JPH04155903A - Magnetic circuit for magnetic levitation using permanent magnet - Google Patents

Magnetic circuit for magnetic levitation using permanent magnet

Info

Publication number
JPH04155903A
JPH04155903A JP28130390A JP28130390A JPH04155903A JP H04155903 A JPH04155903 A JP H04155903A JP 28130390 A JP28130390 A JP 28130390A JP 28130390 A JP28130390 A JP 28130390A JP H04155903 A JPH04155903 A JP H04155903A
Authority
JP
Japan
Prior art keywords
magnet
permanent magnet
magnetic
poles
pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28130390A
Other languages
Japanese (ja)
Inventor
Takeshi Ohashi
健 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP28130390A priority Critical patent/JPH04155903A/en
Publication of JPH04155903A publication Critical patent/JPH04155903A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase an attraction force of a permanent magnet by multipolarizing the magnet and by making the magnetized areas of the N pole and S pole on the surface of the magnet nearly the same. CONSTITUTION:A permanent magnet attached firmly to a movable body is multipolarized to lower the average demagnetizing field while making a working point high. By multipolarization of the magnet, the demagnetizing field of each magnetic pole is reduced. However, if the number of poles is increased more than necessary, a magnetic transition region between the poles expands, causing a decline of an attraction force of the magnet since the magnetic transition region between the poles does not exert attraction. The required number of poles is not less than two but not more than 20. Preferablly, not less than three but not more than 10. In order to obtain the maximum attraction force of the magnet, it is important that the magnetized areas of the N pole and S pole on the surface of the permanent magnet are nearly the same.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、移動体を磁気浮上させて搬送する装置、例え
ばリニアモータ或いは移動壁装置等に応用して好適な磁
気浮上用磁気回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic circuit for magnetic levitation suitable for application to a device for transporting a moving object by magnetic levitation, such as a linear motor or a moving wall device.

[従来技術と問題点] 移動体を磁気浮上させて搬送或いは移動させる装置は公
知である。しかし、この種の従来の装置に使用される磁
石は電磁石であり、永久磁石の使用は極めて稀である。
[Prior Art and Problems] Devices for conveying or moving moving objects by magnetically levitating them are well known. However, the magnets used in this type of conventional device are electromagnets, and the use of permanent magnets is extremely rare.

その理由は、永久磁石(バリウム(Ba)フェライト等
のフェライト磁石)の磁気特性が低いため、永久磁石は
自重を吸引するのが精−杯であり、永久磁石とこの永久
磁石に固定した移動体等を吸引することは殆ど不可能で
あったためである。
The reason for this is that the magnetic properties of permanent magnets (ferrite magnets such as barium (Ba) ferrite) are low, so permanent magnets are only able to attract their own weight. This is because it was almost impossible to aspirate.

しかし、電磁石はヨーク及びコイルから成るため大型で
且つ重量があり、電力を消費するという問題の他に停電
等に備えて所謂無停電電源を必要とする等の問題がある
。更に叉、電磁石に電流を流すために導線を移動体に接
続しなければならないという問題もあった。
However, since the electromagnet consists of a yoke and a coil, it is large and heavy, and there are problems in that it consumes electric power and requires a so-called uninterruptible power supply in case of a power outage. Furthermore, there is also the problem that a conductor must be connected to the moving body in order to send current to the electromagnet.

近年、超伝導磁石が使用されるようになってきたが、超
伝導磁石の使用は、装置の製造費及び保守の面から、大
規模な装置に限定されるのが実状である。
In recent years, superconducting magnets have come into use, but the reality is that the use of superconducting magnets is limited to large-scale devices due to the manufacturing cost and maintenance of the devices.

一方、希土類永久磁石の開発に伴い、Baフェライト磁
石に比較して約10倍以上の高磁気特性を有するものが
得られるようになった。このため、希土類永久磁石を使
用した磁気浮上用磁気回路か考えられるようになった。
On the other hand, with the development of rare earth permanent magnets, it has become possible to obtain magnets with magnetic properties approximately 10 times higher than those of Ba ferrite magnets. For this reason, magnetic circuits for magnetic levitation using rare earth permanent magnets have been considered.

しかしながら、従来の希土類永久磁石の着磁は、磁石全
体を1極着磁としているので、磁石の周辺部は反磁場が
低く動作点が高いので取り出せる磁束が多いが、磁石の
中心部は反磁場が高いために取り出せる磁束が少ないと
いう問題があった。
However, in the magnetization of conventional rare earth permanent magnets, the entire magnet is single-pole magnetized, so the periphery of the magnet has a low demagnetizing field and the operating point is high, so a large amount of magnetic flux can be extracted, but the center of the magnet has a low demagnetizing field. There was a problem in that because the magnetic flux was high, the amount of magnetic flux that could be extracted was small.

[発明の目的コ 本発明の目的は、希土類永久磁石を多極着磁し、磁石の
平均反磁場を下げて動作点を高くして磁石の吸引力を大
きくすることである。
[Purpose of the Invention] The purpose of the present invention is to magnetize a rare earth permanent magnet with multiple poles, lower the average demagnetizing field of the magnet, raise the operating point, and increase the attractive force of the magnet.

本発明の他の目的は、多極着磁した永久磁石を磁気浮上
装置に応用した際、移動体に適切な制動力を付与し移動
体が必要以上に加速しないようにするため、移動体の進
行方向(即ち移動体に固着した永久磁石の進行方向)に
多極着磁を行なうことにある。
Another object of the present invention is to provide a suitable braking force to a moving body and prevent the moving body from accelerating more than necessary when a multi-pole magnetized permanent magnet is applied to a magnetic levitation device. The object is to perform multipole magnetization in the traveling direction (that is, the traveling direction of the permanent magnet fixed to the moving body).

[課題を解決するための手段及び作用]本発明によれば
、永久磁石と鉄とから成る磁気回路を固着した移動体を
上記永久磁石の吸引力により浮上させる装置において、
上記永久磁石を複数の磁極に着磁し且つ上記永久磁石の
表面のN極及びS極の着磁面積を略々等しくして上記目
的を達成している。
[Means and effects for solving the problem] According to the present invention, in a device for levitating a moving body to which a magnetic circuit made of permanent magnets and iron is fixed by using the attractive force of the permanent magnets,
The above object is achieved by magnetizing the permanent magnet into a plurality of magnetic poles and by making the magnetized areas of the N and S poles on the surface of the permanent magnet approximately equal.

[実施例コ 以下、添付の図面を参照して、本発明の一実施例を説明
する。
[Example 1] Hereinafter, an example of the present invention will be described with reference to the accompanying drawings.

第1図に示すように、本発明によれば、移動体に固着す
る永久磁石を多極着磁し、平均反磁場を下げて磁石の動
作点を高くしている。この理由は、多極着磁することに
より、夫々の磁極の反磁場が減少するからである。但し
、磁極数をむやみに増やすと、磁極間の磁気的遷移領域
が増加し、この部分は吸引に寄与しないため、かえって
吸引力が低下する。従って、磁極数は2極以上で20極
以下が必要であるが、好ましくは、3極以上でlO極極
上下良い。
As shown in FIG. 1, according to the present invention, a permanent magnet fixed to a moving body is magnetized with multiple poles, and the average demagnetizing field is lowered to raise the operating point of the magnet. The reason for this is that multipole magnetization reduces the demagnetizing field of each magnetic pole. However, if the number of magnetic poles is increased unnecessarily, the magnetic transition region between the magnetic poles will increase, and since this portion will not contribute to attraction, the attraction force will decrease on the contrary. Therefore, the number of magnetic poles needs to be 2 or more and 20 or less, but preferably 3 or more, which is good for the upper and lower lO poles.

