JPS60262336A - Inline type electron gun - Google Patents

Inline type electron gun

Info

Publication number
JPS60262336A
JPS60262336A JP11692684A JP11692684A JPS60262336A JP S60262336 A JPS60262336 A JP S60262336A JP 11692684 A JP11692684 A JP 11692684A JP 11692684 A JP11692684 A JP 11692684A JP S60262336 A JPS60262336 A JP S60262336A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
electron beam
horizontal
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11692684A
Other languages
Japanese (ja)
Other versions
JPH0618111B2 (en
Inventor
Kazuaki Naiki
内記 一晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59116926A priority Critical patent/JPH0618111B2/en
Publication of JPS60262336A publication Critical patent/JPS60262336A/en
Publication of JPH0618111B2 publication Critical patent/JPH0618111B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/70Arrangements for deflecting ray or beam
    • H01J29/701Systems for correcting deviation or convergence of a plurality of beams by means of magnetic fields at least
    • H01J29/707Arrangements intimately associated with parts of the gun and co-operating with external magnetic excitation devices

Abstract

PURPOSE:To prevent generation of dislocation caused by coma-aberration on a scanning screen formed by both outside electron beams by forming a magnetic field control device by machining a magnetic material so that it is this as a whole but thick partially. CONSTITUTION:A concentrated magnetic pole 10 which is made of non-magnetic material and formed in a cylinder with bottom is installed at the tip of electron beam emission side of an electron gun. Circular magnet shielding devices 20 and 21 are arranged so as to surround outside electron beam transmission holes 13 and 14. The circular magnet shielding device 20 is formed by a magnetic material such as permalloy having a thickness of 0.1mm. or less as a whole except for a plurality of thicker parts 24 which are partially thick in a radial direction. By this construction, a desired magnetic field control function can be obtained without increase in outer diameter. To fix the concentrated magnetic pole 10 to a specified position, the thicker part 24 is spot-welded to the magnetic pole 10. Therefore, welding process is made easy.

Description

【発明の詳細な説明】 〈発明の技術分野〉 本発明はカラー陰極線管に係り、インライン型電子銃か
ら放射された中央及び一対の両外側電子ビームが共通の
偏向磁界により螢光面上に形成するシスターの大きさを
、特に水平偏向周波数にかかわらず等しくさせることが
可能なセスフ・コンバージェンス方式のインライン型電
子銃に関するものである。
[Detailed Description of the Invention] <Technical Field of the Invention> The present invention relates to a color cathode ray tube, in which a central and a pair of outer electron beams emitted from an in-line electron gun are formed on a fluorescent surface by a common deflection magnetic field. This invention relates to an in-line type electron gun using a sesph convergence method, which can make the size of the sister to be the same regardless of the horizontal deflection frequency.

〈従来技術〉 第1図は従来用いられている動的コンバージェンス補正
ヲ要シない、所謂セルフ・コンバージェンス方式のイン
ライン型電子銃を用いたカラー陰極線管の縦断面図であ
る。
<Prior Art> FIG. 1 is a longitudinal sectional view of a color cathode ray tube using a so-called self-convergence type in-line electron gun that does not require dynamic convergence correction, which is conventionally used.

