JPS59146132A - Inline electron gun - Google Patents

Inline electron gun

Info

Publication number
JPS59146132A
JPS59146132A JP2011283A JP2011283A JPS59146132A JP S59146132 A JPS59146132 A JP S59146132A JP 2011283 A JP2011283 A JP 2011283A JP 2011283 A JP2011283 A JP 2011283A JP S59146132 A JPS59146132 A JP S59146132A
Authority
JP
Japan
Prior art keywords
electron beam
magnetic
magnetic field
central
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011283A
Other languages
Japanese (ja)
Other versions
JPH0367297B2 (en
Inventor
Kazuaki Naiki
内記 一晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP2011283A priority Critical patent/JPS59146132A/en
Priority to EP84300804A priority patent/EP0116465B1/en
Priority to DE8484300804T priority patent/DE3462200D1/en
Priority to US06/578,673 priority patent/US4593226A/en
Publication of JPS59146132A publication Critical patent/JPS59146132A/en
Publication of JPH0367297B2 publication Critical patent/JPH0367297B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/48Electron guns
    • H01J29/50Electron guns two or more guns in a single vacuum space, e.g. for plural-ray tube
    • H01J29/503Three or more guns, the axes of which lay in a common plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2229/00Details of cathode ray tubes or electron beam tubes
    • H01J2229/48Electron guns
    • H01J2229/4844Electron guns characterised by beam passing apertures or combinations
    • H01J2229/4848Aperture shape as viewed along beam axis
    • H01J2229/4858Aperture shape as viewed along beam axis parallelogram
    • H01J2229/4865Aperture shape as viewed along beam axis parallelogram rectangle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2229/00Details of cathode ray tubes or electron beam tubes
    • H01J2229/48Electron guns
    • H01J2229/4844Electron guns characterised by beam passing apertures or combinations
    • H01J2229/4848Aperture shape as viewed along beam axis
    • H01J2229/4872Aperture shape as viewed along beam axis circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2229/00Details of cathode ray tubes or electron beam tubes
    • H01J2229/48Electron guns
    • H01J2229/4844Electron guns characterised by beam passing apertures or combinations
    • H01J2229/4848Aperture shape as viewed along beam axis
    • H01J2229/4886Aperture shape as viewed along beam axis polygonal
    • H01J2229/4889Aperture shape as viewed along beam axis polygonal cross shaped
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2229/00Details of cathode ray tubes or electron beam tubes
    • H01J2229/48Electron guns
    • H01J2229/4844Electron guns characterised by beam passing apertures or combinations
    • H01J2229/4848Aperture shape as viewed along beam axis
    • H01J2229/4896Aperture shape as viewed along beam axis complex and not provided for

Abstract

PURPOSE:To prevent occurrence of shift caused by astigmatism on scanning picture face, by forming a plurality of thin cuttings around the outside beam pass holes in central and outside beam pass holes made through the bottom of tubular concentrating pole. CONSTITUTION:Central and a pair of outside electron beam pass holes 22-24 are made with same interval through the bottom face 21 of a concentric pole 20 formed into a bottomed tube with non-magnetic stainless steel on X-X axis corresponding with long axis of phosphor face. Thin cuttings 25 are formed in X-X direction and perpendicular direction of said outside electron beam through-holes 23, 24. A field control element made of high permeability material is arranged on the bottom of said pole 20. In other word, a pair of magnetic intensifier element discs 15, 16 are provided while holding the central electron beam through-hole 22 between them on the short axis of phosphor face or vertical axis Y-Y while shielding elements 17, 18 are arranged while surrounding the beam through-holes 23, 24 made on the horizontal axis X-X.

Description

【発明の詳細な説明】 不発明は力2−陰極線管に係シ、インライン型電子銃か
ら放射された中央及び一対の両列側電子ビームが共通の
偏向磁界によシ螢九両上に形成するラスターの大きさを
、特に水平偏向周波数にかかわらず等しくさせることが
可能なセルフ争コンバージェンス方式のインライン型電
子銃に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The invention relates to a cathode ray tube, in which a central electron beam emitted from an in-line electron gun and a pair of both row side electron beams are formed on both sides by a common deflection magnetic field. The present invention relates to a self-convergence type in-line electron gun that can make the size of a raster constant regardless of the horizontal deflection frequency.

第1図は従来用いられている動的コンバージェンス[f
太りない、いわゆるセルフ・コンバージェンス方式のイ
ンライン型電子銃を用いたカラー陰極線管の縦断面図で
ある。インライン型電子銃1から放射されて同一平面内
にある中央電子ビームB1及び一対の周外側電子ビーム
B2.B3は排気された硝子外囲器2の漏斗状部に配設
された偏向装置5によシ水平及び垂直に偏向され、硝子
外囲器20頂面にあシ、内側に三色に発光する複数の螢
光体画素が被着された螢光面4上にこれに対設されたシ
ャドウマスク3を通して走査画面を形成する。このカラ
ー陰極線管を動的コンバージェンス補正を要しないセル
フ・コンバージェンス方式とするには、偏向装置5の水
平偏向磁界を強い先巻型歪に、垂直偏向磁界を強い樽型
歪にして第2図に示す様にこれら偏向磁界によシ一対の
周外側電子ビームB2.B3のコマ収差をなくして螢光
面4上に一致した走査画面6を形成する。この場合の中
央重子ビームB1の走査画面7は一般に水平、垂直共両
外側電子ビームB2.B3の形成する走査画面6より小
さくなる。この走査画面の不整合は偏向装置5のコマ収
差によるものであシ、コマ収差を除去して各走査画面を
一致させるために偏向装置5の後部漏洩磁界が及ぶ電、
子銃1の先端に取付けられた非磁性材で有底円筒状に形
成された集中磁極10の底面11に高透磁率の磁性部材
からなる磁界制御素子を配設している。第3図は磁界制
御素子の一例を示し、集中磁極1oの底面11に穿設さ
れた中央電子ビーム透過開孔12を螢光面4の短軸であ
る垂直軸Y−Y上で挾むように対設された一対の円盤状
磁気増強素子15゜16と、螢光面4の長軸である水平
軸X−X上に穿設された両列側電子ビーム透過開孔13
,14を囲む様に配設された環状磁気遮蔽素子17 、
18から構成されている。磁気増強素子15.16は中
央電子ビームB1に対して、偏向装置5の水平偏向磁界
FHの偏向感度を内外側電子ビームB2 、B3よシ増
加させ、環状磁気遮蔽素子17.18は内外側電子ビー
ムB2.B3に対して、偏向装置5の水平、垂直偏向磁
界FH9Fvの偏向感度を中央電子ビームB1よシ低下
させ、又中央電子ビームB1に対して垂直偏向磁界Fv
の偏向感度を内外側電子ビームよシ増加させる働きがあ
る。
Figure 1 shows the conventionally used dynamic convergence [f
FIG. 2 is a longitudinal sectional view of a color cathode ray tube using a so-called self-convergence type in-line electron gun that is not thick. A central electron beam B1 and a pair of peripheral electron beams B2 emitted from the in-line electron gun 1 and located in the same plane. B3 is deflected horizontally and vertically by a deflection device 5 disposed in the funnel-shaped part of the evacuated glass envelope 2, and a reed is placed on the top surface of the glass envelope 20, emitting light in three colors inside. A scanning screen is formed on a phosphor surface 4 on which a plurality of phosphor pixels are deposited through a shadow mask 3 disposed opposite thereto. In order to make this color cathode ray tube a self-convergence system that does not require dynamic convergence correction, the horizontal deflection magnetic field of the deflection device 5 is made to have a strong first-wound distortion, and the vertical deflection magnetic field is made to have a strong barrel distortion as shown in Fig. 2. As shown, a pair of outermost electron beams B2. The comatic aberration of B3 is eliminated to form a matching scanning screen 6 on the fluorescent surface 4. In this case, the scanning screen 7 of the central beam B1 is generally horizontally and vertically spaced from both outer electron beams B2. It is smaller than the scanning screen 6 formed by B3. This misalignment of the scanning screen is due to the comatic aberration of the deflection device 5. In order to remove the comatic aberration and make each scanning screen coincident, the electric field affected by the rear leakage magnetic field of the deflection device 5 is used.
A magnetic field control element made of a magnetic material with high magnetic permeability is disposed on the bottom surface 11 of a concentrated magnetic pole 10 formed in the shape of a cylinder with a bottom and made of a non-magnetic material and attached to the tip of the child gun 1. FIG. 3 shows an example of a magnetic field control element, in which a central electron beam transmission aperture 12 formed in the bottom surface 11 of the concentrated magnetic pole 1o is arranged so as to be sandwiched on the vertical axis YY, which is the short axis of the fluorescent surface 4. A pair of disk-shaped magnetic enhancement elements 15 and 16 are provided, and electron beam transmission apertures 13 on both row sides are bored on the horizontal axis XX, which is the long axis of the fluorescent surface 4.
, 14, an annular magnetic shielding element 17,
It consists of 18. The magnetic enhancement elements 15.16 increase the deflection sensitivity of the horizontal deflection magnetic field FH of the deflection device 5 with respect to the central electron beam B1 compared to the inner and outer electron beams B2 and B3, and the annular magnetic shielding elements 17.18 increase the deflection sensitivity of the horizontal deflection magnetic field FH of the deflection device 5 with respect to the center electron beam B1. Beam B2. B3, the deflection sensitivity of the horizontal and vertical deflection magnetic fields FH9Fv of the deflection device 5 is lowered than that of the central electron beam B1, and the vertical deflection magnetic field Fv is lowered with respect to the central electron beam B1.
Its function is to increase the deflection sensitivity of the inner and outer electron beams.

従がって磁界制御素子15.16及び17.18により
中央電子ビームB1の走査画面7は水平、垂直方向共拡
大され、逆に内外側電子ビームB2゜B3の走査画面6
は縮少され、偏向磁界によるコマ収差が除去されて走査
画面6.7を完全に一致させることが可能となる。
Therefore, the scanning screen 7 of the central electron beam B1 is enlarged both horizontally and vertically by the magnetic field control elements 15.16 and 17.18, and conversely, the scanning screen 6 of the inner and outer electron beams B2 and B3 is enlarged.
is reduced, comatic aberration due to the deflection magnetic field is eliminated, and it becomes possible to perfectly match the scanning planes 6.7.

一万最近では各種の情報を表示するためカラー陰極線管
に高解像度特性を持たせた一所謂デイスプレイ用カラー
陰極線管が用いられておシ、これにより英数字、記号、
漢字及び図表等が高密度表示される。
Recently, so-called display color cathode ray tubes, which are color cathode ray tubes with high resolution characteristics, have been used to display various types of information.
Kanji, charts, etc. are displayed in high density.

高密度表示を行うには、カラー陰極線管の解像度が高く
、フォーカス特性が均一であること、表示画面の水平方
向解像度を高めるため映像回路の周波数帯域が広いこと
、表示画面の垂直方向解像度を高めるためには走査線数
が多いことが必要となる。
To achieve high-density display, the color cathode ray tube must have high resolution and uniform focus characteristics, the video circuit must have a wide frequency band to increase the horizontal resolution of the display screen, and the vertical resolution of the display screen must be increased. This requires a large number of scanning lines.

通常、高密度表示の一手段として走査線数を増加させる
ため、水平偏向周波数fhを現行の標準カラーTV方式
の15.734KHz以上に高めることが行なわれてい
る。この場合、水平偏向周波数、l’h=15.734
KHz程度では全く問題がなかった水平偏向磁界による
両列側及び中央電子ビームが形成する走査画面6′、7
′のコマ収差が生じ、第4図に示す様に中央電子ビーム
の走査画面7′に対し内外側電子ビームの走査画面6′
が水平方向で若干拡大され、且つその拡大の割合が螢光
面4の左右で相違し、左側の拡大寸法d1 の万が右側
の拡大寸法d2よす大きくなる非対称性が生じる。この
走査画面のズレがコンバージェンス誤差で、1、螢光面
受像画像品位を著しく劣化させる。例えば20インチ9
0度偏向カラー陰極線管に於て、水平偏向周波数fh=
15.78KHzを2倍のfh =31.5に、Hzで
は上述のズレd1.d2は有効螢光面近くで5− d1=Q、7im、 d2==0.3朋となる。
Normally, in order to increase the number of scanning lines as a means of high-density display, the horizontal deflection frequency fh is increased to more than 15.734 KHz of the current standard color TV system. In this case, the horizontal deflection frequency, l'h=15.734
Scanning screens 6' and 7 formed by the electron beams on both rows and the center due to the horizontal deflection magnetic field, which had no problems at around KHz.
A coma aberration of ' occurs, and as shown in FIG. 4, the scanning screen 6' of the inner and outer electron beams is
is slightly enlarged in the horizontal direction, and the rate of enlargement is different on the left and right sides of the fluorescent surface 4, resulting in an asymmetry in which the enlarged dimension d1 on the left side is larger than the enlarged dimension d2 on the right side. This shift in the scanning screen is a convergence error, which significantly deteriorates the quality of the image received on the fluorescent surface. For example, 20 inches 9
In a 0 degree deflection color cathode ray tube, the horizontal deflection frequency fh=
15.78KHz is doubled to fh = 31.5, and the above-mentioned deviation d1. d2 becomes 5-d1=Q, 7im, d2==0.3ho near the effective fluorescent surface.

水平偏向周波数fhの増加と共に内外側電子ビームと中
央電子ビームが形成する走査画面6′、7′に水平方向
でコマ収差によるズレが生じる原因は次の通りである。
The reason why the scanning screens 6' and 7' formed by the inner and outer electron beams and the central electron beam are shifted in the horizontal direction due to coma aberration as the horizontal deflection frequency fh increases is as follows.

先ず第一に、集中磁極10の底面11に誘導され、この
面を貫通する水平偏向磁界成分によシ環状磁気遮蔽素子
17.18の配設された両列側電子ビーム透過開孔13
.04周囲及び環状磁気遮蔽素子17.18に渦電流が
生じ、これによって環状磁気遮蔽素子17.18中の磁
束変化を妨げる磁束が発生して、磁束を減殺させ、ため
に磁気遮蔽効果を減少させる。この渦電流による磁束の
損失は従来の水平偏向周波数f h=l 5.73KH
z程度では全く無視出来たが、周波数の増加に従がって
渦電流による磁束の損失は無視出来なくなり、第4図に
示す様に内外側電子ビームの走査画面6′が中央電子ビ
ーム走査画面7′に対し左右方向で広がることによる。
First of all, the horizontal deflection magnetic field component guided to the bottom surface 11 of the concentrated magnetic pole 10 and penetrating this surface causes the electron beam transmission apertures 13 on both row sides in which the annular magnetic shielding elements 17 and 18 are arranged.
.. 04 Eddy currents are generated around the annular magnetic shielding element 17.18, which generates a magnetic flux that obstructs the magnetic flux change in the annular magnetic shielding element 17.18, thereby attenuating the magnetic flux and thus reducing the magnetic shielding effect. . The loss of magnetic flux due to this eddy current is due to the conventional horizontal deflection frequency f h=l 5.73KH
It was completely negligible at around Z, but as the frequency increases, the loss of magnetic flux due to eddy currents becomes impossible to ignore, and as shown in Fig. 4, the scanning screen 6' of the inner and outer electron beams becomes the central electron beam scanning screen. This is because it expands in the left and right direction relative to 7'.

一万、水平方向の走査を行うために偏向装f5の水平偏
向コイルに流す電流波形は第5図に示す6一 鋸歯状波であり、図中a点からb点迄の時間t1が水平
走査時間であり、b点からC点迄の時間t2が水平帰線
時間であシ、通常t2はtlの約115程度に設定され
ている。a点或いはC点が水平走査の左端に、b点が右
端の位置に対応している〇即ち水平走査画面の左端の位
置は水平帰線時間t2の終端に対応し右端は水平走査時
間t1の終端に対応し、水平帰線期間t2中は水平走査
期間dl中の約5倍の速さで変化する電流による磁界が
発生し、従がってその高調波成分磁界による渦電流損失
に基づく環状磁気遮蔽素子17.18の磁気遮蔽効果損
失は螢光面左側の万が右側よシ大きく、第4図に示す様
に内外側を子ビームの走査画面6′の中央電子ビームの
走査画面7′に対する水平方向での拡大幅は左側のdl
が右側のdlよシ大きくなり、水平方向でのコマ収差の
非対称性が生じる。
The current waveform applied to the horizontal deflection coil of the deflection device f5 to perform horizontal scanning is a sawtooth wave shown in FIG. 5, and the time t1 from point a to point b in the figure is the horizontal scanning. The time t2 from point b to point C is the horizontal retrace time, and t2 is usually set to about 115 of tl. Point a or point C corresponds to the left end of horizontal scanning, and point b corresponds to the right end. In other words, the left end of the horizontal scanning screen corresponds to the end of horizontal blanking time t2, and the right end corresponds to the end of horizontal scanning time t1. During the horizontal retrace period t2, which corresponds to the termination, a magnetic field is generated due to the current that changes about five times faster than during the horizontal scanning period dl, and therefore an annular magnetic field is generated due to the eddy current loss due to the harmonic component magnetic field. The magnetic shielding effect loss of the magnetic shielding elements 17 and 18 is larger on the left side of the fluorescent surface than on the right side, and as shown in FIG. The horizontal expansion width for is dl on the left
becomes larger than dl on the right side, causing asymmetry in comatic aberration in the horizontal direction.

