp Fluorometric spectrophotometer
US20100294951A1 (en) * 2009-05-22 2010-11-25 Jeremy Parra Sensitive gas-phase flourimeter at ambient pressure for nitrogen dioxide

Also Published As

Publication number Publication date
JPH0781951B2 (en) 1995-09-06

Similar Documents

Publication Publication Date Title
EP0717839B1 (en) A high efficiency fluorescence flow cell
Wu et al. High-sensitivity fluorescence detector for fluorescein isothiocyanate derivatives of amino acids separated by capillary zone electrophoresis
US5636017A (en) Optical detection arrangement for small volume chemical analysis of fluid samples
US5127729A (en) Method and apparatus for guiding and collecting light in photometry or the like
US4867559A (en) Liquid/liquid fiber-optic fluorescence detector and absorbance analyzer
US3573470A (en) Plural output optimetric sample cell and analysis system
US5194915A (en) Photometric apparatus and process
JP4791625B2 (en) Spectrophotometric / turbidimetric detection unit
US5235409A (en) Optical detection system for capillary separation columns
US4192614A (en) L/C detector cell assembly
JPH05240774A (en) Optical cell and optical detecting device and sample separating/detecting device using them
JP3432222B2 (en) Capillary flow cell for multiple wavelength detection
US4781456A (en) Absorption photometer
JP2006300961A (en) Fluorescence detector structure
JP3186375B2 (en) Capillary detector cell and method for optimizing its performance
US7158227B2 (en) Laser-induced fluorescence analysis device and separation apparatus comprising same
EP3748339B1 (en) Device for gas analysis using raman spectroscopy
US4124302A (en) Device for photometering a substance placed in a cylinder-shaped cell
US5895920A (en) Device for detecting light fluorescence
US5700428A (en) Fluorescence detector, and a device for supporting a replacable sample cuvette in a fluorescence detector
JPH02227637A (en) Fluorophotometer
JP4737896B2 (en) Sample concentration measuring device
JP2020521129A (en) Integrated fluorescence/absorption detector for on-column detection after using a capillary separation technique
JP2001091455A (en) Biochemical analyzer
SU1179111A1 (en) Flow dish for analysing microquantities of fluorescent liquids

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070906

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees