JPS60263725A - Magnetic bearing device - Google Patents

Magnetic bearing device

Info

Publication number
JPS60263725A
JPS60263725A JP59119021A JP11902184A JPS60263725A JP S60263725 A JPS60263725 A JP S60263725A JP 59119021 A JP59119021 A JP 59119021A JP 11902184 A JP11902184 A JP 11902184A JP S60263725 A JPS60263725 A JP S60263725A
Authority
JP
Japan
Prior art keywords
magnetic
float body
floating body
electromagnet
bearing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59119021A
Other languages
Japanese (ja)
Inventor
Kenichi Takahara
憲一 高原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59119021A priority Critical patent/JPS60263725A/en
Publication of JPS60263725A publication Critical patent/JPS60263725A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To uniformize magnetic flux density of a gap and to prevent the occurrence of contact with a float body and an increase in the current of an electromagnet, by a method wherein the magneti a magnetic attraction force in the float body are inclined depending upon inclination of the float body. CONSTITUTION:A magnetic bearing device 9 is formed such that magnetic poles 11a, 11b, 12a, and 12b, which are an element, being an electromagnet or combination of the electromagnet and a permanent magnet and generating a magnetic attraction force in a float body, are located outside a float body 10. The bearing device is constituted such that when the float body 10 is rotated around a center 13, the magnetic poles 11a, 11b, 12a, and 12b are respectively inclined by an amount alpha responding to the rotary angle. When the float body 10 is inclined, a magnetic pole 11 is brought into an inclination state, and this uniformizes magnetic flux density between the float body 10 and the magnetic pole 11 when the float body 10 is inclined, resulting in stable motion.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、浮揚体を電磁石あるいは電磁石と永久磁石の
組み合せによる磁気力で完全非接触に支承し、浮揚体を
傾けることが可能な磁気軸受装置に関する。
[Detailed description of the invention] [Technical field to which the invention pertains] The present invention provides a magnetic bearing that supports a floating object in a completely non-contact manner by magnetic force generated by an electromagnet or a combination of an electromagnet and a permanent magnet, and allows the floating object to be tilted. Regarding equipment.

〔従来技術とその問題点〕[Prior art and its problems]

浮揚体を磁気力によって非接触に支承し、回転あるいは
移動させることが可能な磁気軸受装置は高速回転体支持
装置や高精度位置決め装置に広く応用されている。従来
のこのような装置は、浮揚体に磁気力を与える要素とし
て電磁石あるいは゛電磁石と永久磁石の組合せを用いて
おり、この要素の浮揚体に対向する而すなわち磁極は、
浮揚体と平行に設置されていた。
BACKGROUND ART Magnetic bearing devices that can support, rotate, or move a floating object in a non-contact manner using magnetic force are widely applied to high-speed rotating object support devices and high-precision positioning devices. Conventional devices of this kind use an electromagnet or a combination of an electromagnet and a permanent magnet as the element that applies magnetic force to the floating object, and the magnetic pole of this element, which faces the floating object, is
It was installed parallel to the floating body.