インライン型電子銃1から放射されて同一平面内にある
中央電子ビームB1及び一対の両外側電子ビームB2.
B3は排気された硝子外囲器2の漏斗状部に配設された
偏向装置5により水平及び垂直に偏向され、硝子外囲器
20頂面にあり、内側に三色に発光する複数の螢光体画
素が被着された螢光面4上にこれに対設されたシャドウ
マスク3を通して走査画面を形成する。このカラー陰極
線管を動的コンバージェンス補正を要しないセルフ・コ
ンバージェンス方式とするには、偏向装置5の水平偏向
磁界を強い糸巻型歪に、垂直偏向磁界を強い樽型歪にし
て、第2図に示す様にこれら偏向磁界により一対の内外
側電子ビームB2.B3のコマ収差をな(して螢光面4
上に一致した走査画面6を形成する。この場合の中央電
子ビームB1の走査画面7は一般に水平、垂直系内外側
電子ビームB2.B3の形成する走査画面6より小さく
なる。この走査画面の不整合は偏向装置50コマ収差に
よるものであり、コマ収差を除去して各走査画面を一致
させるために、偏向装置5の後部漏洩磁界が及ぶ電子銃
1の先端に取付けられた非磁性材で有底円筒状に形成さ
れた集中磁極1oの底面11に高透磁率の磁性部材から
なる磁界制御素子を配設している。第3図は磁界制御素
子の一例を示し、集中磁極10の底面11に穿設された
中央電子ビーム透過開孔12を螢光面4の短軸である垂
直軸Y−Y上で挾むように対設された一対の円盤状磁気
増強素子15.16と、螢光面4の長袖::1 である
水平軸X−X上に穿設された両性側電子ビーム透過開孔
13.14を囲む様に配設された環状磁気遮蔽素子17
.18から構成されている。磁気増強素子15.16は
中央電子ビームB1に対して、偏向装置5の水平偏向磁
界FHの偏向感度を内外側電子ビームB2.B3より増
加させ、環状磁気遮蔽素子17.18は内外側電子ビー
ムB2.B3に対して、偏向装置5の水平、垂直偏向磁
界FH,Fvの偏向感度を中央電子ビームB1より低下
させ、又中央電子ビームB1に対して垂直偏向磁界Fv
の偏向感度を内外側電子ビームより増加させる働きがあ
る。
A central electron beam B1 emitted from the in-line electron gun 1 and located in the same plane, and a pair of outer electron beams B2.
B3 is deflected horizontally and vertically by a deflection device 5 disposed in the funnel-shaped part of the evacuated glass envelope 2, and is located on the top surface of the glass envelope 20, and has a plurality of fireflies emitting light in three colors inside. A scanning screen is formed on the phosphor surface 4 on which the light body pixels are deposited through a shadow mask 3 placed opposite thereto. In order to make this color cathode ray tube a self-convergence system that does not require dynamic convergence correction, the horizontal deflection magnetic field of the deflection device 5 is made to have a strong pincushion distortion, and the vertical deflection magnetic field is made to have a strong barrel distortion, as shown in Fig. 2. As shown, a pair of inner and outer electron beams B2. By eliminating the comatic aberration of B3, the fluorescent surface 4
A scanning screen 6 corresponding to the top is formed. In this case, the scanning screen 7 of the central electron beam B1 is generally horizontal and vertical, with the inner and outer electron beams B2, . It is smaller than the scanning screen 6 formed by B3. This misalignment of the scanning screen is due to the coma aberration of the deflection device 50, and in order to eliminate the coma aberration and match each scanning screen, a deflection device 50 is installed at the tip of the electron gun 1, which is exposed to the leakage magnetic field from the rear of the deflection device 5. A magnetic field control element made of a magnetic material with high magnetic permeability is disposed on the bottom surface 11 of the concentrated magnetic pole 1o formed of a non-magnetic material in the shape of a cylinder with a bottom. FIG. 3 shows an example of a magnetic field control element, in which a central electron beam transmission aperture 12 formed in the bottom surface 11 of a concentrated magnetic pole 10 is arranged so as to be sandwiched on the vertical axis YY, which is the short axis of the fluorescent surface 4. A pair of disc-shaped magnetic enhancement elements 15 and 16 are provided, and the electron beam transmission apertures 13 and 14 on both sides are bored on the horizontal axis XX, which is the long sleeve of the fluorescent surface 4. An annular magnetic shielding element 17 arranged in
.. It consists of 18. The magnetic enhancement elements 15, 16 increase the deflection sensitivity of the horizontal deflection magnetic field FH of the deflection device 5 to the inner and outer electron beams B2, . B3, the annular magnetic shielding elements 17 and 18 are arranged to prevent the inner and outer electron beams B2. B3, the deflection sensitivities of the horizontal and vertical deflection magnetic fields FH and Fv of the deflection device 5 are lowered than that of the central electron beam B1, and the vertical deflection magnetic field Fv is lower than that of the central electron beam B1.
It has the function of increasing the deflection sensitivity of the inner and outer electron beams.

従がって磁界制御素子1.5.16及び17.18によ
り中央電子ビームB1の走査画面7は水平、垂直方向共
拡大され、逆に内外側電子ビームB2.B3の走査画面
6は縮小され、偏向磁界によるコマ収差が除去されて走
査画面6,7を完全に一致させることが可能となる。
Therefore, the scanning screen 7 of the central electron beam B1 is enlarged both horizontally and vertically by the magnetic field control elements 1,5,16 and 17,18, and conversely, the scanning screen 7 of the central electron beam B1 is enlarged in both the horizontal and vertical directions. The B3 scanning screen 6 is reduced, comatic aberration due to the deflection magnetic field is removed, and the scanning screens 6 and 7 can be made to coincide completely.

〈従来技術の問題点〉 一方最近では各種の情報を表示するためカラー陰極線管
に高解像度特性を持たせた一所謂デイスプレイ用カラー
陰極線管が用いられており、これにより英数字、記号、
漢字及び図表等が高密度表示される。
<Problems with the prior art> On the other hand, recently, so-called display color cathode ray tubes, which are color cathode ray tubes with high resolution characteristics, have been used to display various types of information.
Kanji, charts, etc. are displayed in high density.

