JPS6026137A - Air-fuel ratio learning control device in electronic control fuel injection type internal-combustion engine - Google Patents

Air-fuel ratio learning control device in electronic control fuel injection type internal-combustion engine

Info

Publication number
JPS6026137A
JPS6026137A JP13289483A JP13289483A JPS6026137A JP S6026137 A JPS6026137 A JP S6026137A JP 13289483 A JP13289483 A JP 13289483A JP 13289483 A JP13289483 A JP 13289483A JP S6026137 A JPS6026137 A JP S6026137A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
correction coefficient
learning
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13289483A
Other languages
Japanese (ja)
Other versions
JPH0530978B2 (en
Inventor
Naomi Tomizawa
富澤 尚己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP13289483A priority Critical patent/JPS6026137A/en
Publication of JPS6026137A publication Critical patent/JPS6026137A/en
Publication of JPH0530978B2 publication Critical patent/JPH0530978B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1474Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method by detecting the commutation time of the sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • F02D41/2448Prohibition of learning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To enhance the safety of the learning control of air-fuel ratio, by providing an O2 sensor signal inverted period measuring means for measuring the inverted period of a signal from an O2 sensor and a renewal stopping means for stopping the function of a learning compensating coefficient renewal means. CONSTITUTION:A basic fuel injection amount computing means computes a basic fuel injection amount in accordance with an intake-air flow rate and an engine rotational speed, and an air-fuel ratio feed-back compensating coefficient setting means set an air-fuel ratio feed-back compensating coefficient in accordance with an air-fuel ratio from an O2 sensor. A learning compensating coefficient renewal means renews the data of learning compensating coefficient in accordance with the air-fuel ratio feed-back compensating coefficient and the learning compensating coefficient. The renewal stopping means stops the function of the learning compensating coefficient renewal means when the inverted period of the signal of the O2 sensor is out of a predetermined range. Thus, the degree of deterioration, etc. of the O2 sensor is checked, and if the deterioration, etc. occur, no compensation is made to the renewal of the learning compensating coefficient so that the safety of learning control is enhanced.

Description

【発明の詳細な説明】 く技術分野) 本発明は電子制御燃料噴射式内燃機関の空燃比学習制御
装置に関し、特に02センサの劣化等により空燃比の学
習が誤った方向へ進行するのを防止するため、02セン
サの信号の状態をモニターしつつ学習側fffnを行う
ようにした装置に関する。
[Detailed Description of the Invention] [Technical Field] The present invention relates to an air-fuel ratio learning control device for an electronically controlled fuel injection internal combustion engine, and in particular, to prevent air-fuel ratio learning from proceeding in the wrong direction due to deterioration of the 02 sensor, etc. Therefore, the present invention relates to a device that performs the learning side fffn while monitoring the state of the signal of the 02 sensor.

〈背景技術) 電子制御燃料噴射式内燃機関において、噴射量T1は次
式によって定まる。
<Background Art> In an electronically controlled fuel injection type internal combustion engine, the injection amount T1 is determined by the following equation.

Tt=TpXCOEFXα+T s ここで、1゛pは基本噴射量で、Tp=に×Q/Nであ
る。Kは定数、Qは吸入空気流量、Nはエンジン回転数
である。COrK Fは各種補正係数である。αは後述
する空燃比のフィードバック制御(λコントロール)の
ための空燃比フィードバンク?ili正係数である。T
Sは電圧補正分で、バッテリ電圧の変動による燃料噴射
弁の噴射流量変化を補正するためのものである。
Tt=TpXCOEFXα+Ts Here, 1p is the basic injection amount, and Tp=×Q/N. K is a constant, Q is the intake air flow rate, and N is the engine speed. COrK F is various correction coefficients. Is α the air-fuel ratio feed bank for air-fuel ratio feedback control (λ control), which will be described later? ili is a positive coefficient. T
S is a voltage correction amount, which is used to correct changes in the injection flow rate of the fuel injection valve due to fluctuations in battery voltage.