第1図の(A)(B)(C)(D)及び(N)に夫々2
極、3極、4極、5極及びN極を多極着磁した永久磁石
の様子を示した。参照番号10゜12.14.16及び
18は夫々多極着磁された永久磁石を示す。
2 for each of (A), (B), (C), (D) and (N) in Figure 1.
A permanent magnet magnetized with multiple poles, 3 poles, 4 poles, 5 poles, and N poles is shown. Reference numbers 10, 12, 14, 16 and 18 indicate multipolar magnetized permanent magnets, respectively.

尚、着磁は磁石の吸引力が最大になるようにする必要が
ある。このため、永久磁石の表面のN極及びS極の着磁
面積が略々等しくなるようにすることが肝要である。
Note that magnetization must be done so that the attractive force of the magnet is maximized. Therefore, it is important that the magnetized areas of the N and S poles on the surface of the permanent magnet are approximately equal.

ところで、磁気浮上した重量物である移動体は、僅かな
力で移動可能であるが、移動体の慣性力が大きいために
過度に加速すると停止させるのに大きな力を要する。本
発明では、導電体(この場合永久磁石が吸引される鉄材
)に誘起される渦電流による制動力を巧妙に利用してい
る。
Incidentally, a moving object, which is a heavy magnetically levitated object, can be moved with a small amount of force, but since the moving object has a large inertial force, it requires a large force to stop it if it accelerates excessively. The present invention skillfully utilizes the braking force due to eddy currents induced in a conductor (in this case, a ferrous material to which a permanent magnet is attracted).

即ち、本発明では、永久磁石をその移動方向に多極着磁
し、永久磁石を含む移動体が過度に加速せず定速度で移
動できるようにしいてる。このことを、第2図を参照し
て更に詳しく説明する。
That is, in the present invention, the permanent magnet is magnetized with multiple poles in the direction of movement, so that the moving body including the permanent magnet can move at a constant speed without excessively accelerating. This will be explained in more detail with reference to FIG.

第2図の(A)において、多極着磁された永久磁石20
は構造物(移動体本体(図示せず))に固定されたヨー
ク22に固定されている。24は移動体の移動方向(即
ち永久磁石20の移動方向)を示す矢印である。永久磁
石20からの磁束により、磁石の上方に間隔を置いて設
けられた導電体26には渦電流28が多数発生する。第
2図の(A)は、永久磁石20の複数の磁極が移動方向
に略々直角方向に設けられている(即ち、磁石の移動方
向と略々直角方向に多極着磁されている)。
In FIG. 2 (A), a multipolar magnetized permanent magnet 20
is fixed to a yoke 22 fixed to a structure (a moving body main body (not shown)). 24 is an arrow indicating the moving direction of the moving body (ie, the moving direction of the permanent magnet 20). The magnetic flux from the permanent magnet 20 generates a large number of eddy currents 28 in the conductor 26 provided at intervals above the magnet. In (A) of FIG. 2, a plurality of magnetic poles of the permanent magnet 20 are provided in a direction substantially perpendicular to the direction of movement of the magnet (that is, multipolar magnetization is performed in a direction substantially perpendicular to the direction of movement of the magnet). .

一方、第2図の(B)では、第2図の(A)と同様に、
多極着磁された永久磁石30は移動体等の構造物(図示
せず)に固定されたヨーク32上に固着され、矢印34
の方向に移動する。磁石の上方に間隔を置いて設けられ
た導電体36には、渦電流38が多数発生する。しかし
、第2図の(B)では、永久磁石30の複数の磁極は磁
石の移動方向に並んでいる(即ち、磁石の移動方向に多
極着磁されている)ため、移動体を制動する力か大きい
On the other hand, in (B) of Fig. 2, similarly to (A) of Fig. 2,
A multi-pole magnetized permanent magnet 30 is fixed on a yoke 32 fixed to a structure (not shown) such as a moving body, and is shown by an arrow 34.
move in the direction of A large number of eddy currents 38 are generated in the conductor 36 provided at intervals above the magnet. However, in (B) of FIG. 2, the plurality of magnetic poles of the permanent magnet 30 are lined up in the direction of movement of the magnet (that is, multipole magnetized in the direction of movement of the magnet), so that the moving body is not braked. Power is big.