高密度表示を行うには、カラー118極線管の解像度が
篩く、フォーカス特性が均一であること、表示画面の水
平方向解像度を高めるため映像回路の周波数帯域が広い
こと、表示画面の垂直方向解像度を萬めるためには走査
線数が多いことが必要となる。
In order to perform high-density display, the color 118-pole ray tube must have a high resolution and uniform focus characteristics, the video circuit must have a wide frequency band to increase the horizontal resolution of the display screen, and the vertical direction of the display screen must be wide. In order to achieve high resolution, it is necessary to have a large number of scanning lines.

通常、高密度表示の一手段として走査線数を増加させる
ため、水平偏向周波数fhを現行の標準力、、−TV方
式の15.734 kHz以上に高めることがイボなわ
れている。この場合、水平偏向周波数fh=15.73
4 kHz 程度では全く問題がなかった水平偏向磁界
による内外側及び中央電子ビームが形成する走査画面6
/、7/のコマ収差が生じ、第4図に示す様に中央電子
ビームの走査画面7′に対し内外側電子ビームの走査画
面6′が水平方向で若干拡大され、且つその拡・犬の割
合が螢光面4の左右で相違し、左側の拡大寸法小の方が
右側の拡大寸法d!より大きくなる非対称性が生じる。
Normally, in order to increase the number of scanning lines as a means of high-density display, it is common practice to increase the horizontal deflection frequency fh to more than 15.734 kHz of the current standard TV system. In this case, horizontal deflection frequency fh=15.73
Scanning screen 6 formed by the inner, outer, and center electron beams due to the horizontal deflection magnetic field, which had no problems at around 4 kHz.
Comatic aberrations of / and 7/ occur, and as shown in FIG. The ratio is different on the left and right sides of the fluorescent surface 4, and the enlarged size on the left side is smaller than the enlarged size on the right side d! A larger asymmetry results.

この走査画面のずれが水平偏向周波数に依存するコンバ
ージェンス誤差となり、螢光面上受像画像品位を著しく
劣化させる。例えば20インチ90度偏向カラー陰極#
ii管に於て、水平偏向周波数fh = 15.73 
k上↓2が2倍のfh = 31.5 kHzとすると
上述のすれc+、、 d、は有効螢光面の最外周部近く
でd1=0.7mm、d2=0.3m+nとなる1、こ
の様に水平偏向周波数fhの増加と共に内外側電子ビー
ムと中央電子ビームが形成する走査画面6′、7′に水
平方向でコマ収差によるずれが生じる原因は次の通りで
ある。
This shift in the scanning screen results in a convergence error that depends on the horizontal deflection frequency, which significantly deteriorates the quality of the image received on the fluorescent surface. For example 20 inch 90 degree polarized color cathode #
In the II tube, the horizontal deflection frequency fh = 15.73
If fh = 31.5 kHz, which is twice as high as k↓2, then the above-mentioned deviation c+,, d, becomes d1 = 0.7 mm, d2 = 0.3 m + n near the outermost part of the effective fluorescent surface1, The reason why the scanning screens 6' and 7' formed by the inner and outer electron beams and the center electron beam are shifted in the horizontal direction due to coma aberration as the horizontal deflection frequency fh increases is as follows.

先ず第一に、有底円筒状の集中磁極10の画面垂直軸Y
−Y方向の筒測部を貫通゛する水平偏向磁束により、こ
の磁束貫通面に過電流が生じ、これKより水平偏向磁界
の磁束変化を妨げる磁束が発生して、磁束を減殺させ、
中央及び内外側電子ビームB、、 B2. Li2の偏
向感り蜆を低下させてその水平方向の偏向蛋幅を減少さ
せ、磁束の減少は環状磁気遮蔽素子17.18の磁気遮
蔽効果を減少させる。
First of all, the screen vertical axis Y of the bottomed cylindrical concentrated magnetic pole 10
- Due to the horizontal deflection magnetic flux penetrating the tube measuring section in the Y direction, an overcurrent is generated on this magnetic flux passing surface, and this generates a magnetic flux that prevents the change in the magnetic flux of the horizontal deflection magnetic field, thereby attenuating the magnetic flux.
Central and inner and outer electron beams B,, B2. Lowering the deflection sensitivity of Li2 reduces its horizontal deflection amplitude, and the reduction in magnetic flux reduces the magnetic shielding effect of the annular magnetic shielding elements 17,18.