λコントロールについては、排気系に02センサを設け
て実際の空燃比を検出し、空燃比が理論空燃比より濃い
か薄いかをスライスレベルにより判定し、理論空燃比に
なるように燃料の噴射量を制御するわけであり、このた
め、前記の空燃比フィードバック?lIi正係数αとい
うものを定めて、このαを変化さ・Uることにより理論
空燃比に保っている。
Regarding λ control, an 02 sensor is installed in the exhaust system to detect the actual air-fuel ratio, and the slice level determines whether the air-fuel ratio is richer or leaner than the stoichiometric air-fuel ratio, and the fuel injection amount is adjusted to achieve the stoichiometric air-fuel ratio. For this reason, the air-fuel ratio feedback mentioned above? A positive coefficient α is determined and the stoichiometric air-fuel ratio is maintained by varying this α.

ここで、空燃比フィードバック補正係数αの埴は比例積
分(PI)制御により変化させ、安定した制御としてい
る。
Here, the value of the air-fuel ratio feedback correction coefficient α is changed by proportional-integral (PI) control to achieve stable control.

すなわち、02センサの出力電圧とスライスレベル電圧
とを比較し、スライスレベルよりも商い場合、低い場合
に、空燃比を急に濃くしたり、薄くしたり”J−ること
なく、空燃比が濃い(薄い)場合には始めにP分だり下
ばて(上げて)、それから1分ずつ徐々に下げて(上げ
て)いき、空燃比を薄り(濃く)するように制御する。
In other words, the output voltage of the 02 sensor is compared with the slice level voltage, and if the voltage is higher or lower than the slice level, the air-fuel ratio is richer without suddenly enriching or reducing the air-fuel ratio. (lean), the air-fuel ratio is first lowered (raised) by P, and then gradually lowered (raised) one minute at a time to control the air-fuel ratio to become thinner (richer).

但し、λコントロールを行わない領域ではα=1にクラ
ンプし、各種補正係数COE Fの設定により、所望の
空燃比を得る。
However, in a region where λ control is not performed, α is clamped to 1, and a desired air-fuel ratio is obtained by setting various correction coefficients COE F.

ところで、λコントロール領域でα=1のときのベース
空燃比を理論空燃比(λ−1)に設定することができれ
ばフィー1−’ハック制御は不要なのであるが、実際に
は構成部品(例えばエアフローメータ、燃料噴射弁、プ
レッシャレギュレータ、コントロールユニソ1−)のバ
ラツキやil 時i 化、燃料噴射弁のパルスIIJ−
流量特性の非直線性、運転条件や環境の変化等の要因で
、ベース空燃比のλ−1からのズレを生しるので、フィ
ードハック制御を行っている。
By the way, if the base air-fuel ratio when α = 1 in the λ control region could be set to the stoichiometric air-fuel ratio (λ-1), fee 1-' hack control would be unnecessary. Variations in meters, fuel injection valves, pressure regulators, control units 1-), illumination, and fuel injection valve pulses
Feedhack control is performed because the base air-fuel ratio deviates from λ-1 due to factors such as non-linearity of flow characteristics and changes in operating conditions and environment.

しかし、ベース空燃比がλ−1からずれていると、運転
領域が大きく変化したときに、ベース空燃比の段差をフ
ィードバンク制御によりλ−1に安定させるまでに時間
がかかる。そして、このために比例及び積分定数(P/
I分)を大きくするので、オーバーシュートやアンダー
シj、 −1−を生じ、制御性が悪くなる。つまり、ベ
ース空燃比がλ=1からずれていると、理論空燃比より
かなりズレをもった範囲で空燃比制御がなされるのであ
る。
However, if the base air-fuel ratio deviates from λ-1, it takes time to stabilize the step in the base air-fuel ratio to λ-1 by feedbank control when the operating range changes significantly. And for this we need the constant of proportionality and integration (P/
Since the I component) is increased, overshoot and undershield j, -1- occur, resulting in poor controllability. In other words, if the base air-fuel ratio deviates from λ=1, the air-fuel ratio will be controlled within a range that deviates considerably from the stoichiometric air-fuel ratio.

その結果、三元触媒の転換効率が悪いところで運転がな
されることになり、触媒の貴金属量の増大によるコスト
アップの他、触媒の劣化に伴う転換効率の更なる悪化に
より触媒の交換を余(筏なくされるという問題点があっ
た。
As a result, the three-way catalyst has to be operated at a point where its conversion efficiency is poor, and not only does the cost increase due to an increase in the amount of precious metal in the catalyst, but the conversion efficiency further deteriorates as the catalyst deteriorates, making it unnecessary to replace the catalyst. There was the problem of losing the raft.

そこで、本出願人は、特願昭58−76221号におい
て、学習によりベース空燃比をλ−■にすることにより
、過渡時にベース空燃比の段差から生じるλ=1からの
ズレをなくし、かつ、Pl■分を小さくすることを可能
にして制御性の向」二を図り、これらにより触媒の原価
低減等を図るベース空;必比の学習制御装置を提案した
Therefore, in Japanese Patent Application No. 58-76221, the applicant set the base air-fuel ratio to λ-■ by learning, thereby eliminating the deviation from λ=1 caused by the step in the base air-fuel ratio during transient times, and We have proposed an essential learning control device that makes it possible to reduce Pl and improve controllability, thereby reducing the cost of catalysts.

すなわち、RA M lにエンジン回転数及びPl、荷
等のエンジン運転条件に対応した学習Ti1i正係数α
0のマツプを設げ、噴射量T iを計算する際に次式の
如く基本噴射量Tpをα0で補正する。
That is, the learning Ti1i positive coefficient α corresponding to engine operating conditions such as engine speed, Pl, and load is added to RAM l.
A map of 0 is provided, and when calculating the injection amount T i, the basic injection amount Tp is corrected by α0 as shown in the following equation.

′Fi = ’l” p x COE F x a x
 rx o十T3そして、α0の学習は次の手順で進め
る。
'Fi = 'l' p x COE F x a x
rx o1T3 Then, the learning of α0 proceeds in the following steps.

i)定當状態においてそのときのエンジン運転条件とα
とを検出する。
i) Engine operating conditions and α in a steady state
and detect.

ii )前記エンジン運転条件にターj応じて現在まで
に学習され記憶されているα0を検索する。
ii) Search for α0 that has been learned and stored up to now in accordance with the engine operating conditions.

11;)前記αと前記α0とから加重平均等により新た
にα0を設定して記憶させる。
11;) From the above α and the above α0, α0 is newly set and stored by weighted average or the like.

ところで、このような空燃比学習制御装置においては、
例えば経年変化によって02センサが劣化した場合、圧
密に学習されないばかりか、界雷な方向へ学習が進行し
′Cしまう恐れかあり、この点での改善がめられていた
By the way, in such an air-fuel ratio learning control device,
For example, if the 02 sensor deteriorates due to aging, there is a risk that not only will it not be learned in a compact manner, but the learning will proceed in an undesirable manner, resulting in 'C.' Improvements in this respect have been desired.

〈発明の目的〉 本発明ば叙上の実情に鑑み、02センサの劣化等により
空燃比の学習が誤った方向へ進行するのを防止し、学習
制御の安全性を向上させることを目的とする。
<Objective of the Invention> In view of the above-mentioned actual situation, the present invention aims to prevent air-fuel ratio learning from progressing in the wrong direction due to deterioration of the 02 sensor, etc., and improve the safety of learning control. .

〈発明の構成〉 このため、本発明は、第1図に示すように、吸入空気流
量とエンジン回転数とから爪木噴射量を演算する基本噴
射量演算手段と、排気系に設けた02センザからの信号
に基づいて検出される実際の空燃比と理論空燃比とを比
較して比例積分制御により空燃比フィードバック補正係
数を設定する空燃比フィードバック補正係数設定手段と
、エンジン回転数及び負荷等のエンジン運転条件からこ
れに対応させてRAMに記1.aさせた学習補正係数を
検索する学習補正係数検索手段と、空燃比フィードバン
ク補正係数と学習補正係数とから新たな学習補正係数を
設定してRAM内の同一エンジン運転条件の学習補正係
数のデータを更新する学習補正係数更新手段と、基本噴
射量に空燃比フィードバック補正係数と学習補正係数と
を乗算して噴射量を演算する噴射量演算手段と、この演
算された噴射量に相応する駆動パルス信号を燃料噴射弁
に出力する駆動パルス信号出力手段とを設りる他、02
センザの信号の反転周期をn1測する02センザ信号反
転周期δ1測手段と、計測された反転周期がそのときの
エンジン回転数によって定まる所定の範囲内にあるか否
かを判定し範囲外のときに前記学習補正係数更新手段の
機能を停止させる更新停止手段とを設けるようにしたも
のである。
<Configuration of the Invention> For this reason, the present invention, as shown in FIG. an air-fuel ratio feedback correction coefficient setting means that compares the actual air-fuel ratio detected based on a signal from the stoichiometric air-fuel ratio and sets an air-fuel ratio feedback correction coefficient by proportional-integral control; Record the engine operating conditions in the RAM accordingly.1. a learning correction coefficient search means for searching the learning correction coefficient for the same engine operating conditions; learning correction coefficient updating means for updating the learning correction coefficient; injection quantity calculation means for calculating the injection quantity by multiplying the basic injection quantity by the air-fuel ratio feedback correction coefficient and the learning correction coefficient; and a drive pulse corresponding to the calculated injection quantity. In addition to providing a drive pulse signal output means for outputting a signal to the fuel injection valve, 02
02 sensor signal reversal period δ1 measuring means for measuring the reversal period n1 of the sensor signal, and determining whether or not the measured reversal period is within a predetermined range determined by the engine rotational speed at that time, and when it is outside the range. and update stop means for stopping the function of the learning correction coefficient update means.

ずなわら、02センザの信号のリンチ・リーンの反転周
期は、正常であれば、エンジン回転数に依存した所定の
範囲内にあることに着目し、反転周期が前記の範囲外と
なったときには、02センサの劣化等と判定し゛ζ学習
補正係数を更新しないようにしたものである。
However, it should be noted that the lynch-lean reversal period of the 02 sensor signal is normally within a predetermined range depending on the engine speed, and when the reversal period is outside the above range, , 02 sensor deterioration, etc., and the ζ learning correction coefficient is not updated.

〈実施例〉 以下に実施例を説明する。<Example> Examples will be described below.

第2図にハードウェア構成を示す。Figure 2 shows the hardware configuration.

■はCPU、2はP−ROM、3は学習制御用のCMO
3−RAM、4はアドレスデコーダである。尚、RAM
3に対しては、キースイッヂ叶F後も記憶内容を保持さ
せるためへツクアップ電源回路を使用する。
■ is CPU, 2 is P-ROM, 3 is CMO for learning control
3-RAM, and 4 an address decoder. Furthermore, RAM
For No. 3, a pull-up power supply circuit is used to retain the memory contents even after the key switch is turned off.

燃料噴射量の制御のためのcpuiへのアナログ入力信
号としζは、!:!)線式エアフローメータ5からの吸
入空気流量信号、スロットルセンサ6がらのスロットル
開度信号、水温センサ7からの水温信号、02センザ8
からのU1気中酸素濃度借り、バッテリ9からのバッテ
リ電圧があり、これらはアナログ入力インタフェース1
o及びA/D変換器11を介して入力されるようになっ
ている。12はA/D変換タイミングコントローラであ
る。
ζ is the analog input signal to the CPU for controlling the fuel injection amount. :! ) Intake air flow rate signal from the wire air flow meter 5, throttle opening signal from the throttle sensor 6, water temperature signal from the water temperature sensor 7, 02 sensor 8
There is U1 atmospheric oxygen concentration borrowed from U1, and battery voltage from Battery 9, which are analog input interface 1.
It is designed to be inputted via an A/D converter 11 and an A/D converter 11. 12 is an A/D conversion timing controller.

デジタル入力信号としては、アイドルスイッチ13、ス
タートスイッチ14及びニュー1−ラルスイソチ15か
らのON・OFF信号があり、これらはデジタル入力イ
ンタフェースI6を介して入力されるようになっている
Digital input signals include ON/OFF signals from the idle switch 13, start switch 14, and neural switch 15, and these are inputted via the digital input interface I6.

その他、クランク角センザ17からの例えば180 ”
毎のリファレンス信号とl°毎のポジション信号とがワ
ンショソ1−マルチ回路18を介して入力されるように
なっている。また、車速セン・す19がらの車速信号が
波形整形回路20を介して人力されるよ・うになってい
る。
In addition, for example 180" from the crank angle sensor 17
A reference signal for each position and a position signal for each l° are inputted via a one-shot one-multi circuit 18. Further, the vehicle speed signal from the vehicle speed sensor 19 is manually inputted via a waveform shaping circuit 20.

CPUIからの出力信号(燃料噴射弁への駆動パルス借
υ)は、電流制御回路2Iを介して燃料噴射弁22に送
られる゛ようになっている。
The output signal from the CPUI (driving pulse to the fuel injection valve) is sent to the fuel injection valve 22 via the current control circuit 2I.

ここにおいて、CI) U 1は第3図に示すフローチ
ャ−1・(燃料噴射量δl所ルーチン)に柄づくプo 
//、”z ム(ROM 2に記憶されている)に従っ
て入出力操作並びに演算処理等を行い、燃料噴射量を制
御する。 ′ 次に第3図のフローチャー1・にフいて説明する。
Here, CI) U1 is a flowchart 1 (fuel injection amount δl routine) shown in FIG.
//, "z" performs input/output operations and arithmetic processing according to the program (stored in the ROM 2) to control the fuel injection amount.' Next, the flowchart 1 in FIG. 3 will be explained.

Slでエアフローメータ5がらの信号によって得られる
吸入空気流量Qとクランク角センタ・17がらの信号に
よって得られるエンジン回転数Nとがら基本噴射量Tp
 (=KxQ/N)を演算する。
The basic injection amount Tp is calculated based on the intake air flow rate Q obtained from the signal from the air flow meter 5 and the engine rotation speed N obtained from the signal from the crank angle center 17.
(=KxQ/N) is calculated.

S2で各種補正係数C0EFを設定する。In S2, various correction coefficients C0EF are set.

S3で02センサ8の出力電圧とスライスレベル電圧と
を比較し−ζζ比例骨分制御より空燃比フイードバック
補正係数αを設定する。
In S3, the output voltage of the 02 sensor 8 and the slice level voltage are compared, and the air-fuel ratio feedback correction coefficient α is set by -ζζ proportional bone control.

S4でバッテリ9からのバッテリ電圧に基づいて電圧補
正分子sを設定する。
In S4, a voltage correction numerator s is set based on the battery voltage from the battery 9.

S5でエンジン回転数N及び基本噴射量(負荷)’rp
から対応する学習補正係数α0を検索する。
In S5, engine speed N and basic injection amount (load) 'rp
The corresponding learning correction coefficient α0 is searched from.

尚、回転数N及び基本噴射FitTpに対する学習補正
係数α0のマツプは書き換え可能なRAM3に記憶され
ており、学習が開始されていない時点では全てαo=l
となっている。
The map of the learning correction coefficient α0 for the rotational speed N and the basic injection FitTp is stored in the rewritable RAM 3, and all αo=l when learning has not started.
It becomes.

S6〜S9は02センサ8の信号の状態を監視するため
に設けられており、S6で02センザ8の出力電圧(第
4図参照)のリンチ・リーンの反転周期Tを計測し、S
7でその周波数f=1/’rを演算する。そして、S8
でエンジン回転数Nからこれに応じて予め定められてい
る止宿時の周波数の範囲(f min = fmax 
)を検索する。そして、S9で周波数fがその範囲(f
min 〜fmax)内にあるか否かを判定する。ここ
で、範囲内の場合は次の810へ進むが、範囲外の場合
ば02センサ8の劣化等と判定し、S16へ進む。
S6 to S9 are provided to monitor the state of the signal of the 02 sensor 8. In S6, the Lynch-Lean reversal period T of the output voltage of the 02 sensor 8 (see Fig. 4) is measured, and the S
7, calculate the frequency f=1/'r. And S8
The frequency range when parking is predetermined from the engine speed N (f min = f max
). Then, in S9, the frequency f is changed to that range (f
min to fmax). Here, if it is within the range, the process proceeds to the next step 810, but if it is outside the range, it is determined that the 02 sensor 8 has deteriorated or the like, and the process proceeds to S16.

すなわち、02センサ8の信号の周波数fはエンジン回
転数Nに比例して変化するが、エンジン回転数Nが一定
であれば、ある範囲内に定まる。
That is, the frequency f of the signal from the 02 sensor 8 changes in proportion to the engine speed N, but is determined within a certain range if the engine speed N is constant.

もし、実際の02センザ8の信号の周波数が高くなって
範囲外となれば、ノイズ等の影響と号えられ、低くなっ
て範囲外となれば、経年変化による劣化や温度低下によ
るものと考えられる。したがって、これらの場合には3
14.S15での学習補正係数α0の更新を行わないよ
うにする。
If the frequency of the actual 02 sensor 8 signal becomes high and goes out of range, it is considered to be due to the influence of noise, etc., and if it becomes low and goes out of range, it is considered to be due to deterioration due to aging or temperature drop. It will be done. Therefore, in these cases 3
14. The learning correction coefficient α0 is not updated in S15.