従来の標準カラーTV方式(NTSC方式)で用いられ
ているfh=15.734KHzでは約tl=51〜5
3μ(6)、t2=10〜12μ紅でこれによる渦電流
損失は全く無視出来、従がって上述のコマ収差及びその
非対称は実質的には見出せなかったが、fhの増加と共
に口 とt2の相違、更に有効走査時間11を大きくす
るため帰線時間t2は出来るだけ小さく設定されて、渦
電流損失の非対称性は無視出来ない量となって上記の現
象が生じてくる。
At fh = 15.734KHz, which is used in the conventional standard color TV system (NTSC system), tl = approximately 51 to 5.
3μ(6), t2 = 10 to 12μ, the eddy current loss caused by this can be completely ignored, and therefore the above-mentioned coma aberration and its asymmetry could not be found substantially, but as fh increases, the mouth and t2 In order to further increase the effective scanning time 11, the retrace time t2 is set as small as possible, and the asymmetry of the eddy current loss becomes a non-negligible amount, causing the above-mentioned phenomenon.

不発明は上述の欠点に鑑みてなされたものであシ、セル
フ・コンバージェンス方式のインライン型電子銃の水平
偏向周波数の増加に対して内外側電子ビームと中央電子
ビームの形成する走査画面にコマ収差によるズVが生じ
ないようにしたものである。
This invention was made in view of the above-mentioned drawbacks, and as the horizontal deflection frequency of the self-convergence type in-line electron gun increases, coma aberration occurs in the scanning screen formed by the inner and outer electron beams and the central electron beam. This is to prevent the occurrence of distortion caused by

即ちインライン型電子銃の電子ビーム射出側先端に取付
けられた非磁性金塊材から成る有底円筒状集中磁極底面
にインライン配列されて穿設された中央及び両列側ビー
ム透過開孔の白画外側電子ビーム透過孔の周囲に複数の
細長い切込みを形成したものである。このように構成す
ることによって、両列側〜:子ビーム透過開孔部に配設
される磁界制御素子はこれを貫通する高周波の水平偏向
周波数成分による渦電流の発生が防止可能となり、水平
偏向周波数の増加にかかわらず中央及び内外側電子ビー
ムが形成する走査画面にコマ収差による非対称なズレを
除去出来、インライン型電子銃を高密度表示可能な優れ
た電子銃とすることが出来る。
That is, the white outside of the center and both row side beam transmission apertures arranged in-line and bored on the bottom surface of the bottomed cylindrical concentrated magnetic pole made of non-magnetic gold ingot attached to the tip of the electron beam exit side of the in-line electron gun. A plurality of elongated cuts are formed around the electron beam transmission hole. With this configuration, the magnetic field control elements disposed in the child beam transmission apertures on both row sides can prevent the generation of eddy currents due to high-frequency horizontal deflection frequency components passing through the magnetic field control elements. Regardless of the increase in frequency, it is possible to eliminate asymmetric shifts due to coma in the scanning screen formed by the central and inner and outer electron beams, making it possible to make the in-line electron gun an excellent electron gun capable of high-density display.

以下、図面を参照して不発明の実施例を詳細に説明する
Hereinafter, embodiments of the invention will be described in detail with reference to the drawings.

第6図は本発明の一実施例による集中磁極20の斜視図
を示す。電子銃の先端に取付けられる非磁性材のステン
レスで有底円筒状に形成された集中磁極20の底面21
には中央及び一対の内外側電子ビーム透過開孔22,2
3.24が等間隔を保って同−直線上−螢光面の長軸に
対応したX−X軸上に穿設されている。然るに内外側電
子ビーム透過開孔23,24にはX−X軸方向、及びこ
れに垂直方向に細長い切シ込み25が形成されているO
この集中磁極20の底面に第7図に示す様に従来と同様
の高透磁率磁性部材から成る磁界制御素子を配設する。
FIG. 6 shows a perspective view of a concentrated magnetic pole 20 according to one embodiment of the invention. A bottom surface 21 of a concentrated magnetic pole 20 formed in a cylindrical shape with a bottom and made of non-magnetic stainless steel and attached to the tip of an electron gun.
has a center and a pair of inner and outer electron beam transmission apertures 22, 2.
3.24 are drilled at equal intervals on the same straight line and on the X--X axis corresponding to the long axis of the fluorescent surface. However, in the inner and outer electron beam transmission apertures 23 and 24, elongated incisions 25 are formed in the X-X axis direction and in a direction perpendicular thereto.
As shown in FIG. 7, on the bottom surface of the concentrated magnetic pole 20, a magnetic field control element made of a high permeability magnetic material similar to the conventional one is arranged.

