JPS602622A - Method for rolling continuously cast billet of ferritic stainless steel containing niobium and copper - Google Patents

Method for rolling continuously cast billet of ferritic stainless steel containing niobium and copper

Info

Publication number
JPS602622A
JPS602622A JP10988183A JP10988183A JPS602622A JP S602622 A JPS602622 A JP S602622A JP 10988183 A JP10988183 A JP 10988183A JP 10988183 A JP10988183 A JP 10988183A JP S602622 A JPS602622 A JP S602622A
Authority
JP
Japan
Prior art keywords
stainless steel
ferritic stainless
cooling
less
continuously cast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10988183A
Other languages
Japanese (ja)
Other versions
JPS62206B2 (en
Inventor
Akio Yamamoto
章夫 山本
Shigenao Anzai
安斎 栄尚
Takeo Ashiura
芦浦 武夫
Susumu Kurosawa
黒澤 進
Katsutoshi Sugawara
克俊 菅原
Jiyouji Tamura
田村 譲児
Shuichi Funaki
船木 秀一
Yoshio Abe
阿部 義男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10988183A priority Critical patent/JPS602622A/en
Publication of JPS602622A publication Critical patent/JPS602622A/en
Publication of JPS62206B2 publication Critical patent/JPS62206B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To prevent cracking by forming a continuously cast billet of a ferritic stainless steel having a specified composition contg. Nb and Cu, cooling the billet to a specified temp. under specified cooling conditions, and reheating and hot rolling it. CONSTITUTION:A continuously cast billet of a ferritic stainless steel contg. Nb and Cu is formed. The steel consists of, by weight, <0.05% C, <0.04% N, 10-30% Cr, <1% Si, <1% Mn, 0.2-1% Nb [Nb% >=8X(C%+N%)], 0.2-2% Cu and the balance Fe with inevitable impurites. The billet is cooled from 700 deg.C to 200 deg.C at <=18 deg.C/hr average cooling rate, and it is cooled from 400 deg.C to 200 deg.C at <=15 deg.C/hr average cooling rate. The billet is heated again without cooling to <200 deg.C, and it is hot rolled.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はニオブ、銅含有フェライト系ステンレス鋼連続
鋳造鋳片(以下「連鋳片」という。)を熱間圧延する方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for hot rolling a continuously cast slab of ferritic stainless steel containing niobium and copper (hereinafter referred to as "continuous slab").

(従来技術) SUS430鋼で代表されるフェライト系ステンレス鋼
は高価なNlを多量に含まず従って安価であるため自動
車外装部品や建築内装品などの比較的マイルドな腐食環
境で表面の美麗さを要求される用途に広く用いられてい
る。しかしSUS 304鋼で代表されるオーステナイ
ト系ステンレス鋼に比べて一般的に耐食性が劣るため用
途が限定されていた。
(Prior art) Ferritic stainless steel, represented by SUS430 steel, does not contain large amounts of expensive Nl and is therefore inexpensive, so it is required to have a beautiful surface in relatively mild corrosive environments such as automobile exterior parts and architectural interior parts. It is widely used for various purposes. However, its uses have been limited because it generally has inferior corrosion resistance compared to austenitic stainless steel, typified by SUS 304 steel.

また、フェライト系ステンレス鋼は、部品製造において
絞シ加工や引張り加工を受けるとりジングまたはロービ
ングと称される凹凸の縞模様が発生して外観を著しく損
なうという欠点を有していた。
In addition, ferritic stainless steel has the disadvantage that when it is subjected to drawing or tension processing in the manufacture of parts, an uneven striped pattern called roving or roving occurs, which significantly impairs the appearance.

これに対して本出願人は、NbとCuを複合添加して特
に光輝焼鈍仕上げで耐誘性を向上させたフェライト系ス
テンレス鋼を発明しく特開昭57一140860号公報
)さらにN量をはじめとする成分を厳密に管理しかつ熱
延条件と粗焼鈍条件を限定して事実上りジンクの全くな
いフェライト系ステンレス鋼販の製造方法を発明した(
%願昭57−82281号)。とれらの発明によるフェ
ライト系ステンレス鋼はSUS 304鋼と全く同様に
使用することが可能となったばかりでなく溶接部熱影響
部の耐食性劣化がないことや応力腐食割れ感受性がない
ことからむしろSUS 304鋼の使用分野以外でも使
用が可能となるなど、安価なフェライト系ステンレス鋼
の使用範囲を著しく拡大した。
In response, the present applicant has invented a ferritic stainless steel in which the induction resistance is improved by bright annealing by adding Nb and Cu in combination. Invented a method for manufacturing ferritic stainless steel that is virtually zinc-free by strictly controlling the ingredients and limiting the hot rolling and rough annealing conditions (
% Application No. 57-82281). The ferritic stainless steel invented by Tora et al. not only can be used in exactly the same way as SUS 304 steel, but also has no deterioration in corrosion resistance in the heat-affected zone of welds and is not susceptible to stress corrosion cracking. This significantly expanded the scope of use of inexpensive ferritic stainless steel, allowing it to be used in fields other than steel.

しかし、この含Nb 、 Cuフェライト系ステンレス
鋼は以上に述べたような多くの利点を有しているものの
、連続鋳造による鋳片が冷却時に割れやすいという欠点
を有している。即ち含Nl) 、 (::uフェライト
系ステンレス鋼の連鋳片は、冷却途中で横方向に割れを
生じたシ、熱延のための再加熱中に折損して圧延を中止
せざるを得ない事故が発生しやすい。また割れが軽微で
たとえ圧延が終了しても著しい山へげ状の疵や貫通孔が
残存し商品価値をなくしてしまうととが起き易いのであ
る。
However, although this Nb- and Cu-containing ferritic stainless steel has many advantages as described above, it has the disadvantage that slabs produced by continuous casting tend to crack during cooling. In other words, continuous cast slabs of ferritic stainless steel (containing Nl), (::u) cracked in the transverse direction during cooling and broke during reheating for hot rolling, forcing the rolling to be stopped. In addition, even if the cracking is slight and rolling is finished, significant ridge-like flaws and through holes are likely to remain, resulting in loss of commercial value.

これに対して従来は徐冷炉等で800℃付近から100
℃付近までを徐冷する方法や、鋳片の遷移温度が300
℃付近にあることから300℃以下に冷却することなく
再加熱する方法(特開昭58−39732号公報)が提
案されている。また、Cuの含まれていない含Nb@に
ついては鋳片の引張強さが150℃以下で熱応力よシも
小さくなることから150℃以下に冷却することなく再
加熱する方法(特開昭54−128464号公報)が開
示されているが、この方法は本発明に係るNb 、 C
u含有フェライト系ステンレス鋼の場合金Nbフェライ
ト系ステンレス鋼であっても効果がない。
On the other hand, in the past, temperatures ranging from around 800℃ to 100℃ were
There is a method of slow cooling down to around 300°C, and a method where the transition temperature of the slab is 300°C.
℃, a method of reheating without cooling to below 300° C. has been proposed (Japanese Patent Laid-Open No. 58-39732). In addition, for Nb-containing @, which does not contain Cu, thermal stress and stress are also small when the tensile strength of the slab is below 150°C. -128464), but this method is applicable to Nb, C according to the present invention.
In the case of u-containing ferritic stainless steel, even gold-Nb ferritic stainless steel has no effect.

これらの方法は、徐冷の速度を5℃/hr程度まで下げ
ても効果がなく、たとえそれ以下に低下することで効果
があったとしてもコスト的に不利であるため実用的では
なく、マた300℃以下に冷却しないという対策は、割
れ発生に対しては後述する考え方に基づいて適切な方法
であると思われるが、300℃以上では鋳片の表面手入
れができないという、表面の品質が重視されるステンレ
ス鋼にとっては重大な欠点を有しておシ、これもまた実
用的ではない。
These methods are not effective even if the slow cooling rate is lowered to about 5°C/hr, and even if they are effective by lowering the slow cooling rate to below that, they are disadvantageous in terms of cost and are not practical. The measure of not cooling the slab below 300°C is considered to be an appropriate method to prevent cracking based on the concept described below, but at temperatures above 300°C the surface quality of the slab cannot be maintained, resulting in poor surface quality. Stainless steel, which is highly valued, has serious drawbacks and is also impractical.

(発明の目的) 本発明は以上のような欠点のない実用的な鋳片の圧延方
法を提供することを目的とするものである。
(Object of the Invention) An object of the present invention is to provide a practical method for rolling slabs without the above-mentioned drawbacks.

(発明の構成・作用) 本発明者らは、連鋳片の割れの原因について種々調査を
重ねた結果、含Nb 、 Cuフェライト系ステンレス
鋼の連鋳片の粒界には版状のNb炭化物がしだの葉状に
粗大に析出しておシ、その部分を基点として割れが発生
していることを見出した。さらに基点付近では粒界割れ
であるが、太き々全体の割れは主として脆性破壊である
ととそして微細な粒界割れは犬き々割れ以外に鋳片内に
多数存在していることを発見した。このような事実から
鋳片割れは、粗大なしだの葉状析出物のある粒界が冷却
時の熱応力によって粒界割れを起こし、その割れ部分に
応力が集中し、その状態で遷移温度風(5) 下になった場合に脆性的に大きな割れに至るものと考察
した。このような考案に基づくと遷移温度以下に下げな
いという対策は、微細な粒界割れはたとえ発生しても(
このような微細割れは圧延時に圧着されるので問題がな
い)大きな割れに至らないということで、理論にかなっ
ておシ、非常に適切な方法であると言える。含Nl) 
、 Cuフェライト系ステンレス鋼連鋳片の遷移温度は
実験室的に測定すると約300℃であるので、300℃
以下に下げないという対策は容易に考えられる。
(Structure and operation of the invention) As a result of various investigations into the causes of cracks in continuously cast slabs, the present inventors found that plate-like Nb carbides were found at the grain boundaries of continuous cast slabs of Nb-containing Cu ferritic stainless steel. It was found that coarse precipitates were deposited in the form of leaves, and cracks occurred from these areas. Furthermore, it was discovered that although there are intergranular cracks near the base point, the wide cracks as a whole are mainly brittle fractures, and that there are many fine intergranular cracks in the slab in addition to dog cracks. did. From these facts, slab cracking is caused by intergranular cracking of grain boundaries with coarse weeping leaf-like precipitates due to thermal stress during cooling, stress concentrates at the cracked part, and in this state transition temperature wind (5 ) It was considered that if it were to fall downward, it would lead to large brittle cracks. Based on this idea, the countermeasure of not lowering the temperature below the transition temperature is that even if minute intergranular cracks occur, (
(Such fine cracks are crimped during rolling, so there is no problem.) Since they do not lead to large cracks, it can be said that this method is theoretically very suitable. (including Nl)
, The transition temperature of Cu ferritic stainless steel continuously cast pieces is approximately 300°C when measured in a laboratory, so 300°C
It is easy to think of countermeasures that do not lower the value below.

一方、このような考察に基づくと鋳片割れが単なる引張
強さの差で起こる延性破断てないことから、たとえ含N
bフェライト系ステンレス鋼鋳片の引張強さが150℃
以下で熱応力よシ小さくなるとして150℃以下に下げ
ないという対策をとっても鋳片割れを防止できないこと
もまた良く理解できる。
On the other hand, based on this consideration, slab cracking does not occur due to a simple difference in tensile strength.
b The tensile strength of ferritic stainless steel slab is 150℃
It is also well understood that cracking of slabs cannot be prevented even if measures are taken not to lower the temperature below 150°C, even though the thermal stress will be reduced below.

本発明者らは以上の考えに基づき含Nb l Cuフェ
ライト系ステンレス鋼連鋳片の遷移温度を低下するだめ
の方法を種々検討した結果、鋳片の冷却(6) 速度と関係があることを見出し本発明を成しとげた。
Based on the above considerations, the present inventors investigated various methods for lowering the transition temperature of Nb l Cu ferritic continuous stainless steel slabs, and found that there is a relationship between the cooling rate (6) of the slab and the Heading: The invention has been accomplished.

即ち、フェライト系ステンレス鋼の連鋳片ハ、一般に6
00〜800℃で鋳片として切断され以後10〜15時
間かけて自然空冷され表面温度100℃以下のいわゆる
冷片となる。もちろん冷片になるまでの冷却時間は鋳片
の厚さに影響を受けることは充分に考えられるが、厚さ
150〜350簡の鋳片ではそれ程大きな差はない。し
かし、切断された鋳片を直ちに保熱炉等に装入すること
で冷却速度を遅くすることは容易である。
In other words, a continuously cast piece of ferritic stainless steel is generally 6
The cast pieces are cut at 00 to 800°C and then naturally air cooled for 10 to 15 hours to become so-called cold pieces with a surface temperature of 100°C or less. Of course, it is quite possible that the cooling time until it becomes a cold slab is affected by the thickness of the slab, but there is not that much difference between slabs with a thickness of 150 to 350 slabs. However, it is easy to slow down the cooling rate by immediately charging the cut slab into a heat retention furnace or the like.