310〜313は定常状態を検出するために設けられて
おり、SIOで車速センサ19がらの信号に基づいて車
速の変化を判定し、311でニュートラルスイッチ15
からの信号に基づいてギア位置を判定し、312でスロ
ソ1〜ルセンサ6からの信号に基づいてスロットル開度
の変化を判定し、313で所定時間経過したか否かを判
定して所定時間内であれば、SIOへ戻る。こうして、
所定時間内に車速の変化が所定値以下で、がっ、ギアが
入っており、がっ、スロットル開度の変化が所定値以下
の場合は、定常状態であると判定し、314,315で
の学習補正係数α0の更新を行うようにする。また、所
定時間内の任意の時点で車速の変化が所定値を越えた場
合、ニュートラルになった場合、又はスロッ:・ル開度
の変化が所定値を越えた場合は、過渡状態であると判定
し、314,315での学習補正係数α0の更新を行わ
ないようにする。
310 to 313 are provided to detect a steady state, and the SIO determines a change in vehicle speed based on the signal from the vehicle speed sensor 19, and the neutral switch 15 is activated at 311.
At 312, the change in throttle opening is determined based on the signals from the throttle sensor 1 to the throttle sensor 6. At 313, it is determined whether or not a predetermined time has elapsed. If so, return to SIO. thus,
If the change in vehicle speed is less than a predetermined value within a predetermined time, the gear is engaged, and the change in throttle opening is less than a predetermined value, it is determined that the vehicle is in a steady state, and in steps 314 and 315. The learning correction coefficient α0 is updated. Additionally, if the change in vehicle speed exceeds a predetermined value at any point within a predetermined time, if the vehicle becomes neutral, or if the change in throttle opening exceeds a predetermined value, it is considered to be a transient state. The learning correction coefficient α0 is not updated in steps 314 and 315.

0.2tンサの信号が正電でかつ定常状態と判定された
場合の学習補正係数α0の更新は次の通り行われる。
When it is determined that the signal of the 0.2t sensor is positive and in a steady state, the learning correction coefficient α0 is updated as follows.

314でエンジン回転数N及び基本噴射量1゛pから検
索された学習補正係数α0と今回の空燃比フィードバン
ク補正係数αとから次式にしたがって計算を行い、その
値を新たな学習補正係数αOとする。
Calculation is performed according to the following formula from the learning correction coefficient α0 retrieved from the engine speed N and basic injection amount 1p in step 314 and the current air-fuel ratio feedbank correction coefficient α, and the value is used as the new learning correction coefficient αO. shall be.

αO←αO+Δα/M 尚、Δαはαの基準値からの偏差量を示し、Δα−α−
α1であり、基準値α1ば一般には1.0となる。また
、Mば定数である。
αO←αO+Δα/M Note that Δα indicates the deviation amount of α from the standard value, and Δα−α−
α1, and the reference value α1 is generally 1.0. Moreover, M is a constant.

315で新たな学習補正係数α0をRAM3の対応する
エンジン回転数Nと基本噴射ff1i’pのとごろへ書
き込む。すなわち、RへM3内のデータを更新する。
In step 315, a new learning correction coefficient α0 is written into the RAM 3 around the corresponding engine rotational speed N and basic injection ff1i'p. That is, the data in M3 is updated to R.

316では噴射量Tiを次式に従って演算する。In step 316, the injection amount Ti is calculated according to the following equation.

Ti =TpXCOEFXαXαo’+Tsここで、0
2センサ8の信号が正電でかつ定常状態の場合はα0と
して更新されたものが用いられ、02センサ8の信号が
界雷又は過渡状態の場合は検索されたものがそのまま用
いられる。
Ti = TpXCOEFXαXαo'+Ts where, 0
If the signal of the 02 sensor 8 is positive and in a steady state, the updated one is used as α0, and if the signal of the 02 sensor 8 is field lightning or in a transient state, the retrieved one is used as is.

以上で噴射量Tiが計算され、この噴躬隈T iに相応
する駆動パルス信号が電流制御回路21を介して燃料噴
射弁22に所定のタイミングで与えられる。
The injection amount Ti is calculated in the above manner, and a drive pulse signal corresponding to the injection amount Ti is given to the fuel injection valve 22 via the current control circuit 21 at a predetermined timing.