即ち、第2図の(A)及び(B)の場合の何れであって
も磁石の吸引力(磁石が導電体に吸引される力)は同じ
である。しかし、第2図の(B)の場合の方が、移動体
を制動する力が大きい。従って、本発明では、永久磁石
の着磁方向がその移動方向となるようにしている。
That is, the attractive force of the magnet (the force with which the magnet is attracted to the conductor) is the same in both cases (A) and (B) in FIG. 2. However, in the case of (B) in FIG. 2, the force for braking the moving body is greater. Therefore, in the present invention, the direction in which the permanent magnet is magnetized is the direction in which it moves.

尚、永久磁石をその移動方向に多数着磁していると述べ
たが、多極着磁した永久磁石をその着磁方向か永久磁石
の移動方向になるように配置すると述べても良い。
Although it has been described that a large number of permanent magnets are magnetized in the direction of movement, it may also be stated that multi-pole magnetized permanent magnets are arranged in the direction of magnetization or in the direction of movement of the permanent magnets.

本発明に係る磁気回路は、永久磁石が導電体に吸引され
て移動体を浮上させる装置、例えば、リニアモータやパ
ーティション移動装置等に応用できる。
The magnetic circuit according to the present invention can be applied to a device in which a permanent magnet is attracted to a conductor to levitate a moving object, such as a linear motor or a partition moving device.

第3図は、本発明をパーティション移動装置に応用した
場合の磁気回路の概略を示す断面図であり、磁気回路付
近は左右対称のため左半分の図示を省略しである。参照
番号40は左右対称の中心線を示している。第3図の実
施例の永久磁石42は、2極以上20極以下に着磁され
(紙面に垂直の方向に着磁されている)、できるだけ少
ない体積で強い吸引力を発生させるためにSm−Co系
或いはNd−Fe−B系等の希土類磁石が使用される。
FIG. 3 is a cross-sectional view schematically showing a magnetic circuit when the present invention is applied to a partition moving device, and the left half of the magnetic circuit is omitted because the area around the magnetic circuit is symmetrical. Reference number 40 indicates the center line of bilateral symmetry. The permanent magnet 42 of the embodiment shown in FIG. Rare earth magnets such as Co-based or Nd-Fe-B-based magnets are used.

永久磁石42は鉄製のバックヨーク44に固定され、こ
のバックヨーク44はパーティション46に固定されて
いる。永久磁石42からの磁束は鉄製のバックコーク4
4中を通って再び永久磁石42に戻って閉磁路を形成し
ている。永久磁石42は、狭いギャップ48を介して鉄
製のレール50と対向し、レール50の方向に吸引され
る。
The permanent magnet 42 is fixed to a back yoke 44 made of iron, and this back yoke 44 is fixed to a partition 46. The magnetic flux from the permanent magnet 42 is transferred to the iron back cork 4.
4 and returns to the permanent magnet 42 again to form a closed magnetic path. The permanent magnet 42 faces the iron rail 50 through a narrow gap 48 and is attracted towards the rail 50.

尚、永久磁石42がレール50に密着しないように、ス
トッパー車輪(図示せず)が設けられる。
Note that a stopper wheel (not shown) is provided to prevent the permanent magnet 42 from coming into close contact with the rail 50.

第4図に、永久磁石を4極着磁した時の磁束の流れの一
部を示す。磁気回路は中心線60を境にして左右対称な
ので、第4図では、右側半分のみの磁気回路を示す。第
4図の結果はコンピュータ・シュミレーションにより得
たものであるが、設定条件は、次の通りである。
FIG. 4 shows part of the flow of magnetic flux when a permanent magnet is magnetized with four poles. Since the magnetic circuit is symmetrical with respect to the center line 60, only the right half of the magnetic circuit is shown in FIG. The results shown in FIG. 4 were obtained by computer simulation, and the setting conditions were as follows.