第1図は第1表に示した成分で215笥厚の含Nb 、
 Cuフェライト系ステンレス鋼鋳片を700℃から2
00℃までの冷却速度を変えて冷却した冷片の遷移温度
を測定した結果でちる。徐冷は保熱炉で実施しだので自
然放冷の冷却曲線の時間軸を延長した曲線とほぼ一致す
る。遷移温度は、自然放冷をした場合300℃であるの
に対して、徐冷によって低温側に移行し、特に35時間
以上の徐冷を行々うことで約150℃まで低下する。
Figure 1 shows the components shown in Table 1, including Nb with a thickness of 215 cm.
Cu ferritic stainless steel slab from 700℃
This is the result of measuring the transition temperature of a cold piece cooled by varying the cooling rate to 00°C. Since slow cooling was carried out in a heat retention furnace, the cooling curve almost coincides with the extended time axis of the cooling curve of natural cooling. The transition temperature is 300° C. in the case of natural cooling, but it shifts to a lower temperature side by slow cooling, and in particular, decreases to about 150° C. by performing slow cooling for 35 hours or more.

第2図は第1表に示した成分215℃厚の含Nb r 
Cuフェライト系ステンレス鋼鋳片から切出した50■
X 50 ttan X 100閣の試料を用いて徐冷
すべき温度域をめる目的で遷移温度を測定した結果であ
る。700℃から400℃までと400℃から200℃
までの冷却時間を分けて測定した結果、図に示したとお
、9700℃から400℃までを18℃7’h r以下
の平均冷却速度で、かつ400℃から200℃までを1
5℃/h r以下の平均冷却速度で冷却することで遷移
温度の低下が見込まれることがわかった。高温側、低温
側どちらかの冷却時間が不足しても効果が激減する。ま
た700℃から400℃までの冷却曲線は保熱炉中での
曲線に近いものが良好であった。しかし、実験的に局部
的に急冷に近い条件まで実施したが(試験材が小さいの
で可能である。)、それ程影響がなく、700℃から4
00℃までを18℃/h r以下の平均冷却速度にする
こと、かつまた400℃から200゜℃までを15℃/
h r以下の平均冷却速度にすることで遷移温度は20
0℃未満どなった。
Figure 2 shows the composition of Nb r with a thickness of 215°C shown in Table 1.
50cm cut from Cu ferritic stainless steel slab
These are the results of measuring the transition temperature for the purpose of determining the temperature range for slow cooling using a sample of X 50 ttan X 100. From 700℃ to 400℃ and from 400℃ to 200℃
As shown in the figure, the cooling time from 9700°C to 400°C was measured at an average cooling rate of 18°C 7'hr or less, and from 400°C to 200°C at 1 hour.
It was found that the transition temperature can be expected to be lowered by cooling at an average cooling rate of 5° C./hr or less. If there is insufficient cooling time for either the high temperature side or the low temperature side, the effectiveness will be drastically reduced. Moreover, the cooling curve from 700° C. to 400° C. was good if it was close to the curve in the heat retention furnace. However, although we have experimentally conducted conditions close to quenching locally (possible since the test material is small), there was no significant effect, and it was possible to cool down from 700°C to 40°C.
The average cooling rate from 400°C to 200°C is 15°C/hr or less.
By setting the average cooling rate to less than hr, the transition temperature can be reduced to 20
It was below 0℃.

以上の知見からNt) 、 Cu含有フェライト系ステ
ンレス鋼連鋳片を、700℃から400℃才でを18℃
/h r以下、400℃から200℃までを15℃/h
r p下の平均冷却速度で冷却し、かつ200℃未満に
冷却することなく再加熱し、熱間圧延する鋳片割れのな
い圧延方法を発明した。この結果鋳片の表面手入を20
0〜300℃で実施することが可能となった。
From the above findings, the Cu-containing ferritic stainless steel continuously cast slab was heated from 700°C to 400°C at 18°C.
/hr or less, 15℃/h from 400℃ to 200℃
We have invented a rolling method that does not cause slab cracking, in which hot rolling is performed by cooling at an average cooling rate below r p and reheating without cooling below 200°C. As a result, the surface treatment of the slab was
It became possible to carry out the process at 0 to 300°C.