第°1図は従来例の1つで、磁気軸受装置の断面図を示
す。゛電磁石あるいは電磁石と永久磁石の組合せで構成
された磁気力を与える要素(2a) (zb)(aa)
 (ab)は、浮揚体(1)の外側に設置され、浮揚体
の横方向に吸引力を働かせて浮揚体を安定位置に浮上さ
せろうこの場合、浮揚体(1)と磁気力を与える要素(
2b)間のギャップ(5)は一定となり、磁束密□度が
均一で浮揚体が安定位置に存在する時、電磁石の電流は
小さくなる。ところが、浮揚体(11の中中心(4)の
回りに浮揚体を回転させた場合、浮揚体(1)と前記要
素(2)の位置間□係は第2図のようになり、磁束密度
の分布は、ギャップの小さい所で密となり、吸引力は磁
束密度の2乗に比例するため、浮揚体(1)は要素(2
)に接触するかあるいは反対側の要素の電磁石の電流が
膨大なものとなる。
FIG. 1 is one of the conventional examples, and shows a sectional view of a magnetic bearing device.゛Element that provides magnetic force composed of an electromagnet or a combination of an electromagnet and a permanent magnet (2a) (zb) (aa)
(ab) is installed outside the floating body (1) and exerts an attractive force in the lateral direction of the floating body to levitate the floating body to a stable position.In this case, the floating body (1) and an element that applies magnetic force (
The gap (5) between 2b) becomes constant, and when the magnetic flux density is uniform and the floating body is in a stable position, the current of the electromagnet becomes small. However, when the floating body is rotated around the center (4) of the floating body (11), the relationship between the positions of the floating body (1) and the element (2) becomes as shown in Figure 2, and the magnetic flux density The distribution of is dense where the gap is small, and the attractive force is proportional to the square of the magnetic flux density, so the floating body (1) is
), or the electromagnetic current of the element on the opposite side becomes enormous.

〔発明の目的〕[Purpose of the invention]

本発明は、上述した不具合を解消するために考えられた
もので、浮揚体を傾けたときに生ずるギャップの磁束密
度を均一化し、浮揚体の接触あるいは、電磁石の゛電流
の増大を回避できる磁気軸受装置の磁極を提供すること
を目的とする、〔発明の概要〕 本発明は、磁気軸受装置のうちで特に浮揚体を傾けるこ
とが可能な装置に関し、浮揚体に磁気吸引力を与える4
磁石あるいは永久磁石の磁極を前記浮揚体の傾斜に対応
して傾斜させる構成としたことを特徴としている。
The present invention was devised in order to solve the above-mentioned problems, and it is possible to equalize the magnetic flux density in the gap that occurs when a floating object is tilted, and to avoid contact between the floating objects and an increase in the current of the electromagnet. [Summary of the Invention] The present invention relates to a magnetic bearing device that is capable of tilting a floating object, and particularly relates to a device capable of tilting a floating object.
It is characterized in that the magnetic poles of the magnets or permanent magnets are tilted in accordance with the tilt of the floating body.

〔発明の効果〕〔Effect of the invention〕

本発明のように浮揚体に吸引力を与える要素の磁極を傾
斜させることによって、浮揚体が傾いた場合に生ずる磁
束密度の不均一に起因した吸引力の不必要な増大を避け
、この吸引力に対して生ずる電磁石のKAの増大を小さ
く抑えることができ、以て浮揚体の安定動作を確保でき
る。
By tilting the magnetic poles of the elements that apply an attractive force to the floating body as in the present invention, unnecessary increases in the attractive force due to uneven magnetic flux density that occurs when the floating body is tilted can be avoided, and this attractive force can be avoided. The increase in KA of the electromagnets that occurs with respect to the above can be suppressed to a small value, thereby ensuring stable operation of the floating body.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第8図は、本発明に係る磁気軸受装置の磁極とその配置
を示す。第3図の磁気1tl+受装置(9)は、浮揚体
uO1の外側に電磁石あるいは′電磁石と永久磁石を組
み合せた、前記浮揚体に磁気吸引力を与える要素である
磁極(Ila) (Ilb) (12a) (12b)
が配置されている。浮揚体(1Gを中心u3の回りに回
転させた場合その回転角に対応する量(に)だけそれぞ
れの磁極(lla) (llb) (12g) (12
b)を傾斜させる構成となっている。
FIG. 8 shows the magnetic poles of the magnetic bearing device according to the present invention and their arrangement. The magnetic 1tl+ receiving device (9) in Fig. 3 is a magnetic pole (Ila) (Ilb) which is an element that applies a magnetic attraction force to the floating body, which is an electromagnet or a combination of an electromagnet and a permanent magnet on the outside of the floating body uO1. 12a) (12b)
is located. When a floating body (1G) is rotated around the center U3, each magnetic pole (lla) (llb) (12g) (12
b) is configured to be inclined.