即ち中央電子ビーム透過開孔22會螢光面4の短軸であ
る垂直軸Y−Y上で挾む様に9一 対向して一対の円盤状磁気増強票子15.16と、水平
軸X−X上に穿設された内外側電子ビーム透過開孔23
.24′(il−囲む様に環状磁気遮蔽素子17゜18
を配設する。これらの磁界制御素子15,16゜17.
18の偏向磁界に対する働きは前記従来例と全く同一で
ある。
That is, the central electron beam transmission aperture 22 has a pair of disc-shaped magnetic enhancement tabs 15 and 16 facing each other, and a horizontal axis X-. Inner and outer electron beam transmission apertures 23 bored on X
.. 24'(il-surrounding annular magnetic shielding element 17°18
to be placed. These magnetic field control elements 15, 16°17.
The function of the deflection magnetic field 18 is exactly the same as that of the conventional example.

然しなから、水平偏向磁界が集中磁極20の底面に誘導
されて、この面を貫通する成分があっても、内外側電子
ビーム透過開孔23 、24の周囲には複数の細長い切
込み25が形成されているため、この孔部での渦電流発
生が阻止される。
However, even if the horizontal deflection magnetic field is induced to the bottom surface of the concentrated magnetic pole 20 and there is a component that penetrates this surface, a plurality of elongated cuts 25 are formed around the inner and outer electron beam transmission apertures 23 and 24. This prevents the generation of eddy currents in this hole.

従がってこの渦電流によって環状磁気遮蔽素子17.1
8中の磁束変化を妨げる磁束の発生は極めて小さくなシ
、その磁気遮蔽効果は特にその水平偏向周波数がfh=
15.73KH2よシ高くなっても、その周波数にかか
わらず減少することはなくなる。
This eddy current therefore causes the annular magnetic shielding element 17.1
The generation of magnetic flux that obstructs the magnetic flux change in 8 is extremely small, and its magnetic shielding effect is especially noticeable when the horizontal deflection frequency is fh=
Even if it becomes higher than 15.73KH2, it will not decrease regardless of the frequency.

この結果従来のように水平偏向周波数fhが高くなって
も内外側電子ビームの走査画面が中央電子ビームの走査
画面に対し拡がったシ、或いはその拡大率が水平走査時
間と水平帰線時間の相違によ一1〇− って非対称となることがなくなる。
As a result, even if the horizontal deflection frequency fh increases as in the conventional case, the scanning screen of the inner and outer electron beams is expanded relative to the scanning screen of the central electron beam, or the expansion rate is the difference between the horizontal scanning time and the horizontal retrace time. Therefore, there will be no asymmetry.

以上の説明では中央と面外側電子ビームの走査画面が第
2図に示す関係にある走査画面のコマ収差を補正する各
一対の磁気増強素子と環状磁気遮蔽素子から々る磁界制
御素子を用いる場合について述べたが、不発明はこれに
限定されることなく種々のコマ収差を補正する場合にも
適用可能である。例えば螢光面4上の走査画面の上下、
左右の歪音偏向装置の磁界で補正した時第8図に示す様
に、面外側電子ビームの走査画面60が中央重子ビーム
の走査画面7oに対して螢光面4の上下で広く、左右で
狭くなるが、この場合のコマ収差全補正する磁界制御素
子に対しても適用可能である。この場合第9図に示す様
に一対のコ字形磁界制御素子27.28が集中磁極20
の底面21に穿設された両列側電子ビーム透過開孔23
,24に配設され、その孔部周囲には複数の細長い切込
み25が形成されている。
In the above explanation, the scanning screen of the central and out-of-plane electron beams uses a magnetic field control element consisting of a pair of magnetic enhancement elements and an annular magnetic shielding element for correcting comatic aberration of the scanning screen with the relationship shown in FIG. However, the invention is not limited to this, and can be applied to the case of correcting various coma aberrations. For example, the top and bottom of the scanning screen on the fluorescent surface 4,
When corrected by the magnetic fields of the left and right distorted sound deflectors, as shown in FIG. Although it is narrower, it can also be applied to a magnetic field control element that completely corrects coma aberration in this case. In this case, as shown in FIG. 9, a pair of U-shaped magnetic field control elements 27 and 28
Electron beam transmission apertures 23 on both row sides are bored in the bottom surface 21 of the
, 24, and a plurality of elongated cuts 25 are formed around the hole.