この渦電流による磁束の損失は従来の水平偏向周波数f
h= 15.73 kHz程度では全く無視出来たが、
周波数の増加に従がって渦電流による磁束損失は無視出
来なくなり、第4図に示す様に1外側電子ビームの走査
画面6′が中央電子ビームの走査画面7′に対し左右方
向で広がることKなる。
The loss of magnetic flux due to this eddy current is due to the conventional horizontal deflection frequency f
It could be completely ignored at around h = 15.73 kHz, but
As the frequency increases, magnetic flux loss due to eddy currents cannot be ignored, and as shown in FIG. 4, the scanning screen 6' of the outer electron beam expands in the horizontal direction with respect to the scanning screen 7' of the central electron beam. K becomes.

一方、水平方向の走査を行うために偏向装置5の水平偏
向コイルに流す電流波形は第5図に示す鋸歯状波であり
、図中a点からb点迄の時間t、が水平走査時間であり
、b点からC点迄の時間t2が水平帰線時間であり1通
常t、lはて、メ約1,15程度に設定されている。a
点或いは0点が水平走部の画面上左端IC,b点が右端
位置に対応(7でいる。即ち、水平走査時間の左端位置
は水平滞純開間t、の終端に対応し7、右鴻は水平走査
時間t1の終端に対応し、水平帰線期間t2中は水平走
査期間t、中の約5倍の速さで変化する電流による磁界
が発生し、従がってその高調波成分磁界((よる渦電流
損失に基づく磁束の減少で環状磁気遮蔽素子1.7.1
8の磁気遮蔽効果損失は螢光面左側の方が右側より犬1
1、′ きく、第4図に示す様に1外側電子ビーム走査
画面6′の中央電子ビーム走査画面7′に対する水平方
向での拡大幅は左側のd、が右側のd、より犬きくなり
、水平方向でのコマ収差に非対称性が生じる。
On the other hand, the current waveform applied to the horizontal deflection coil of the deflection device 5 to perform horizontal scanning is a sawtooth wave shown in FIG. 5, and the time t from point a to point b in the figure is the horizontal scanning time. The time t2 from point B to point C is the horizontal retrace time, and normally t and l are set to about 1.15. a
The point or 0 point corresponds to the left edge IC on the screen of the horizontal scanning section, and the point b corresponds to the right edge position (7).In other words, the left edge position of the horizontal scanning time corresponds to the end of the horizontal scanning interval t, and the corresponds to the end of the horizontal scanning time t1, and during the horizontal retrace period t2, a magnetic field is generated due to the current that changes about five times as fast as during the horizontal scanning period t, and therefore its harmonic component magnetic field ((The reduction of magnetic flux due to eddy current loss due to the annular magnetic shielding element 1.7.1
The loss of magnetic shielding effect of 8 is 1.2 mm higher on the left side of the fluorescent surface than on the right side.
1,' As shown in Fig. 4, the expansion width of the outer electron beam scanning screen 6' in the horizontal direction with respect to the central electron beam scanning screen 7' is as follows: d on the left side is wider than d on the right side, Asymmetry occurs in coma aberration in the horizontal direction.

従来の標準カラーTV方式(NTSC方式)で用いられ
ているfh = 15.734 kHzではt、 = 
51〜531tsec。
At fh = 15.734 kHz, which is used in the conventional standard color TV system (NTSC system), t, =
51-531tsec.

t、=io〜12μsecで、これによる渦電流損失は
全く無視出来て、上述のコマ収差及びその非対称性は実
質的には見出せなかったが、f++の増加と共に11と
t2の相違、更には有効走査時間t、を大きくするため
に帰線時間t2は出来るたり小さくなるように設定され
て、渦電流損失に基く水平偏向磁束へ少の非対称性は無
視出来に二い象となっ1上記の現象が顕著となってくる
t, = io ~ 12 μsec, the eddy current loss due to this can be completely ignored, and the above-mentioned coma aberration and its asymmetry were not found substantially, but as f++ increases, the difference between 11 and t2, and even more effective In order to increase the scanning time t, the retrace time t2 is set to be as small as possible, and the slight asymmetry in the horizontal deflection magnetic flux due to eddy current loss becomes a phenomenon that cannot be ignored.1. becomes noticeable.

〈発明の目的と楯8.敷ン 本発明は上述した欠点に鑑みてなされたものであり、イ
ンライン型電子銃を備えたカラー隘極線管の水平偏向周
波数の増力旧厖対して両偽側′電子ビームの形成する走
査画面にコマ収差によるズレが生じないような磁界制御
素子を提供することを目的とする。
<Object of the invention and shield 8. The present invention has been made in view of the above-mentioned drawbacks, and is aimed at increasing the horizontal deflection frequency of a color electron beam tube equipped with an in-line electron gun. An object of the present invention is to provide a magnetic field control element that does not cause deviation due to coma aberration.