次に出発鋼成分の限定理由を簡単に説明する。Next, the reasons for limiting the starting steel components will be briefly explained.

C,NはNbの炭窒化物となシ表面疵を発生させたシ耐
食性を劣化するので、それぞれ0.05%以下、0.0
4係以下とした。
C and N are carbonitrides of Nb, which cause surface scratches and deteriorate corrosion resistance, so they should be added at 0.05% or less and 0.0% or less, respectively.
It was set to 4 sections or less.

Crはフェライト系ステンレス鋼として通常用いられる
Cr量として10〜30チの範囲とした。
Cr was set in the range of 10 to 30 Cr, which is the amount of Cr normally used in ferritic stainless steel.

Sl1Mr+は強度の点から添加することができるが多
量になると熱間加工性が劣化するだめ上限はどちらも1
俤とした。
Sl1Mr+ can be added from the viewpoint of strength, but if it becomes too large, hot workability will deteriorate, so the upper limit for both is 1.
It spread out.

NbはC,Nを固定しなおかつ耐食性を向上させるため
に0.2俤以上でかつCチとN%の和の8倍以上とした
。しかし160%以上を添加しても効(10) 果が変わらないことから上限を1.0チした。
In order to fix C and N and improve corrosion resistance, Nb was set at 0.2 or more and at least 8 times the sum of C and N%. However, since the effect (10) does not change even if 160% or more is added, the upper limit was set at 1.0.

CuはNbとの複合によシ耐食性を向上せしめるが、多
量に添加すると、熱間加工性が劣化するため0.2〜1
.0チとした。
Cu improves corrosion resistance when combined with Nb, but when added in large amounts, hot workability deteriorates, so Cu is 0.2 to 1
.. It was set to 0.

また必要に応じて添加することのできるTI 。TI can also be added as needed.

Nl 、 Moは多量に添加するとコスト的に不利とな
るばかシでなく熱間加工性も劣化するため上限をそれぞ
れ1チ以下、1係以下、3チ以下とした。
Adding a large amount of Nl and Mo would not only be disadvantageous in terms of cost, but also degrade hot workability, so the upper limits were set to 1 or less, 1 or less, and 3 or less, respectively.

次に実施例を挙げて本発明をさらに説明する。Next, the present invention will be further explained with reference to Examples.

第2表に示した成分を代表成分とする含Nb p Cu
フェライト系ステンレス鋼連鋳片を種々の冷却方法で冷
却し、200〜300℃の間で表面手入を行ない、続い
て熱間圧延を行なった。その結果、鋳片の割れ°の発生
の有無を第3表に示した。()内に圧延数を示した。本
発明方法では全く割れが発生しないのに対して、自然放
冷し300℃未満に下げないという方法(A5)を除く
比較方法ではいずれも割れが発生した。また、A5の方
法では割れは発生しなかったものの、表面手入が全くで
きず、熱間圧延後表面疵の除去に多大な負担をかけざる
を得なかった。
Nb p Cu containing the components shown in Table 2 as representative components
Continuously cast ferritic stainless steel slabs were cooled by various cooling methods, surface treated between 200 and 300°C, and then hot rolled. As a result, Table 3 shows whether or not cracks occurred in the slabs. The number of rollings is shown in parentheses. While no cracking occurred in the method of the present invention, cracking occurred in all comparative methods except for the method (A5) in which the temperature was allowed to cool naturally and the temperature was not lowered below 300°C. Further, although no cracking occurred in method A5, the surface could not be maintained at all, and a great deal of work had to be done to remove surface flaws after hot rolling.