(a)  永久磁石:37MGOe相当のNd−Fe−
B系磁石 (b)  磁石の幅:  40mm(但し左半分を省略
しであるので図示のWrは2 0mmである) (c)  磁石の厚さ:  5mm (d)  磁石の長さ: 無限長(紙面に垂直)(e)
  ギャップ :   G=5mm第4図から分かるよ
うに、永久磁石62の右端部からレール64の側面方向
に出て行く磁束が少な(、殆ど垂直方向に流れており、
永久磁石62の磁束が吸引力に有効に効いていることが
分かる。
(a) Permanent magnet: Nd-Fe- equivalent to 37MGOe
B series magnet (b) Magnet width: 40 mm (however, the left half is omitted, so Wr shown is 20 mm) (c) Magnet thickness: 5 mm (d) Magnet length: infinite length ( perpendicular to the paper) (e)
Gap: G=5mm As can be seen from Fig. 4, there is little magnetic flux going out from the right end of the permanent magnet 62 toward the side of the rail 64 (mostly flowing in the vertical direction,
It can be seen that the magnetic flux of the permanent magnet 62 effectively exerts an attractive force.

上記と同−磁石寸法及び同一ギヤ、ブ距離で、極数と吸
引力との関係を調べた結果、次のようになった。
As a result of investigating the relationship between the number of poles and the attractive force using the same magnet dimensions, gears, and distance as above, the following results were obtained.

l極    18.OKgf 2極      46.  OKgf 3極    49.8  Kgf 4極    33.2  Kgf 上記の結果に関する限りでは3極着磁が望ましいことが
分かった。
L pole 18. OKgf 2 poles 46. OKgf 3-pole 49.8 Kgf 4-pole 33.2 Kgf As far as the above results are concerned, it was found that 3-pole magnetization is desirable.

[発明の効果] 以上、説明したように、本発明によれば、希土類永久磁
石を多極着磁して磁石の平均反磁場を下げて動作点を高
くしているので、磁石の吸引力を大きくすることができ
る。更に、移動体の進行方向(即ち移動体に固着した永
久磁石の進行方向)に多極着磁を行なっているので、移
動体に適切な制動力を付与し移動体が必要以上に加速し
ないようにすることができる。
[Effects of the Invention] As explained above, according to the present invention, the rare earth permanent magnet is magnetized with multiple poles to lower the average demagnetizing field of the magnet and raise the operating point, thereby increasing the attractive force of the magnet. Can be made larger. Furthermore, since multipole magnetization is performed in the moving direction of the moving object (that is, the moving direction of the permanent magnet fixed to the moving object), it is possible to apply an appropriate braking force to the moving object and prevent the moving object from accelerating more than necessary. It can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る多極着磁した磁石を説明するため
の図、第2図は永久磁石による渦電流発生の様子を示す
図、第3図は本発明の具体的な実施例を説明するための
図、第4図は多極着磁された磁石の磁束の流れを示す図
である。 図中、20,30.42は永久磁石、26,36.50
は導電体、22,32,44はバックヨークを示す。 第1図 第3図
Fig. 1 is a diagram for explaining a multi-pole magnetized magnet according to the present invention, Fig. 2 is a diagram showing how eddy current is generated by a permanent magnet, and Fig. 3 is a diagram illustrating a specific example of the present invention. FIG. 4, which is an explanatory diagram, is a diagram showing the flow of magnetic flux in a multi-pole magnetized magnet. In the figure, 20, 30.42 are permanent magnets, 26, 36.50
indicates a conductor, and 22, 32, and 44 indicate a back yoke. Figure 1 Figure 3

Claims (4)