本発明は、水平軸−ヒに一列配列された・インライン型
電子銃の両性側電子ビームA過領域を包囲すする様に配
設されて偏向磁界が形成する走査画面のコマ収差を補正
する磁界制御素子を備えたカラー陰極線管に於゛C1前
記磁界制岬素子を局部的に板厚の大きい部分を有した全
体として薄い&卑を持つように磁性材を加工することに
よって上記目的を達成したものである。
The present invention is directed to a magnetic field that is arranged so as to surround the electron beam A area on both sides of an in-line electron gun arranged in a line on the horizontal axis, and that corrects the coma aberration of the scanning screen formed by the deflection magnetic field. In a color cathode ray tube equipped with a control element, the above object was achieved by processing the magnetic material of the magnetic field control cape element so as to have locally thicker parts and to have a thinner and baser structure as a whole. It is something.

〈発明の実施例〉 以下、図面を参照し1本発す」の実施列を昇細に説明す
く・。
〈Embodiments of the invention〉 Hereinafter, the implementation sequence of ``Let's make one shot'' will be explained in detail with reference to the drawings.

第6Nd本発例の一実J(n例による集中磁極10の底
面図、第7図は環状磁気遮蔽素子20の斜視図を夫′7
示ず。電子銃の電子ビーム射出側先端には従来と同隊に
非磁性材で上底円筒状に形成された集中磁極1()が取
付けしれ、その底面11の中心に穿設された中央1狂r
ビーム透過開孔12の中心を通る螢光面4の短軸である
垂直1itillY−Y上に、開孔12を挾む(10(
一対の円盤状磁気増価素子15.16が対向配設され、
水平軸X−X軸上に穿設された1外側゛Eb、子ビーム
透過開孔13,14を囲む様に環状磁気遮蔽素子20.
21を配設する。環状磁気遮蔽素子20は第7図に示す
様に両性側電子ビーム透過開孔13.14とほぼ同一の
開孔22と、従来より大きな径の外円23を持−りた環
状体であり、半径方向に局部的に肉厚となった複数の厚
肉部24を残12て全体は0.im以下の板厚を持った
パーマロイ等の磁性材で形成されている。この厚肉部と
薄肉部とは例えば滲肉部と同一の板厚をもった磁性材か
ら環状体を打抜き、厚肉部を局部的に残し、て所定板厚
となるよ5VC化学的エツチングにより薄肉部を形成す
ればよい。
No. 6Nd is a bottom view of the concentrated magnetic pole 10 according to the present example J (n example), and FIG. 7 is a perspective view of the annular magnetic shielding element 20.
Not shown. At the tip of the electron beam emission side of the electron gun, a concentrated magnetic pole 1 ( ) formed in a cylindrical shape at the top and made of a non-magnetic material is attached as in the past, and a central magnetic pole 1 ( ) formed in the center of the bottom surface 11 is installed.
The aperture 12 is placed between the apertures 12 on the vertical 1itill Y-Y, which is the short axis of the phosphor surface 4 passing through the center of the beam transmission aperture 12 (10(
A pair of disc-shaped magnetic value increasing elements 15 and 16 are arranged facing each other,
A ring-shaped magnetic shielding element 20.
21 will be installed. As shown in FIG. 7, the annular magnetic shielding element 20 is an annular body having an aperture 22 that is almost the same as the electron beam transmission apertures 13 and 14 on both sides, and an outer circle 23 having a larger diameter than the conventional one. The overall thickness is 0.2 mm, except for a plurality of thick wall sections 24 that are locally thickened in the radial direction. It is made of a magnetic material such as permalloy with a thickness of less than im. The thick part and the thin part are formed by punching out an annular body from a magnetic material having the same thickness as the deep part, leaving the thick part locally, and then applying 5VC chemical etching to obtain a predetermined thickness. What is necessary is to form a thin wall portion.

これらの磁界制御素子15,16,20.21の偏向磁
界に対する働きは前述の従来例と全く回−である。
The actions of these magnetic field control elements 15, 16, 20, and 21 on the deflection magnetic field are completely the same as in the prior art example described above.

