JPS6026080B2 - Liquid phase epitaxial growth method - Google Patents

Liquid phase epitaxial growth method

Info

Publication number
JPS6026080B2
JPS6026080B2 JP15169979A JP15169979A JPS6026080B2 JP S6026080 B2 JPS6026080 B2 JP S6026080B2 JP 15169979 A JP15169979 A JP 15169979A JP 15169979 A JP15169979 A JP 15169979A JP S6026080 B2 JPS6026080 B2 JP S6026080B2
Authority
JP
Japan
Prior art keywords
layer
melt
growth
substrate
liquid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15169979A
Other languages
Japanese (ja)
Other versions
JPS5673700A (en
Inventor
和久 村田
寛 林
卓夫 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP15169979A priority Critical patent/JPS6026080B2/en
Publication of JPS5673700A publication Critical patent/JPS5673700A/en
Publication of JPS6026080B2 publication Critical patent/JPS6026080B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はGa山As発光ダイオードのための半導体層の
液相ェピタキシヤル成長方法に関するものである。 最近、光フアィバと結合させるための光通信用発光ダィ
オ−ドの研究が盛んに行われている。 既に開発されているこの種の発光ダイオードとしては、
第1図aに示す如く、発光動作させるための堰層a,、
発光層a2及び窓層鷺3等の半導体成長層を作成する土
台となる基板を半導体層成長後、にエッチング除去して
比較的薄い半導体層la(la=60〜70〃m)を発
光素子として利用する方式、第1図bに示す如く、半導
体層を成長させるための基板bを成長後も残留させる代
りに、光の吸収を防ぐために光放射部の基板を一部除去
する方式(lb〜200一m)及び第1図cに示す如く
、基板co全体を残留させて発光素子を構成する方式(
lc=100〜200ムm)等がある。図中Aは動作電
流を供給するための電極、Bは素子を取付けたヒートシ
ンクである。これら方式の内、製造方法及び特性等の面
から判断した場合、第1図aの方式が最も優れていると
考えられている。しかし第1図aの方式では、通常60
〜70〃mの層厚をもつ第1層を徐冷法による液相ェピ
タキシヤル成長プロセスによって製造しているため、次
の‘11〜
The present invention relates to a method for liquid phase epitaxial growth of a semiconductor layer for a Ga-As light emitting diode. Recently, research has been actively conducted on light emitting diodes for optical communications to be coupled with optical fibers. This type of light emitting diode that has already been developed includes:
As shown in FIG. 1a, weir layers a, .
After the semiconductor layer is grown, the substrate that serves as a base for creating semiconductor growth layers such as the light emitting layer a2 and the window layer 3 is etched away to form a relatively thin semiconductor layer la (la = 60 to 70〃m) as a light emitting element. As shown in Fig. 1b, instead of leaving the substrate b for growing the semiconductor layer after the growth, a part of the substrate in the light emitting part is removed to prevent light absorption (lb~ 2001m) and a method in which the light emitting element is constructed by leaving the entire substrate CO as shown in Figure 1c (
lc = 100 to 200 mm), etc. In the figure, A is an electrode for supplying an operating current, and B is a heat sink to which an element is attached. Among these methods, the method shown in FIG. 1a is considered to be the most superior in terms of manufacturing method and characteristics. However, in the method shown in Figure 1a, usually 60
Since the first layer with a layer thickness of ~70〃m is manufactured by a liquid phase epitaxial growth process using a slow cooling method, the following '11~

