JPS60262310A - Method of producing nb3sn superconductive wire - Google Patents

Method of producing nb3sn superconductive wire

Info

Publication number
JPS60262310A
JPS60262310A JP59117544A JP11754484A JPS60262310A JP S60262310 A JPS60262310 A JP S60262310A JP 59117544 A JP59117544 A JP 59117544A JP 11754484 A JP11754484 A JP 11754484A JP S60262310 A JPS60262310 A JP S60262310A
Authority
JP
Japan
Prior art keywords
tube
wire
alloy
superconductive wire
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59117544A
Other languages
Japanese (ja)
Inventor
鈴木 英元
市原 政光
神定 良昌
智幸 熊野
伸夫 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP59117544A priority Critical patent/JPS60262310A/en
Publication of JPS60262310A publication Critical patent/JPS60262310A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はNb5Sn超電導線の製造方法、特に内部拡散
形の多心構造のNb5Sn超電導線の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing an Nb5Sn superconducting wire, and particularly to a method for manufacturing an Nb5Sn superconducting wire having an internally diffused multicore structure.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

高磁場中で良好な超電導特性を示すNb58n超電導線
は、一般にNb18nおよびOuを含む三元系の複合線
材を熱処理することによって製造される。これは100
0℃以上の高い温度を必要とするNbと8nの直接反応
がOuを拡散経路とすることによって600℃程度まで
低下することによる。
Nb58n superconducting wire exhibiting good superconducting properties in a high magnetic field is generally manufactured by heat treating a ternary composite wire containing Nb18n and Ou. This is 100
This is because the direct reaction between Nb and 8n, which requires a high temperature of 0° C. or higher, is reduced to about 600° C. by using O as a diffusion path.

このようなNbl 8n超電導線の製造方法として、内
部拡散法が知られている。
An internal diffusion method is known as a method for manufacturing such Nbl 8n superconducting wire.

内部拡散法はOu S n合金中にNbを配置するブロ
ンズ法と、Nbパイプ中にOuを介して8nを配置する
パイプ構造法があるが、前者はブロンズの加工硬化のた
め多くの中間焼鈍を必要とし、工程が複雑となる欠点を
有しており、後者は極細線化、すなわち多フイラメント
構造の超電導線を製造することが難しいという難点があ
る。
Internal diffusion methods include a bronze method in which Nb is placed in an OuSn alloy, and a pipe structure method in which 8n is placed in a Nb pipe through O, but the former requires a lot of intermediate annealing to work harden the bronze. The latter has the disadvantage that it is difficult to manufacture ultra-fine wires, that is, to manufacture superconducting wires with a multifilament structure.

粉末等の混合物を加圧成形した後、これをCuパイプ中
に収容し、次いで断面減少加工を施して最終形状とした
後、熱処理を施すことを特徴とするNb3 Sn超電導
線の製造方法を出願した(特願昭58−58973およ
び特願昭58−72496)。
An application has been filed for a method for manufacturing Nb3Sn superconducting wire, which is characterized in that a mixture of powders, etc. is press-molded, then placed in a Cu pipe, and then processed to reduce its cross section to give it a final shape, and then heat-treated. (Japanese Patent Application No. 58-58973 and Japanese Patent Application No. 72496-1983).

しかしながら、これらの方法においてはOu粉末および
OuバイブがSnに汚染されるため安定化材を別に配置
せねばならず、この方法として、例えばOuパイプの外
側にバリヤーとなるNi+ノぐイブおよび安定化材とし
てQ uバイブを順に配置してこれを加工後、熱処理を
施す方法も考えられるが、Nbバイブを使用するため、
高加工度の減面加工を施した場合にNbバイブの周方向
の破断や軸方向の破断を生じ易く、安定化材がSnで汚
染され易いという難点がある0 〔発明の目的〕 本発明は、以上の難点を解消するためになされたもので
、Nb管にZrを添加することにより、極細線化を可能
としたNbs 8n超電導線の製造方法を提供すること
を目的とする。
However, in these methods, the Ou powder and the Ou vibe are contaminated with Sn, so a stabilizing material must be placed separately. It is also possible to arrange Qu-vibes as materials in order and heat-treat them after processing, but since Nb-vibes are used,
When a high degree of surface reduction processing is performed, the Nb vibrator tends to break in the circumferential direction or in the axial direction, and the stabilizing material is easily contaminated with Sn. The present invention was made in order to solve the above-mentioned difficulties, and the object is to provide a method for manufacturing an Nbs 8n superconducting wire that can be made ultra-fine by adding Zr to the Nb tube.