〈発明の効果〉 以上説明したように本発明によれば、02セン号の信号
のりソチ・リーンの反転周期を計測し、これに基づいて
02センサの劣化等の度合を判定し、劣化等を生じたと
きには学習補正係数の更新を行わないようにしたので、
学習が誤った方向へ進行してしまうことがなく、学習制
御の安全性が向上する。
<Effects of the Invention> As explained above, according to the present invention, the reversal period of the 02 sensor signal Nori Sochi Lean is measured, the degree of deterioration, etc. of the 02 sensor is determined based on this, and the deterioration etc. is determined. Since the learning correction coefficient is not updated when this occurs,
Learning does not progress in the wrong direction, improving the safety of learning control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を示すブロック図、第2図は本発
明の一実施例を示すハードウェア構成図、第3図は同上
のフローチャー1・、第4図は02センザの出力電圧の
特性線図である。 ■・・・CPU 3・・・学習制御用CMO3−RΔM
 5・・・エアフローメータ 8・・・02 (!ンザ
17・・・クランク角センザ 22・・・燃料噴射弁特
許出願人 日本電子機器株式会社
Fig. 1 is a block diagram showing the configuration of the present invention, Fig. 2 is a hardware configuration diagram showing an embodiment of the present invention, Fig. 3 is the flowchart 1 of the same as above, and Fig. 4 is the output voltage of the 02 sensor. FIG. ■...CPU 3...CMO3-RΔM for learning control
5...Air flow meter 8...02 (!Nza 17...Crank angle sensor 22...Fuel injection valve patent applicant Japan Electronics Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 吸入空気流量とエンジン回転数とから基本噴射量を演算
する基本噴射量演算手段と、排気系に設けた02センサ
からの信号に基づいて検出される実際の空燃比と理論空
燃比とを比較して比例積分制御により空燃比フィードバ
ンク補正係数を設定する空燃比フィードバック補正係数
設定手段と、エンジン回転数及び負荷等のエンジン運転
条件からこれに対応させてRAMに記憶させた学習補正
係数を検索する学習補正係数検索手段と、空燃比フィー
ドバンク補正係数と学習補正係数とから新たな学習補正
係数を設定してRAM内の同一エンジン運転条件の学習
補正係数のデータを更新する学習補正係数更新手段と、
基本噴射量に空燃比フィードバンク補正係数と学習補正
係数とを乗算して噴射量を演算する噴射M演算手段と、
この演算された噴射量に相応する駆動パルス信号を燃料
噴射弁に出力する駆動パルス信号出力手段とを備える電
子制御燃料噴射式内燃機関の空(flj比学習制御装置
において、02センサの信号の反転周期を計測する02
センサ信号反転周期δ1測手段と、計測された反転周期
がそのときのエンジン回転数によって定まる所定の範囲
内にあるか否かを判定し範囲外のときに前記学習補正係
数更新手段の機能を停止させる更新停止手段とを設けた
ことを特徴とする電子制御燃料噴射式内燃機関の空燃比
学習制御装置。
The basic injection amount calculating means calculates the basic injection amount from the intake air flow rate and engine speed, and the actual air-fuel ratio detected based on the signal from the 02 sensor installed in the exhaust system is compared with the theoretical air-fuel ratio. an air-fuel ratio feedback correction coefficient setting means for setting an air-fuel ratio feedbank correction coefficient by proportional-integral control; and a learning correction coefficient stored in the RAM corresponding to engine operating conditions such as engine speed and load. learning correction coefficient retrieval means; and learning correction coefficient updating means for setting a new learning correction coefficient from the air-fuel ratio feedbank correction coefficient and the learning correction coefficient to update learning correction coefficient data for the same engine operating condition in the RAM. ,
injection M calculation means for calculating the injection amount by multiplying the basic injection amount by an air-fuel ratio feedbank correction coefficient and a learning correction coefficient;
In an electronically controlled fuel injection type internal combustion engine equipped with a drive pulse signal output means for outputting a drive pulse signal corresponding to the calculated injection amount to the fuel injection valve, the inversion of the signal of the 02 sensor is performed. Measuring the cycle02
A sensor signal reversal period δ1 measuring means determines whether or not the measured reversal period is within a predetermined range determined by the engine rotational speed at that time, and stops the function of the learning correction coefficient updating means when it is outside the range. 1. An air-fuel ratio learning control device for an electronically controlled fuel injection type internal combustion engine, characterized in that an air-fuel ratio learning control device is provided with an update stop means.
JP13289483A 1983-07-22 1983-07-22 Air-fuel ratio learning control device in electronic control fuel injection type internal-combustion engine Granted JPS6026137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13289483A JPS6026137A (en) 1983-07-22 1983-07-22 Air-fuel ratio learning control device in electronic control fuel injection type internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13289483A JPS6026137A (en) 1983-07-22 1983-07-22 Air-fuel ratio learning control device in electronic control fuel injection type internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS6026137A true JPS6026137A (en) 1985-02-09
JPH0530978B2 JPH0530978B2 (en) 1993-05-11