【3’‘こ述べるような欠点があった。○’
60〜70Amの層厚では素子が割れ易く、取り扱いが
極めて難かしい。 層厚を大きくしようとすれば、成長期間が長くなり徐冷
法によっているため成長初期温度を900℃以上にしな
ければならず、ZnやTeのように蒸気圧の高い不純物
を使用するプロセスではボートや炉の汚染が問題になる
と共に、析出された成長層の結晶性も悪くなる。【21
第1層に続いて第2層以降を連続して成長させようと
すれば、第2層の成長温度までかなり降溢させる必要が
あるため、融液の囲りに過剰な偽がGaAIAs微結晶
となって析出し、成長層に悪影響を与える。 ‘31 比較的長い時間の徐冷により成長した第1層は
、成長初期と終了時とではかなりAI濃度に差が生じ、
成長終了期に所定山濃度の成長層を得ようとすれば成長
初期にはかなり大きな山濃度の層が成長し、このような
高AI濃度の層へのオーミック電極の形成は非常に困難
である。 上記のような欠点のために従来の発光ダイオ・‐ドにお
いては第1層が60〜70仏mに抑えられていた。 また第1層GaAI笛のみを温度差法によって成長させ
た後、別の炉によって第2層ら汎蜂を通常のスライド法
による液相ェピタキシャル成長法で成長させる方法も考
えられる。 しかし第1層CanAsの表面には酸化膜が形成され易
く、第2層以降の成長層が滑らかに成長できない欠点が
あり、製造工程も複雑になる欠点がある。 本発明は上記従来方法の欠点を除去し、上記第1図aに
示した発光ダイオードの長所を損うことなく容易な製造
方法を提供するもので、次に実施例を挙げて詳細に説明
する。 第2図はCamAs発光ダイオードを製造するための装
置で、この種の従来装置と同様にGa瓜基板1を設置す
るための窪みが刻設されたスライダ2上に、ボート3が
摺動自在に設けられている。 該ボート3にはスラィダ2面に達する4個の融液溜め槽
4,5,6及び7が形成され、4種類の融液が槽内に保
持される。上記4個の融液槽の内第1の融液を保持する
第1槽4には、藤液に温度差をつけるためのヒータ8が
設けられて後述するように5℃/抑の温度差がつけられ
る。9は上記各融液槽4乃至7上に設けられた蓋である
。 上記製造装置において、第1融液槽4には第1融液10
のためにGa5夕,AI5雌○aAsソース300の9
及びTeo.1雌を配合して充填され第2融液槽5には
Ga5夕,AIM9,Ga偽ソース500雌及びZn2
0雌の配合材が、第3融液槽6にはGa5夕,AI5奴
o,Ga船ソース300の9及びZn20の9の配合材
が、第4融液槽7には○a5夕,AI2の3,GaAS
ソース500の9及びTeo.1の9の配合材が夫々融
液1 1,12及び13のために充填されている。配合
された半導体材料は第3図の温度コントロール図に示す
如く、比ガス雰囲気で80000まで昇溢されて融液状
態にもたらされ、該800ooに2時間保持された後、
スラィダ2とボート3とを相対的に移動させ、時刻ちで
GaAs半導体基板1を第1融液10に接触させる。基
板1との接触後ヒータ8に電線が投入されて第1融液1
01こ5℃/弧の温度差をスラィダ側が低温になるよう
に生じさせるべくヒータが制御される。温度勾配に基づ
く濃度差により第1融液10中のAs及びN成分は半導
体基板1に接触した低温側が過飽和状態になり、一定温
度に保たれた基板1上に第1のGa.−yA】yAs層
10′が成長する。成長量は基板1と第1融液10との
接触時間に比例し、本実施例では1時間に50&mの成
長層が形成された。従って2時間の等温保温により基板
1上に均一なAI濃度をもった100山mのN形Ga,
一yA1yAs層10′が得られた。第1層の成長後上
記基板の等温保持プロセスに対して、1℃/分の冷却速
度で冷却され、2分経過後ら‘こ基板1を第2融液槽5
の直下へ移動させて第2融液11と接触させ、1分間の
接触保持後時刻らで第3雛液12と基板1を2分間接触
保持させて第2層P形Ga.−XAIXAs(x<y)
11′に続いて第3層P形Ga,一yA1yAs1 2
′を成長させ、更に基板1を時刻しで第4融液13下に
移動させて1分間接触成長させる。該1分間の接触によ
って第4層N形(又はp形)Ga,一zA1zAs(x
<z<y)が成長し、1分間の経過後第4鞄液は基板1
から取り除かれ炉の電源が切られて成長を終える。上記
工程によって製造された半導体装置は第4図の断面図に
示す如く、Gaふ基板1上にloovmのN形Gao.
餅10.必s層1 0′、1〃mのP形Gao.9泌1
0.0船s層 1 1 ′、1ムmのP形Gao.船1
0.公s層 1 2 ′、1 〃 m の N形Gao
.8松10.1私s層13′が順次形成される。 該積層された半導体表面にマスクとなるAI203とS
i02からなる2重の膜が形成され、該被膜に電流供〉
絵のための窓あげ処理がなされ、続いてZnがP形Ga
o.6AIO.4As層に達するまで拡散される。該Z
n拡散処理の後上記2重膜のエッチングに続いて基板1
がNH40H:日202=1:5のエッチング液で除去
され発光ダイオードのための半導体層が作製される。上
記基板1のエッチング液はGaAs基板をエッチングす
るが、成長層はほとんど侵されることはない。上記基板
が除去された半導体層のN形GaAIAsの表面にAu
戊−Nj−Auを順次黍着し、光の取り出し口をホトヱ
ッチングで取り除いた後、P形oaNAs表面にA舷r
−Auを蒸着し、500℃3分間の熱処理によって合金
化処理し、最後にダーィジングにより各チップに分割す
る。 ここでGaAI*は等温成長により】00ムmの厚さに
形成されているため、基板1を取り除いた後も割れ等の
破損を生じる操れはほとんどない。以上本発明によれば
、等温成長によって第1層のCaAIふ層を作製するた
め、AI濃度やドーピング材の取り扱いに不都合を伴う
ことなく比較的厚い層を成長させることができ、素子製
造工程中にチップの割れを生じることがなく発光特性の
すぐれた素子を高い歩留で得ることができる。
[3''There were drawbacks as described below. ○'
With a layer thickness of 60 to 70 Am, the device is easily broken and is extremely difficult to handle. If you try to increase the layer thickness, the growth period becomes longer and the slow cooling method is used, so the initial growth temperature must be 900°C or higher. contamination becomes a problem, and the crystallinity of the deposited growth layer also deteriorates. [21
If the second layer and subsequent layers are to be grown continuously following the first layer, it is necessary to allow a considerable amount of precipitation to reach the growth temperature of the second layer. This precipitates and has an adverse effect on the growth layer. '31 In the first layer grown by slow cooling for a relatively long time, there is a considerable difference in AI concentration between the initial stage and the end of growth.
If you try to obtain a growth layer with a predetermined peak concentration at the end of growth, a layer with a fairly large peak concentration will grow at the beginning of growth, and it is extremely difficult to form an ohmic electrode in a layer with such a high AI concentration. . Due to the above-mentioned drawbacks, the first layer of conventional light emitting diodes has been limited to 60 to 70 meters. It is also conceivable to grow only the first layer GaAI whistle by the temperature difference method, and then grow the second layer and other layers by the liquid phase epitaxial growth method using the usual sliding method in a separate furnace. However, there is a drawback that an oxide film is easily formed on the surface of the first CanAs layer, and the second and subsequent layers cannot be grown smoothly, and the manufacturing process is also complicated. The present invention eliminates the drawbacks of the conventional method and provides an easy manufacturing method without impairing the advantages of the light emitting diode shown in FIG. . Figure 2 shows an apparatus for manufacturing CamAs light emitting diodes, in which a boat 3 is slidably placed on a slider 2 that has a recess carved into it for installing a Ga melon substrate 1, similar to this type of conventional apparatus. It is provided. Four melt storage tanks 4, 5, 6, and 7 are formed in the boat 3 and reach the slider 2 surface, and four types of melt are held in the tanks. The first tank 4 that holds the first melt among the four melt tanks is provided with a heater 8 for creating a temperature difference in the rattan liquid, and as described later, a temperature difference of 5°C/min is provided. can be added. Reference numeral 9 denotes a lid provided on each of the melt tanks 4 to 7. In the above manufacturing apparatus, the first melt tank 4 has a first melt 10