更に上述した線順次で有効走査期間中の走査速度が一定
であるラスク走査方式でなく、走査速度が不定のランダ
ム走査方式に対して不発明を適用すれば、この場合もコ
マ収差は生じることがなくなシ、その有効性が一層顕著
となる。
Furthermore, if the present invention is applied not to the above-mentioned Rask scanning method in which the scanning speed is constant during the effective scanning period in the line sequential manner, but to the random scanning method in which the scanning speed is undefined, coma aberration will not occur in this case as well. As time passes, its effectiveness becomes even more obvious.

或いは不発明によれば、使用される水平偏向周波数毎に
集中磁極底面に配設される磁界制御素子を最適化した専
用のものとする必要がなく、同一の磁界制御素子を共用
可能となる。
Alternatively, according to the invention, it is not necessary to optimize the magnetic field control element disposed on the bottom surface of the concentrated magnetic pole for each horizontal deflection frequency to be used, and the same magnetic field control element can be used in common.

上述の様に不発明によれば、セルフ・コンバージェンス
方式のインライン型電子銃の先端に取付けられた集中磁
極底面の両列側電子ビーム透過開孔周囲に複数の細長い
切込みを形成したことにより、ここに配設される磁界制
御素子の水平偏向周波数に対する作用の依在性、及び水
平走査時間と水平帰線時間の相違による作用の差をなく
すことが出来る。この結果水平偏向周波数の増加にかか
わらず、中央及び面外側電子ビームが形成する走査画面
のコマ収差に基づいた非対称なズレを除去可能となシ、
インライン型電子銃を高密度表示可能な極めて優れた電
子銃とすることが出来、その実用的価値は非常に高い。
As described above, according to the invention, a plurality of elongated cuts are formed around the electron beam transmission apertures on both row sides of the bottom surface of the concentrated magnetic pole attached to the tip of the self-convergence type in-line electron gun. The dependence of the effect of the magnetic field control element disposed on the horizontal deflection frequency and the difference in effect due to the difference between the horizontal scanning time and the horizontal retrace time can be eliminated. As a result, regardless of the increase in the horizontal deflection frequency, it is possible to eliminate asymmetric shifts based on comatic aberration of the scanning screen formed by the central and out-of-plane electron beams.
The in-line type electron gun can be made into an extremely excellent electron gun capable of high-density display, and its practical value is extremely high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来用いられているセルフ・コンバージェンス
方式のインライン型電子銃を用いたカラー陰極線管の縦
断面図、第2図はこのカラー陰極線管の螢光面上に中央
及び両列側電子銃が形成する走査画面を示す図、第3図
は前記走査画面のコマ収差を補正する磁界制御素子と、
その水平、垂直偏向磁界に対する作用を示す図、第4図
は走査画面のコマ収差を示す図、第5図は水平偏向コイ
ルに流れる電流波形、第6図、第7図は不発明の一実施
例による集中磁極の斜視図及びその底面に磁界制御素子
を配設した状態の平面図、第8図は不発明が適用し得る
他の走査画面のコマ収差パターンを示す図、第9図は前
記コマ収差を補正する磁界制御装置に不発明を適用した
他の実施例による集中磁極底面の平面図を夫々示す。 1・・・・・・インライン型電子銃、2・・・硝子外囲
器、4・・・・・・螢光面、5・・・・・・偏向装置、
6.6’、60・・・・・・面外側電子ビームが形成す
る走査画面、7.’l’、70・・・・・中央電子ビー
ムが形成する走査画面、10.2013− ・・−・・・集中磁極、12.22・・・・・・集中磁
極底面の中央電子ビーム透過開孔、13,14,23.
24・・・・・・集中磁極底面の周外側電、子ビーム透
過開孔、15.16・・・・磁気増強素子、17.18
・・・・環状磁気遮蔽素子、27.28・・・・・磁界
制御素子、25・・・・・・細長い切込み。 14−
Figure 1 is a longitudinal cross-sectional view of a color cathode ray tube that uses a conventional self-convergence type in-line electron gun, and Figure 2 shows the center and both row side electron guns on the fluorescent surface of this color cathode ray tube. FIG. 3 is a diagram showing a scanning screen formed by a magnetic field control element for correcting coma aberration of the scanning screen;
Figure 4 shows the coma aberration of the scanning screen, Figure 5 shows the current waveform flowing through the horizontal deflection coil, Figures 6 and 7 show an example of the invention. A perspective view of a concentrated magnetic pole according to an example and a plan view of a state in which a magnetic field control element is disposed on the bottom surface of the concentrated magnetic pole, FIG. 8 is a diagram showing a coma aberration pattern of another scanning screen to which the invention can be applied, and FIG. FIG. 7 shows plan views of the bottom surfaces of concentrated magnetic poles according to other embodiments in which the invention is applied to a magnetic field control device for correcting coma aberration. DESCRIPTION OF SYMBOLS 1... In-line electron gun, 2... Glass envelope, 4... Fluorescent surface, 5... Deflection device,
6. 6', 60... Scanning screen formed by the out-of-plane electron beam, 7. 'l', 70... Scanning screen formed by the central electron beam, 10.2013-... Concentrated magnetic pole, 12.22... Center electron beam transmission opening on the bottom surface of the concentrated magnetic pole. Hole, 13, 14, 23.
24... Circumferential electron beam transmission aperture on the bottom surface of the concentrated magnetic pole, 15.16... Magnetic enhancement element, 17.18
...Annular magnetic shielding element, 27.28...Magnetic field control element, 25...Elongated notch. 14-