〔発明の概要〕[Summary of the invention]

本発明のNb、an超電導線の製造方法は、0.1〜2
at%のZrを添加したN6系合金管の内部□1′ に
CuまたはOu系合金を被覆したSnまたはSn系合金
ロッドを収容するとともに、前記Nb系合金管の外側に
安定化Ouを配置した複合体に減少加工を施した後、N
b、Sn生成の熱処理を施すことを特徴としている。
The method for manufacturing the Nb, an superconducting wire of the present invention includes
A Sn or Sn-based alloy rod coated with Cu or Ou-based alloy was housed inside □1' of the N6-based alloy tube to which at% of Zr was added, and a stabilizing O was placed outside the Nb-based alloy tube. After applying reduction processing to the composite, N
b. It is characterized in that it is subjected to heat treatment to generate Sn.

本発明においてN l)系合金管中に添加されるZrの
景は0.1〜2at%の範囲とする必要があり、特に9
.5〜1.05at%の範囲が好適している。
In the present invention, the amount of Zr added to the Nl)-based alloy tube must be in the range of 0.1 to 2 at%, especially 9
.. A range of 5 to 1.05 at% is suitable.

上記の範囲外では多心構造の極細線化に際してNb系合
金管の断線率が著しく上昇する。
Outside the above range, the wire breakage rate of the Nb-based alloy tube increases significantly when the multi-core structure is made to be ultra-thin.

また、本発明における熱処理は、600〜800°Cの
温度範囲で行われるが、その熱処理時間は線材の構造に
対応して数十時間から百数十時間の範囲で適宜選択され
る。
Further, the heat treatment in the present invention is performed at a temperature range of 600 to 800°C, and the heat treatment time is appropriately selected in the range of several tens of hours to over 100 hours depending on the structure of the wire.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の実施例について説明する。 Examples of the present invention will be described below.

実施例1 外径8Mφ、内径5.6關φのN b −1a t%Z
r合金管内に外径5.4 jl@φのC、u被覆8nM
(xs、s3t%Sn)を収容し、外周に外径IQ、3
smφのQu管を配置した後、これに断面減少加工を施
して平行面開動1112.52fiのシングル線を製造
した。
Example 1 N b -1a t%Z with outer diameter 8Mφ and inner diameter 5.6mmφ
C, u coating 8nM with outer diameter 5.4jl@φ inside r alloy tube
(xs, s3t%Sn), outer diameter IQ, 3
After arranging the smφ Qu tube, this was subjected to cross-section reduction processing to produce a single wire with a parallel plane opening movement of 1112.52fi.

このシングル線の7本を外径10.3耶φ、内径8.1
門φのQ II 賃”中に収容した後、これに断面減少
加工を施して得た外径0.287闘φの箱1材に700
”CX 96時間の熱処理を施して超′r#、導線を製
造した。この超1!導線の臨界電流値は10’L’で2
1Aであった。
Seven of these single wires have an outer diameter of 10.3φ and an inner diameter of 8.1
700 to 1 box with an outer diameter of 0.287 mm and obtained by applying cross-section reduction processing to it after placing it inside the gate φ.
``CX 96 hours of heat treatment was applied to produce a super'r# conductor.The critical current value of this super 1!conductor was 2 at 10'L'.
It was 1A.

実I血例2 N l)合金管外周に配置したO u管の外径を9.7
闘φとした他は実施例1と同様に構成した複合体に断面
減少加工を施して平行面開動11i 2.27 Mのシ
ングル線を製造した。このシングル線の264本を外径
49朋φ、内径43.5mφのCu管中に収容した後、
これに断面減少加工を施してNb管の伸線加工限界をめ
たところ外径30μmφ迄はNb管の破断を生ぜず、こ
れ以下に加工するとN I)管の断線率が著しく増大し
伸線加工不能となった。
Actual Blood Example 2 N l) The outer diameter of the O u tube placed on the outer periphery of the alloy tube is 9.7
A single wire with a parallel surface opening of 11i 2.27 M was manufactured by subjecting a composite body constructed in the same manner as in Example 1 except that the diameter was changed to φ to reduce the cross section. After housing 264 of these single wires in a Cu tube with an outer diameter of 49 mm and an inner diameter of 43.5 m,
When this was subjected to cross-section reduction processing to reach the wire drawing processing limit for Nb tubes, no breakage of the Nb tube occurred up to an outer diameter of 30 μmφ, and when processed to a diameter smaller than this, the wire breakage rate of the Nb tube increased significantly and wire drawing It became impossible to process.