For Ga5 evening, AI5 female○aAs source 300 of 9
and Teo. The second melt tank 5 is filled with Ga500, AIM9, Ga false source 500, and Zn2.
The third melt tank 6 contains Ga5, AI5, Ga ship source 300 and Zn20, and the fourth melt tank 7 contains ○a5 and AI2. No. 3, GaAS
9 of source 500 and Teo. 1 of 9 formulations are filled for melts 1 1, 12 and 13, respectively. As shown in the temperature control diagram of FIG. 3, the compounded semiconductor material was brought to a melt state by being brought to a melt state by rising to a temperature of 80,000 in a specific gas atmosphere, and after being maintained at the temperature of 800,000 for 2 hours.
The slider 2 and the boat 3 are moved relatively to bring the GaAs semiconductor substrate 1 into contact with the first melt 10 at a certain time. After contacting the substrate 1, the electric wire is put into the heater 8 and the first melt 1
The heater is controlled to create a temperature difference of 5° C./arc so that the slider side is at a lower temperature. Due to the concentration difference based on the temperature gradient, the As and N components in the first melt 10 become supersaturated on the low temperature side in contact with the semiconductor substrate 1, and the first Ga. -yA]yAs layer 10' is grown. The amount of growth is proportional to the contact time between the substrate 1 and the first melt 10, and in this example, a growth layer of 50 mm was formed per hour. Therefore, by isothermal incubation for 2 hours, 100 m of N-type Ga with a uniform AI concentration on the substrate 1,
A 1yA1yAs layer 10' was obtained. After the growth of the first layer, the substrate is cooled at a cooling rate of 1° C./min during the isothermal holding process, and after 2 minutes, the substrate 1 is transferred to the second melt tank 5.
After holding the contact for 1 minute, the third molten liquid 12 and the substrate 1 are held in contact for 2 minutes to form the second layer P-type Ga. -XAIXAs(x<y)
11′, the third layer P-type Ga, yA1yAs1 2
' is grown, and then the substrate 1 is moved under the fourth melt 13 at a certain time to allow contact growth for 1 minute. The 1 minute contact causes the fourth layer N-type (or p-type) Ga, -zA1zAs(x
<z<y) grows, and after 1 minute, the fourth bag liquid is transferred to substrate 1.
The plant is removed from the plant and the furnace is turned off to finish growing. As shown in the cross-sectional view of FIG. 4, the semiconductor device manufactured by the above process is a loovm N-type GaO.
Mochi 10. Necessary layer 1 0', 1〃m P-type Gao. 9 Secretion 1
0.0 ship s layer 1 1', 1mm P type Gao. ship 1
0. Public layer 1 2', 1 m N type Gao
.. 8 pine 10.1 Is layers 13' are formed in sequence. AI203 and S which serve as a mask are placed on the surface of the stacked semiconductors.
A double film consisting of i02 is formed, and a current is supplied to the film.
Window processing was done for the picture, and then Zn was changed to P-type Ga.
o. 6AIO. It is diffused until it reaches the 4As layer. The Z
After the n-diffusion treatment, the double film is etched, and then the substrate 1 is etched.
is removed with an etching solution of NH40H:day202=1:5 to produce a semiconductor layer for a light emitting diode. Although the etching solution for the substrate 1 etches the GaAs substrate, the grown layer is hardly attacked. Au is applied to the surface of the N-type GaAIAs of the semiconductor layer from which the above substrate has been removed.
After sequentially depositing O-Nj-Au and removing the light extraction port by photo-etching, A side r
-Au is deposited, alloyed by heat treatment at 500° C. for 3 minutes, and finally divided into chips by dazing. Here, since the GaAI* is formed to a thickness of 00 mm by isothermal growth, there is almost no manipulation that would cause damage such as cracking even after the substrate 1 is removed. As described above, according to the present invention, since the first CaAI layer is produced by isothermal growth, a relatively thick layer can be grown without any inconvenience in handling the AI concentration or doping material, and during the device manufacturing process. It is possible to obtain devices with excellent light emitting characteristics at a high yield without causing chip cracking.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a〜cは従来素子の断面図、第2図は本発明によ
る半導体層の製造装置の断面図、第3図は本発明による
成長方法を説明するための温度コントロール図、第4図
は本発明による半導体成長層の断面図である。 1:GaAs基板、2:スライダ、3:ボート、4〜7
:融液、8:ヒータ、10′:第IGaAIAs成長層
、11′,12′,13′:第2、第3及び第4GaN
As成長層。 為2図 第3図 第4図 弟′図
1A to 1C are cross-sectional views of a conventional device, FIG. 2 is a cross-sectional view of a semiconductor layer manufacturing apparatus according to the present invention, FIG. 3 is a temperature control diagram for explaining the growth method according to the present invention, and FIG. 4 is a cross-sectional view of a conventional device. 1 is a cross-sectional view of a semiconductor growth layer according to the present invention. 1: GaAs substrate, 2: slider, 3: boat, 4 to 7
: melt, 8: heater, 10': IGaAIAs growth layer, 11', 12', 13': second, third and fourth GaN
As growth layer. Figure 2 Figure 3 Figure 4 Younger brother's figure