Claims (1)

【特許請求の範囲】[Claims] カラー陰極線管用インライン型電子銃の電子ビーム射出
側先端に取付けられた非磁性金属材から成る有底円筒状
集中極底面にインライン配列されて穿設された中央及び
両列側電子ビーム透過開孔のうち、偏向磁界によって形
成される走査画面のコマ収差を補正する磁界制御素子が
配設される前記開孔周囲に複数の細長い切込みを形成し
たことを特徴とするインライン型電子銃。
Electron beam transmission apertures in the center and both rows are arranged in-line on the bottom surface of a bottomed cylindrical concentrating pole made of a non-magnetic metal material, which is attached to the tip of the electron beam exit side of an in-line electron gun for color cathode ray tubes. An in-line electron gun characterized in that a plurality of elongated cuts are formed around the aperture in which a magnetic field control element for correcting coma aberration of a scanning screen formed by a deflection magnetic field is disposed.
JP2011283A 1983-02-09 1983-02-09 Inline electron gun Granted JPS59146132A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011283A JPS59146132A (en) 1983-02-09 1983-02-09 Inline electron gun
EP84300804A EP0116465B1 (en) 1983-02-09 1984-02-08 Colour cathode ray tube
DE8484300804T DE3462200D1 (en) 1983-02-09 1984-02-08 Colour cathode ray tube
US06/578,673 US4593226A (en) 1983-02-09 1984-02-09 Color cathode ray tube having electron gun with reduced eddy current loss at shield cup

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011283A JPS59146132A (en) 1983-02-09 1983-02-09 Inline electron gun

Publications (2)

Publication Number Publication Date
JPS59146132A true JPS59146132A (en) 1984-08-21
JPH0367297B2 JPH0367297B2 (en) 1991-10-22

Family

ID=12018032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011283A Granted JPS59146132A (en) 1983-02-09 1983-02-09 Inline electron gun

Country Status (1)

Country Link
JP (1) JPS59146132A (en)

Also Published As

Publication number Publication date
JPH0367297B2 (en) 1991-10-22

Similar Documents

Publication Publication Date Title
KR900006172B1 (en) Cathod ray tube
US3731129A (en) Rectangular color tube with funnel section changing from rectangular to circular
JPH0427656B2 (en)
KR900002906B1 (en) Color cathode ray tube device
US6172450B1 (en) Election gun having specific focusing structure
US4396862A (en) Color picture tube with means for affecting magnetic deflection fields in electron gun area
US4096462A (en) Deflection yoke device for use in color television receiver sets
EP0178857B1 (en) Electron gun
JPS58192252A (en) Cathode-ray tube device
JPS59146132A (en) Inline electron gun
JPS59146131A (en) Inline type electron gun
US4593226A (en) Color cathode ray tube having electron gun with reduced eddy current loss at shield cup
JPS6117095B2 (en)
JPH0367298B2 (en)
JPS6129047A (en) Inline electron gun structure
JPS6129046A (en) Inline electron gun structure
JPS60262336A (en) Inline type electron gun
JPH077643B2 (en) Color television picture tube having aberration correction element and aberration correction method
JPH0822779A (en) Electron gun for color cathode-ray tube
JPH0367299B2 (en)
JPH07118280B2 (en) Cathode ray tube
JPH04181637A (en) In-line type electron gun body structure
KR840001000B1 (en) Self conversing color image display system
JPH0433238A (en) Color picture tube device
KR100274881B1 (en) Focus Unbalance Adjuster for Color Cathode Ray Tubes