比較例1 実施例1におけるN1)−Zr合金管の代りに、Nb管
を用いて実施例1と同様の加工を行った場合の伸縮加工
限界は0.43Mφであった。
Comparative Example 1 When the same processing as in Example 1 was performed using a Nb tube instead of the N1)-Zr alloy tube in Example 1, the expansion/contraction processing limit was 0.43 Mφ.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば熱処理後にNb3 
Snを生成するN +)管に微量のZrを添加したこと
により多心構造のNb、8n超電導線を容易に製造する
ことができる。
As described above, according to the present invention, after heat treatment, Nb3
By adding a small amount of Zr to the N + ) tube that generates Sn, it is possible to easily manufacture a multicore Nb, 8n superconducting wire.

第1頁の続き ■Int、CI、’ 識別記号 庁内整理番号0発 明
 者 青 木 伸 夫 川崎市川崎区小田栄社内 ′ 2丁目1番1号 昭和電線電纜株式会
Continuing from page 1 ■Int, CI,' Identification code Internal reference number 0 Inventor Nobuo Aoki Inside Oda Sakae, Kawasaki-ku, Kawasaki City ' 2-1-1 Showa Electric Wire & Cable Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 0.1〜2 a t %のZrを添加したNb系4合金
管の内部にOuまたはQu系合金を被覆した8nまたは
sn系合金ロッドを収容するとともに、前記Nb系合金
管の外側に安定化Ouを配置した複合体に減少減少加工
を施した後、Nb18n生成の熱処理を施すことを特徴
とするNb38n超電導線の製造方法。
An 8N or Sn alloy rod coated with Ou or Qu alloy is housed inside a Nb-based 4 alloy tube to which 0.1 to 2 at % of Zr is added, and a stabilized rod is placed outside the Nb-based alloy tube. A method for producing a Nb38n superconducting wire, which comprises subjecting a composite in which O is arranged to a reduction processing and then subjecting it to heat treatment to generate Nb18n.
JP59117544A 1984-06-08 1984-06-08 Method of producing nb3sn superconductive wire Pending JPS60262310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59117544A JPS60262310A (en) 1984-06-08 1984-06-08 Method of producing nb3sn superconductive wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59117544A JPS60262310A (en) 1984-06-08 1984-06-08 Method of producing nb3sn superconductive wire

Publications (1)

Publication Number Publication Date
JPS60262310A true JPS60262310A (en) 1985-12-25

Family

ID=14714425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59117544A Pending JPS60262310A (en) 1984-06-08 1984-06-08 Method of producing nb3sn superconductive wire

Country Status (1)

Country Link
JP (1) JPS60262310A (en)

Similar Documents

Publication Publication Date Title
JPS61131307A (en) Manufacture of superconductive wire
JPH0768605B2 (en) Nb (bottom 3) Method for manufacturing Sn-based superconducting wire
US4153986A (en) Method for producing composite superconductors
JPS60262310A (en) Method of producing nb3sn superconductive wire
JPH0570888B2 (en)
US4215465A (en) Method of making V3 Ga superconductors
JPS59209210A (en) Nb3sn compound superconductive wire and production thereof
JP3058904B2 (en) Nb Lower 3 Method for Manufacturing Sn Multicore Superconducting Wire
JP3059570B2 (en) Superconducting wire and its manufacturing method
JP2544096B2 (en) Nb (bottom 3) Method for manufacturing Sn superconducting wire
Foner et al. Progress with cold powder-metallurgy-processed superconducting multifilamentary composites
JPS6113508A (en) Method of producing low copper ratio nb3sn superconductive wire
JPS60232615A (en) Method of producing nb3sn superconductive wire
JPS5823109A (en) Method of producing nb3sn superconductive wire material
JPS59184404A (en) Method of producing nb3sn superconductive conductor
JPH03283322A (en) Manufacture of nb3al superconductor
JPS59108202A (en) Nb3sn compound superconductive wire and method of producing same
JPS61279662A (en) Production of nb3sn multi-cored superconductive wire
JPS60232616A (en) Method of producing nb3sn superconductive wire
JPS59191213A (en) Method of producing compound composite superconductive conductor
JPH03283318A (en) Manufacture of nb3al multicore superconductor
JPH0317332B2 (en)
JPS61115613A (en) Production of nb-ti multicore superconductive wire
JPS62240751A (en) Manufacture of nb3sn super conducting wire by internal diffusion method
JPH0211732A (en) Manufacture of nb3sn multicore superconducting wire