第4図は、浮揚体OIが傾いた場合の浮揚体aIと磁極
aυの位置関係を示している。磁極αυを傾斜させてお
くことにより、浮揚体α0)が傾いた時の浮揚体fil
と磁極(11)間の磁束密度は均一となり、安定な動作
を行える。通常、磁気軸受装置は、浮揚体の位置を検出
して、電磁石の電流を制御しているため、第2図のよう
に磁束密度の不均一によって不必要な力が生ずると磁極
(2)の反対側に位置する磁極の′@流は膨大なものと
なる。
FIG. 4 shows the positional relationship between the floating body aI and the magnetic pole aυ when the floating body OI is tilted. By tilting the magnetic pole αυ, when the floating body α0) is tilted, the floating body fil
The magnetic flux density between the magnetic pole (11) and the magnetic pole (11) becomes uniform, allowing stable operation. Normally, a magnetic bearing device detects the position of the floating object and controls the current of the electromagnet, so if unnecessary force is generated due to uneven magnetic flux density as shown in Figure 2, the magnetic pole (2) The '@ flow of the magnetic pole located on the opposite side becomes enormous.

第4図のように磁極(11)を単に傾斜させるだけで、
上述した電流の増大は回避でき、浮揚体が傾いた場合の
安定性を向上することが可能となる。
By simply tilting the magnetic pole (11) as shown in Figure 4,
The above-mentioned increase in current can be avoided, and stability when the floating body is tilted can be improved.

〔発明の他の実施例〕[Other embodiments of the invention]

以下、本発明の他の実施例を説明する、第5図は、本発
明に係る磁気軸受装置の磁極の他の実施例を示す。
Hereinafter, another embodiment of the present invention will be described. FIG. 5 shows another embodiment of the magnetic pole of the magnetic bearing device according to the present invention.

第5図の磁気軸受装置四は、浮揚体Cυの外側に磁極(
22a) (221))を配置している。浮揚体eυを
中心eSの回りに回転させた場合を考慮して磁極形状を
工夫している。
The magnetic bearing device 4 in Fig. 5 has a magnetic pole (
22a) (221)) are arranged. The magnetic pole shape has been devised in consideration of the case where the floating body eυ is rotated around the center eS.

第6図に磁極形状の詳細図を示す。磁極(22b)の浮
揚体(2Dに対向する面の両側にテーパをつけることに
より、浮揚体(2)が傾いた場合の磁束密度を均一化で
き、浮揚体の傾斜によって生ずる制御性の不安定を回避
できることになる。
FIG. 6 shows a detailed diagram of the magnetic pole shape. By tapering both sides of the surface of the magnetic pole (22b) facing the floating body (2D), the magnetic flux density can be made uniform when the floating body (2) is tilted, and the instability of controllability caused by tilting the floating body can be made uniform. can be avoided.