一般に、印加される磁束変化を妨げる磁束を発生する渦
電流損失は磁束変化速度の2乗と磁束が印加される材料
板厚の2乗の相乗積に比例するため、磁束変化速度が一
定なら渦電流損失を最小にするKは材料板厚を薄くすれ
ばよい。従がって上述の環状磁気遮蔽素子20.21の
磁界制御%性が偏向磁界の周波数に依存しないようにす
るにはその材料板厚を可能の限り薄くすればよい。然る
に環状磁気遮蔽素子20.21の板厚を単に薄くすると
同一の磁界強度に対し、所定の磁界j[il制御機能ン
得るにはその太きさ、即’1′:0)外円径を大ぎくす
る必要があるが、集中磁敞10の底面に穿設される中央
1は子ピー・ムi15過開孔12と1外側開化13.1
4間の距離が用足され−((・るため、環状に気遮蔽素
子20,2]の外径(よ限定き扛、所定の磁界側(財)
機能が得りれなくなる。更に板厚が薄くなると集中磁極
10の所定位置にスポット溶接によて・て固定する場貧
、非常1c溶接作業が1輸どは6nごれにえ」し本発明
では薄肉状の環状磁気遮蔽素子20.21に局部的に複
数の厚肉部2jiを残しであるため、その外形状な余り
大きくすることなく、所定の磁界制御機能を得ることが
出来、又集中磁極10の所定位置に固定するには厚肉部
24を集中磁極10にスボ7 +−溶接すればよく、従
来と同様に溶接作1、 業が容易に出来る。
In general, the eddy current loss that generates magnetic flux that impedes the applied magnetic flux change is proportional to the multiplicative product of the square of the magnetic flux change rate and the square of the material plate thickness to which the magnetic flux is applied, so if the magnetic flux change rate is constant, the eddy current loss K that minimizes current loss can be achieved by reducing the thickness of the material plate. Therefore, in order to make the magnetic field control characteristics of the annular magnetic shielding elements 20, 21 independent of the frequency of the deflection magnetic field, the thickness of the material should be made as thin as possible. However, if the plate thickness of the annular magnetic shielding element 20 and 21 is simply made thinner, for the same magnetic field strength, the thickness of the magnetic field j[il], i.e., '1':0), will be reduced by the outer diameter. Although it is necessary to make a big deal, the center 1 drilled in the bottom of the concentrated magnetic hole 10 has a small diameter hole 15 with an over-open hole 12 and an outer open hole 13.1.
The distance between 4 and 4 is the outer diameter of the annular shielding element 20 and 2, and the distance between
functions will no longer be available. Furthermore, as the thickness of the plate becomes thinner, it becomes difficult to fix the concentrated magnetic pole 10 in a predetermined position by spot welding, and in an emergency, 1C welding process results in 6N contamination.In the present invention, a thin annular magnetic shield is used. Since a plurality of thick portions 2ji are locally left on the elements 20 and 21, a predetermined magnetic field control function can be obtained without increasing the external shape too much, and the concentrated magnetic pole 10 can be fixed at a predetermined position. In order to do this, it is sufficient to weld the thick portion 24 to the concentrated magnetic pole 10 through the grooves 7, and the welding operation 1 can be easily performed as in the conventional case.

当 以上述べた様に、水平偏向磁Fyyが集中磁極20の底
面21に誘導されて環状磁気遮蔽素子20.21を貫通
しても、その板厚は全体として非常に薄くなっているた
め、渦電流発生は非常に小さく、無視出来る程度となる
As mentioned above, even if the horizontal deflection magnet Fyy is guided to the bottom surface 21 of the concentrated magnetic pole 20 and penetrates the annular magnetic shielding element 20.21, the plate thickness is very thin as a whole, so the vortex Current generation is very small and can be ignored.

このため、渦電流によって環状磁気遮蔽素子20.21
中で磁束変化を妨げる磁束の発生は極めて小さくなり、
水平偏向周波数が現行標準カラーTV方式で用いられて
いるfh = 15.73 kHzより高くなっても、
その周波数にかかわらずその磁気遮蔽効果は減少するこ
とはなくなる。この結果、従来の様に水平偏向周波数f
hが高くなっても両外側電子ビームの走査画面が中央電
子ビームの走査画面に対して拡大されたり、或いはその
拡大率が水平走査時間と水平帰線時間の割合の相違によ
って非対称となることがなくなる。
Therefore, the annular magnetic shielding element 20.21 is caused by the eddy current.
The generation of magnetic flux that interferes with magnetic flux changes becomes extremely small,
Even if the horizontal deflection frequency is higher than fh = 15.73 kHz used in the current standard color TV system,
Regardless of its frequency, its magnetic shielding effect no longer decreases. As a result, the horizontal deflection frequency f
Even if h becomes high, the scanning screen of both outer electron beams may be enlarged with respect to the scanning screen of the central electron beam, or the enlargement ratio may become asymmetrical due to the difference in the ratio of horizontal scanning time to horizontal retrace time. It disappears.

第8図は本発明による他の実施例による環状磁気遮蔽素
子30の斜視図であり、厚肉部31と同一の板厚を持つ
磁性材から環状体を打抜き、半径方向に複数の厚肉部3
1を残して、両面から化学的エツチングにより所要板厚
を持った薄肉部32を形成したもので、薄肉部32の形
成が片面から行うよりも比較的容易に出来る。
FIG. 8 is a perspective view of an annular magnetic shielding element 30 according to another embodiment of the present invention. 3
Thin wall portions 32 having the required plate thickness are formed by chemical etching from both sides, except for 1. The thin wall portions 32 can be formed relatively easily from one side.