(発明の効果) 以上の如く本発明によればニオブ、銅含有フェライト系
ステンレス鋼の連鋳片を割れを発生することなく熱間圧
延しうるという顕著な効果が奏されるので産業上稗益す
るところが極めて大である。
(Effects of the Invention) As described above, according to the present invention, it is possible to hot-roll continuously cast slabs of ferritic stainless steel containing niobium and copper without causing cracks, which is an industrial advantage. There is a huge amount to do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は215m+厚Nb 、 Cu含有フェライト系
ステンレス鋼連鋳片の700℃から200℃までの冷却
に要した時間と遷移温度との関係を示した図、第2図は
同じ(Nb # cu含有フェライト系ステンレス鋼の
冷却速度と遷移温度の関係を示した図である。 〔9,1製J△ (15) 第2図 700−ダθo’cの坪均冷去p速一度 〔’C/hと
〕・跨発 明 者 船木秀− 川崎市中原区井田1618新日本製 鐵株式會社基礎研究所内 ・老発 明 者 阿部義男 川崎市中原区井田1618新日本製 鐵株式會社基礎研究所内 手続補正書 (自発) 昭和58年8月29 目 特許庁長官 若 杉 和 夫 殿 1、 事件の表示 昭和58年特許願第109881号 2、 発明の名称 ニオブ、銅含有フェライト系ステンレス鋼連鋳片の圧延
方法 3、補正をする者 事件との関係 特許出願人 東京都千代田区大手町二丁目6番3号 (665)新日本製鐵株式全社 代表者 武 1) 豊 4、代理人〒100 東京都千代田区丸の内二丁目4番1号 6、補正の対象 明細書の発明の詳細な説明の欄 7、 補正の内容 (1)明細書5頁12行〜13行及び14行の「基点」
を「起点」に夫々補正する。
Figure 1 is a diagram showing the relationship between the transition temperature and the time required for cooling a 215 m + thick Nb continuous slab of Cu-containing ferritic stainless steel from 700 °C to 200 °C, and Figure 2 is the same (Nb # cu). It is a diagram showing the relationship between cooling rate and transition temperature of ferritic stainless steel containing ferritic stainless steel. Inventor Hide Funaki - Inside the Nippon Steel Corporation Basic Research Laboratory, 1618 Ida, Nakahara-ku, Kawasaki City Inventor Yoshio Abe Inside the Nippon Steel Corporation Basic Research Laboratory, 1618 Ida, Nakahara-ku, Kawasaki City Written amendment (spontaneous) August 29, 1980 Kazuo Wakasugi, Commissioner of the Patent Office1, Indication of the case, Patent Application No. 109881 of 1982, Title of the invention: Continuous cast slab of ferritic stainless steel containing niobium and copper Rolling method 3, relationship with the case of the person making the amendment Patent applicant 2-6-3 Otemachi, Chiyoda-ku, Tokyo (665) Company-wide representative of Nippon Steel Corporation Takeshi 1) Yutaka 4, agent 100 Tokyo 2-4-1-6 Marunouchi, Chiyoda-ku, Detailed explanation of the invention column 7 of the specification subject to amendment, Contents of the amendment (1) "Base point" on page 5, lines 12-13 and 14 of the specification
are respectively corrected to the "starting point".

Claims (1)

【特許請求の範囲】[Claims] C0,05%以下、NO,04%以下、cr1o〜30
%、Si1%以下、凪1チ以下、Nb0.2〜1.0%
テかつCSとN%の8倍以上* Cu 0.2〜2チを
含み、さらに必要に応じてTi 1 %以下、Nl 1
 %以下、 Mo 3チ以下の1種または2種以上を含
有し、残シはFeおよび不可避不純物からなる含Nb 
、 Cuフェライト系ステンレス鋼の連続鋳造鋳片を鋳
造後、700℃から400℃までを平均冷却速度18℃
/hr以下、400℃から200′C1でを平均冷却速
度15℃/h r以下で冷却し、かつ200℃未満に冷
却することなく再び加熱し、熱間圧延を行なうことを特
徴とするニオブ、銅含有フェライト系ステンレス鋼連鋳
片の圧延方法。
C0.05% or less, NO.04% or less, cr1o~30
%, Si 1% or less, Calm 1 chi or less, Nb 0.2-1.0%
8 times or more of CS and N% * Contains Cu 0.2 to 2%, and if necessary, Ti 1% or less, Nl 1
% or less, Mo 3.
, After casting continuous cast slabs of Cu ferritic stainless steel, the average cooling rate was 18℃ from 700℃ to 400℃.
/hr or less, niobium is hot-rolled by cooling from 400°C to 200'C1 at an average cooling rate of 15°C/hr or less, and heating again without cooling to less than 200°C, A method for rolling copper-containing ferritic stainless steel continuous slabs.
JP10988183A 1983-06-18 1983-06-18 Method for rolling continuously cast billet of ferritic stainless steel containing niobium and copper Granted JPS602622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10988183A JPS602622A (en) 1983-06-18 1983-06-18 Method for rolling continuously cast billet of ferritic stainless steel containing niobium and copper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10988183A JPS602622A (en) 1983-06-18 1983-06-18 Method for rolling continuously cast billet of ferritic stainless steel containing niobium and copper