Claims (1)

【特許請求の範囲】[Claims] 1 GaAs基板上に結晶成長用融液を順次接触させて
エピタキシヤル層を析出成長させる液相エピタキシヤル
成長方法に於いて、前記融液内に前記GaAs基板との
接触面から離れるに従って漸次温度上昇する温度勾配を
付与し、該温度勾配に対応して形成される前記融液中の
成分の濃度分布に基いてGaAlAs系エピタキシヤル
層を厚く成長させた後、継続してエピタキシヤル層を堆
積することを特徴とする液相エピタキシヤル成長方法。
1. In a liquid phase epitaxial growth method in which an epitaxial layer is precipitated and grown by successively contacting a crystal growth melt on a GaAs substrate, the temperature of the melt gradually increases as it moves away from the contact surface with the GaAs substrate. After growing a thick GaAlAs epitaxial layer based on the concentration distribution of components in the melt formed in response to the temperature gradient, the epitaxial layer is continuously deposited. A liquid phase epitaxial growth method characterized by:
JP15169979A 1979-11-21 1979-11-21 Liquid phase epitaxial growth method Expired JPS6026080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15169979A JPS6026080B2 (en) 1979-11-21 1979-11-21 Liquid phase epitaxial growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15169979A JPS6026080B2 (en) 1979-11-21 1979-11-21 Liquid phase epitaxial growth method