【特許請求の範囲】[Claims] (1)永久磁石と鉄とから成る磁気回路を固着した移動
体を上記永久磁石の吸引力により浮上させる装置であっ
て、 上記永久磁石が複数の磁極に着磁され且つ上記永久磁石
の表面のN極及びS極の着磁面積が略々等しいことを特
徴とする磁気浮上用磁気回路。
(1) A device for levitating a moving body to which a magnetic circuit consisting of a permanent magnet and iron is fixed, by the attractive force of the permanent magnet, wherein the permanent magnet is magnetized with a plurality of magnetic poles, and the surface of the permanent magnet is A magnetic circuit for magnetic levitation, characterized in that the magnetized areas of the north pole and the south pole are approximately equal.
(2)上記永久磁石は希土類磁石である特許請求の範囲
第1項記載の磁気浮上用磁気回路。
(2) The magnetic circuit for magnetic levitation according to claim 1, wherein the permanent magnet is a rare earth magnet.
(3)上記複数の磁極は2極以上20極以下である特許
請求の範囲第1項或いは第2項記載の磁気浮上用磁気回
路。
(3) The magnetic circuit for magnetic levitation according to claim 1 or 2, wherein the plurality of magnetic poles is 2 or more and 20 or less.
(4)上記複数の磁極は、上記移動体の移動方向に着磁
されている特許請求の範囲第1項乃至第3項の何れかに
記載の磁気浮上用磁気回路。
(4) The magnetic circuit for magnetic levitation according to any one of claims 1 to 3, wherein the plurality of magnetic poles are magnetized in the moving direction of the moving body.
JP28130390A 1990-10-19 1990-10-19 Magnetic circuit for magnetic levitation using permanent magnet Pending JPH04155903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28130390A JPH04155903A (en) 1990-10-19 1990-10-19 Magnetic circuit for magnetic levitation using permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28130390A JPH04155903A (en) 1990-10-19 1990-10-19 Magnetic circuit for magnetic levitation using permanent magnet

Publications (1)

Publication Number Publication Date
JPH04155903A true JPH04155903A (en) 1992-05-28

Family

ID=17637198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28130390A Pending JPH04155903A (en) 1990-10-19 1990-10-19 Magnetic circuit for magnetic levitation using permanent magnet

Country Status (1)

Country Link
JP (1) JPH04155903A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007529686A (en) * 2004-03-16 2007-10-25 オーシャン パワー テクノロジーズ,インク. Wave energy converter (WEC) with magnetic brake

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007529686A (en) * 2004-03-16 2007-10-25 オーシャン パワー テクノロジーズ,インク. Wave energy converter (WEC) with magnetic brake
JP4870069B2 (en) * 2004-03-16 2012-02-08 オーシャン パワー テクノロジーズ,インク. Wave energy converter (WEC) with magnetic brake

Similar Documents

Publication Publication Date Title
CN114198403B (en) Five-degree-of-freedom hybrid magnetic bearing
CN105090245A (en) Asymmetric permanent-magnet bias axial magnetic bearing
ES8701126A1 (en) Permanent magnetic load gripping or holding device.
JPS58175808A (en) Loading magnetic device
JPH1098868A (en) Pole layout system for electromagnetic brake
JPH04155903A (en) Magnetic circuit for magnetic levitation using permanent magnet
US3631366A (en) Polarized electromagnetic relays having a floating armature
JPS62126856A (en) Linear motor
JPH0340566B2 (en)
EP0918229A3 (en) Magnet system
JPS56122107A (en) Electromagnetic driving device
GB1008735A (en) Improvements relating to electrical devices for producing a controlled and reversibleforce or movement in a linear direction
JP2882850B2 (en) AC magnetic levitation transfer device
CN117307603B (en) Mixed excitation magnetic bearing with independent radial and axial levitation force
JPH05272539A (en) Superconducting magnetic bearing device
JPH0416925B2 (en)
RU2217828C2 (en) Method for reversal magnetization of multipole permanent magnets and magnetic systems
JPS63148804A (en) Attraction type magnetic levitation guiding apparatus
JP2000341930A (en) Linear motor utilizing permanent magnet
JPS6449207A (en) Self-holding type magnet
Torii et al. Availability of superconducting magnetic levitation using ferromagnetic materials and permanent magnet
JPS5886808A (en) Supporter for attracting force type magnetic levitating car
JPS61220310A (en) Bilaterally shifting solenoid
JPH04109602A (en) Magnetic field generator
JPH0225208Y2 (en)