〈発明の効果〉 本発明によれば、セルフ・コンバージェンス方式のイン
ライン型電子銃の先端にあって両外側電子ビーム通過領
域を包囲する様に配設されて偏向磁界が形成する走査画
面のコマ収差を補正する磁界制御素子に於て、その磁界
制御素子を局部的に板厚の大きい部分を残した全体とし
て薄肉状となるように磁性材を加工することによって、
磁界制御素子の水平偏向周波数に対する磁界制御作用の
依存性、及び水平走査時間と水平帰線時間の相違による
作用の差をなくすことが出来る。この結果水平偏向周波
数の増加にかかわらず、中央及び両外側電子ビームの形
成する走査画面のコマ収差に基づいた非対称なずれが除
去可能となり、インライン型電子銃を高密度表示可能な
極めて解像度特性の優れた電子銃とすることが出来る。
<Effects of the Invention> According to the present invention, the comatic aberration of the scanning screen formed by the deflection magnetic field, which is disposed at the tip of the self-convergence type in-line electron gun so as to surround both outer electron beam passing regions, can be reduced. In a magnetic field control element that corrects
The dependence of the magnetic field control action on the horizontal deflection frequency of the magnetic field control element and the difference in action due to the difference between the horizontal scanning time and the horizontal retrace time can be eliminated. As a result, regardless of the increase in the horizontal deflection frequency, it is possible to eliminate asymmetric shifts based on coma in the scanning screen formed by the central and both outer electron beams, and the in-line electron gun has extremely high resolution characteristics that enable high-density display. It can be made into an excellent electron gun.

しかも厚肉部の存在により磁界制御素子の外形状を著し
く大きくすることなく、必要な磁界制御機能を持たせる
ことが出来、更にこれを電子銃先端の遮蔽磁極底面所定
位置へ取付ける場合に、スポット溶接による取付けが容
易になる。
Furthermore, due to the presence of the thick part, the necessary magnetic field control function can be provided without significantly increasing the external shape of the magnetic field control element.Furthermore, when it is installed at a predetermined position on the bottom surface of the shielding pole at the tip of the electron gun, it is possible to Installation by welding becomes easier.

更に上述した線順次で有効走査期間中の走査速度が一定
であるラスク走査方式でなく、走査速度が不定のランダ
ム走査方式に対して本発明を適用すれば、この場合もコ
マ収差は生じることなく、その有効性は一層顕著となる
Furthermore, if the present invention is applied to a random scanning method in which the scanning speed is indeterminate, rather than the above-mentioned Rask scanning method in which the scanning speed is constant during the effective scanning period in line sequential order, coma aberration will not occur in this case as well. , its effectiveness becomes even more remarkable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来用いられているセルフ◆コ/バージェンス
方式のインライン型電子銃を用いたカラー陰極線管の縦
断面図、第2図はこのカラー陰極線管の螢光面上に中央
及び両外側電子銃が形成する走査画面を、第3図は前記
走査画面のコマ収差を補正する磁界制御素子と、その水
平、垂直偏向磁界に対する作用を、第4図は水平偏向周
波数が大きくなった時螢光面上に表われる中央及び両外
側電子銃の電子ビームが形成する走査画面のずれを説明
する図、第5図は水平偏向コイルに流れる電流波形を、
第6図は集中磁極底面に本発明の−実施例による磁界制
御素子を配設した状態を示す平面図、第7図は不う6明
の一実施例による環状磁気遮蔽素子の斜視図、第8図は
本発明の他の実施例による環状磁気遮蔽素子の斜視図を
夫々示す。 1、・・・・・・−1ンフイン型電子銃、2.・・・・
・・捌子外囲器、4、・・・・・・螢光面、5.・・・
・・・偏向装置、6,6′・・・・・・内外側電子ビー
ノ・が形成する走査画面、7+7’・・・・・・中火電
子ビームが形成する走査画面、10・・・・・・県中磁
極、12・・・・・・集中磁極底面の中央電子ビーム透
過開孔、13.14・・・・・・集中磁極底面の1外側
電子ビーム透過開孔、15.16・・・・・・磁気増強
素子、17.18,20.21.30・・・・・・環状
磁気遮蔽素子、24.31・・・・・・厚肉部、25.
32・・・・・・薄肉部。 62図 64−■
Figure 1 is a longitudinal cross-sectional view of a color cathode ray tube using a conventional self-co/vergence type in-line electron gun, and Figure 2 shows the center and both outer sides of the fluorescent surface of this color cathode ray tube. Figure 3 shows the scanning screen formed by the electron gun, the magnetic field control element that corrects the coma aberration of the scanning screen and its effect on the horizontal and vertical deflection magnetic fields, and Figure 4 shows the flashing when the horizontal deflection frequency increases. A diagram explaining the deviation of the scanning screen formed by the electron beams of the central and both outer electron guns appearing on the optical surface, and Figure 5 shows the current waveform flowing through the horizontal deflection coil.
FIG. 6 is a plan view showing a magnetic field control element according to an embodiment of the present invention disposed on the bottom surface of a concentrated magnetic pole; FIG. 7 is a perspective view of an annular magnetic shielding element according to an embodiment of the present invention; FIG. 8 shows perspective views of annular magnetic shielding elements according to other embodiments of the present invention. 1,...-1 infin type electron gun, 2.・・・・・・
...Round envelope, 4, ... Fluorescent surface, 5. ...
... Deflection device, 6, 6'... Scanning screen formed by the inner and outer electronic beams, 7+7'... Scanning screen formed by the medium-fired electron beam, 10... ...Central magnetic pole, 12...Central electron beam transmission aperture on the bottom of the concentrated magnetic pole, 13.14...1 outer electron beam transmission aperture on the bottom of the concentrated magnetic pole, 15.16... ... Magnetic enhancement element, 17.18, 20.21.30 ... Annular magnetic shielding element, 24.31 ... Thick part, 25.
32... Thin wall part. Figure 62 64-■