Publications (2)

Publication Number Publication Date
JPS602622A true JPS602622A (en) 1985-01-08
JPS62206B2 JPS62206B2 (en) 1987-01-06

Family

ID=14521528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10988183A Granted JPS602622A (en) 1983-06-18 1983-06-18 Method for rolling continuously cast billet of ferritic stainless steel containing niobium and copper

Country Status (1)

Country Link
JP (1) JPS602622A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010005633A (en) * 2008-06-24 2010-01-14 Kobe Steel Ltd Method for cooling cast metal
JP2015518087A (en) * 2012-04-02 2015-06-25 エイケイ・スチール・プロパティーズ・インコーポレイテッドAK Steel Properties, Inc. Cost-effective ferritic stainless steel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5794448A (en) * 1980-12-03 1982-06-11 Kawasaki Steel Corp Manufacture of high chrome ferritic stainless steel ingot

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5794448A (en) * 1980-12-03 1982-06-11 Kawasaki Steel Corp Manufacture of high chrome ferritic stainless steel ingot

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010005633A (en) * 2008-06-24 2010-01-14 Kobe Steel Ltd Method for cooling cast metal
JP2015518087A (en) * 2012-04-02 2015-06-25 エイケイ・スチール・プロパティーズ・インコーポレイテッドAK Steel Properties, Inc. Cost-effective ferritic stainless steel
US9816163B2 (en) 2012-04-02 2017-11-14 Ak Steel Properties, Inc. Cost-effective ferritic stainless steel

Also Published As

Publication number Publication date
JPS62206B2 (en) 1987-01-06

Similar Documents

Publication Publication Date Title
US4776900A (en) Process for producing nickel steels with high crack-arresting capability
KR970008164B1 (en) Steel sheets for porcelain enameling and method of producing the same
JP2765392B2 (en) Method for manufacturing hot-rolled duplex stainless steel strip
JPH04224659A (en) Seamless martensitic steel tube and its production
JPS602622A (en) Method for rolling continuously cast billet of ferritic stainless steel containing niobium and copper
JPS63213619A (en) Manufacture of high strength stainless steel material having superior workability and causing no softening due to welding
JP2826819B2 (en) Method for producing high-strength stainless steel with excellent workability and no welding softening
JPS62199721A (en) Production of steel sheet or strip of ferritic stainless steel having good workability
JP2000144320A (en) Deformed bar steel for reinforcing bar and its production
US4801341A (en) One-sided enamelable hot-rolled steel sheet and process for producing the same
JPS63241120A (en) Manufacture of high ductility and high strength steel sheet having composite structure
JP3175919B2 (en) Bulk rolling method for martensitic stainless steel slabs
JP3518517B2 (en) Manufacturing method of high chromium / ferritic heat resistant steel
JPH07216451A (en) Production of stainless steel material having high welding softening resistance, high strength, and high ductility
JP3543200B2 (en) Manufacturing method of steel sheet for metal saw substrate
JPS63203721A (en) Production of hot rolled steel sheet having excellent hydrogen induced cracking resistance and stress corrosion cracking resistance
JPH093543A (en) Production of hot rolled plate and cold rolled sheet of austenitic stainless steel
JPS6077928A (en) Production of cold-rolled steel plate for drawing
JPH07268561A (en) High strength stainless steel excellent in hot workability and free from welding softening
JPH0332604B2 (en)
JPS63145711A (en) Production of high tension steel plate having excellent low temperature toughness
JPH06328214A (en) Method for preventing season cracking of ferritic stainless steel
JPH0625739A (en) Manufacture of sour resistant steel sheet having excellent low temperature toughness
JPS63210242A (en) Manufacture of high-strength stainless steel stock excellent in workability and free from softening by welding
JPS6213556A (en) Stainless alloy steel undergoing hardly surface cracking during hot rolling and method for heating its slab