本発明は、以上の実施例に限定されることはなく、磁気
軸受装置において、浮揚体を傾けた場合の磁極すべてに
適用でき、その効果を発揮できるものである、
The present invention is not limited to the above embodiments, but can be applied to all magnetic poles in a magnetic bearing device when a floating body is tilted, and can exhibit its effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の磁気軸受装置の断面図、第2図は、従
来の磁極の断面図、第3図は、本発明に係る磁気軸受装
置の磁極の配置を示す断面図、第4図は、第3図の磁極
部分の詳細図、第5図は、本発明の他の実施例の断面図
、$6図は、第5図の磁極部分の詳細図である。 (1)・・・浮揚体、 i2J (2a) (2b) (8a) (8b) −
磁極、i、ll・・・浮揚体、 (11> (1ia) (llb) (i2a) (i
2b) ・=磁極。 代理人 弁理士 則 適意 佑 (ほか1名)第 1 
図 第2図 第 4 図
FIG. 1 is a cross-sectional view of a conventional magnetic bearing device, FIG. 2 is a cross-sectional view of a conventional magnetic pole, FIG. 3 is a cross-sectional view showing the arrangement of magnetic poles of a magnetic bearing device according to the present invention, and FIG. 3 is a detailed view of the magnetic pole portion of FIG. 3, FIG. 5 is a sectional view of another embodiment of the present invention, and FIG. 6 is a detailed view of the magnetic pole portion of FIG. 5. (1)...Floating body, i2J (2a) (2b) (8a) (8b) -
Magnetic poles, i, ll...floating body, (11> (1ia) (llb) (i2a) (i
2b) ・=Magnetic pole. Agent Patent Attorney Rule Yu Yu (and 1 other person) 1st
Figure 2 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 浮揚体を磁気力で非接触に支承し、浮揚体を傾けること
が可能な磁気軸受装置の前記浮揚体に磁気吸引力を与え
る電磁石あるいは永久磁石の磁極において、前記浮揚体
の傾きに対応して前記浮揚体の対向面を傾斜させる構成
としたことを特徴とする磁気軸受装置。
In a magnetic bearing device that supports a floating body by magnetic force in a non-contact manner and is capable of tilting the floating body, a magnetic pole of an electromagnet or a permanent magnet that provides a magnetic attraction force to the floating body, in accordance with the inclination of the floating body. A magnetic bearing device characterized in that the opposing surface of the floating body is inclined.
JP59119021A 1984-06-12 1984-06-12 Magnetic bearing device Pending JPS60263725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59119021A JPS60263725A (en) 1984-06-12 1984-06-12 Magnetic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59119021A JPS60263725A (en) 1984-06-12 1984-06-12 Magnetic bearing device

Publications (1)

Publication Number Publication Date
JPS60263725A true JPS60263725A (en) 1985-12-27

Family

ID=14751018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59119021A Pending JPS60263725A (en) 1984-06-12 1984-06-12 Magnetic bearing device

Country Status (1)

Country Link
JP (1) JPS60263725A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019500272A (en) * 2015-12-31 2019-01-10 ゴーアテック テクノロジー カンパニー リミテッド Unmanned aircraft take-off and landing control system and control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019500272A (en) * 2015-12-31 2019-01-10 ゴーアテック テクノロジー カンパニー リミテッド Unmanned aircraft take-off and landing control system and control method

Similar Documents

Publication Publication Date Title
US6657344B2 (en) Passive magnetic bearing for a horizontal shaft
US5894181A (en) Passive magnetic bearing system
US3233950A (en) Permanent magnetic bearing
US6483222B2 (en) Frictionless transport apparatus and method
EP0559839B1 (en) High temperature superconducting magnetic bearings
US20200165010A1 (en) Single-gimbal magnetically suspended control moment gyroscope
US6003230A (en) Magnetic positioner having a single moving part
EP0136865B1 (en) Electromagnetic bearing
JP2018009964A (en) Spin and tilt control of multi-degree of freedom electromagnetic machine
US4268095A (en) Magnetic bearing
JPH0549191A (en) Power storage system
JPS60263725A (en) Magnetic bearing device
JPS62165019A (en) Magnetic levitation slide
JPH05302452A (en) Earthquake free construction for building
JP2717819B2 (en) Magnetic bearing device
JPH0340566B2 (en)
JPH01168038A (en) Magnetic levitation type guiding device
JPH0533827A (en) Vibration isolation device
JPS60211120A (en) Magnetic bearing
JPH01234618A (en) Superconducting magnetic bearing
Murakami All-passive-type rotary magnetic bearing system based on stability principle of sleeping tops
JPS6188707A (en) Magnetic attraction levitating conveyor
KR20220099611A (en) Substrate transfer device
JP2764546B2 (en) Superconducting bearing device
JPH04155903A (en) Magnetic circuit for magnetic levitation using permanent magnet