Claims (1)

【特許請求の範囲】[Claims] 水平軸」二に一列配列されたインライン型電子銃の両外
側電子ビーム通過領域を包囲する様に配設されて偏向磁
界が形成する走査画面の・コマ収差を 、補正する磁界
制御素子を備えたカラー陰極線管に於て、前記磁界制御
素子は局部的に板厚の大きい部分を有した全体として薄
い板厚となるように磁性材を加工した構造を有すること
を特徴とするインライン型電子銃。
The device is equipped with a magnetic field control element that is arranged to surround both outer electron beam passing areas of the in-line electron guns arranged in a row on the horizontal axis, and corrects the coma aberration of the scanning screen formed by the deflection magnetic field. 1. An in-line electron gun in a color cathode ray tube, wherein the magnetic field control element has a structure in which a magnetic material is processed so as to have a locally thick portion and a thin plate overall.
JP59116926A 1984-06-07 1984-06-07 Inline electron gun Expired - Lifetime JPH0618111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59116926A JPH0618111B2 (en) 1984-06-07 1984-06-07 Inline electron gun

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59116926A JPH0618111B2 (en) 1984-06-07 1984-06-07 Inline electron gun

Publications (2)

Publication Number Publication Date
JPS60262336A true JPS60262336A (en) 1985-12-25
JPH0618111B2 JPH0618111B2 (en) 1994-03-09

Family

ID=14699100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59116926A Expired - Lifetime JPH0618111B2 (en) 1984-06-07 1984-06-07 Inline electron gun

Country Status (1)

Country Link
JP (1) JPH0618111B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527960U (en) * 1978-08-11 1980-02-22
JPS58111244A (en) * 1981-12-25 1983-07-02 Toshiba Corp Color picture tube

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527960U (en) * 1978-08-11 1980-02-22
JPS58111244A (en) * 1981-12-25 1983-07-02 Toshiba Corp Color picture tube

Also Published As

Publication number Publication date
JPH0618111B2 (en) 1994-03-09

Similar Documents

Publication Publication Date Title
US2991381A (en) Shielded magnet-assembly for colorkinescopes, etc.
JPH0736319B2 (en) Color picture tube device
JPS60262336A (en) Inline type electron gun
JPS58192252A (en) Cathode-ray tube device
JPS6117095B2 (en)
JPS61253749A (en) Cathode ray tube
JPS59146131A (en) Inline type electron gun
JPS6129046A (en) Inline electron gun structure
JPS6086736A (en) In-line type electron gun structure
US4473773A (en) In-line type electromagnetic focusing cathode-ray tube
US4593226A (en) Color cathode ray tube having electron gun with reduced eddy current loss at shield cup
JPS6129047A (en) Inline electron gun structure
JPS59146132A (en) Inline electron gun
KR950003512B1 (en) Color television display tube with coma correction
JPH07302550A (en) Color cathode-ray tube
JPS587017B2 (en) Color cathode ray tube equipment
JPH033569A (en) Television receiver
JPS5824372Y2 (en) Denshiji Yukoutai
KR100342051B1 (en) Electron gun for cathode ray tube
JPH07118280B2 (en) Cathode ray tube
US3462641A (en) Color picture tube
JPS6129048A (en) Inline electron gun structure
JPS6086737A (en) In-line type electron gun structure
JPH04181637A (en) In-line type electron gun body structure
JPH0433238A (en) Color picture tube device