Family

ID=15092034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13289483A Granted JPS6026137A (en) 1983-07-22 1983-07-22 Air-fuel ratio learning control device in electronic control fuel injection type internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS6026137A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61190142A (en) * 1985-09-12 1986-08-23 Japan Electronic Control Syst Co Ltd Learning control device of internal-combustion engine
JPS61190141A (en) * 1985-09-12 1986-08-23 Japan Electronic Control Syst Co Ltd Learning control device of internal-combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5381824A (en) * 1976-12-27 1978-07-19 Nissan Motor Co Ltd Diagnostic device of air fuel ratio controller
JPS562437A (en) * 1979-06-19 1981-01-12 Nippon Denso Co Ltd Air-fuel ratio controller
JPS5770934A (en) * 1980-10-20 1982-05-01 Nippon Denso Co Ltd Air fuel ratio control method
JPS57210137A (en) * 1981-05-15 1982-12-23 Honda Motor Co Ltd Feedback control device of air-fuel ratio in internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5381824A (en) * 1976-12-27 1978-07-19 Nissan Motor Co Ltd Diagnostic device of air fuel ratio controller
JPS562437A (en) * 1979-06-19 1981-01-12 Nippon Denso Co Ltd Air-fuel ratio controller
JPS5770934A (en) * 1980-10-20 1982-05-01 Nippon Denso Co Ltd Air fuel ratio control method
JPS57210137A (en) * 1981-05-15 1982-12-23 Honda Motor Co Ltd Feedback control device of air-fuel ratio in internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61190142A (en) * 1985-09-12 1986-08-23 Japan Electronic Control Syst Co Ltd Learning control device of internal-combustion engine
JPS61190141A (en) * 1985-09-12 1986-08-23 Japan Electronic Control Syst Co Ltd Learning control device of internal-combustion engine

Also Published As

Publication number Publication date
JPH0530978B2 (en) 1993-05-11

Similar Documents

Publication Publication Date Title
JPS60240840A (en) Control device of air-fuel ratio in internal-combustion engine
JPH0331548A (en) Mixed fuel supply device of internal combustion engine
JPS6346254B2 (en)
JPS59203828A (en) Air-fuel ratio learning control apparatus for electronically controlled fuel injection type internal-combustion engine
JPH04339147A (en) Control device for air-fuel ratio of internal combustion engine
JPS60101243A (en) Learning control device of internal-combustion engine
JPS6026137A (en) Air-fuel ratio learning control device in electronic control fuel injection type internal-combustion engine
JPS6093150A (en) Learnig control device for air-fuel ratio in electronically controlled fuel injection type internal- combustion engine
JPS6053647A (en) Learning control system at starting of electronic control fuel injection system internal-combustion engine
JPS6356414B2 (en)
JPS6045749A (en) Air-fuel ratio learning controller of electronic fuel injection type internal-combustion engine
JPS60153446A (en) Learning controller for air-fuel ratio in electronically- controlled fuel injection type internal-combustion engine
JPH0697408B2 (en) Electronic feedback control system for vehicle
JPS60153448A (en) Feedback controller with learning function
JPS62191641A (en) Learning control device for air-fuel ratio for internal combustion engine
JPS60153504A (en) Feedback control device having learning function
JPS6050246A (en) Device for controlling learning upon idling in internal- combustion engine
JPH0228700B2 (en)
JPH03229942A (en) Air-fuel ratio learning control device for electronically controlled fuel injection type internal combustion engine
JPH0226695B2 (en)
JPH0423099B2 (en)
JPH0243900B2 (en) NAINENKIKANNOGAKUSHUSEIGYOSOCHI
JPH0740673Y2 (en) Air-fuel ratio learning controller for internal combustion engine
JPS6356413B2 (en)
JPH0445659B2 (en)