Publications (2)

Publication Number Publication Date
JPS5673700A JPS5673700A (en) 1981-06-18
JPS6026080B2 true JPS6026080B2 (en) 1985-06-21

Family

ID=15524323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15169979A Expired JPS6026080B2 (en) 1979-11-21 1979-11-21 Liquid phase epitaxial growth method

Country Status (1)

Country Link
JP (1) JPS6026080B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60161397A (en) * 1984-01-27 1985-08-23 Mitsubishi Monsanto Chem Co Liquid phase epitaxial growth method

Also Published As

Publication number Publication date
JPS5673700A (en) 1981-06-18

Similar Documents

Publication Publication Date Title
CN1610138B (en) Group-III-element nitride crystal semiconductor device
US4902356A (en) Epitaxial substrate for high-intensity led, and method of manufacturing same
JPH06105797B2 (en) Semiconductor substrate and manufacturing method thereof
US3994755A (en) Liquid phase epitaxial process for growing semi-insulating GaAs layers
JPS6026080B2 (en) Liquid phase epitaxial growth method
US4028147A (en) Liquid phase epitaxial process for growing semi-insulating GaAs layers
JPH0537018A (en) Compound semiconductor single crystal
JP2004519837A (en) Epitaxial wafer equipment
JPH0475649B2 (en)
JPH05190900A (en) Manufacture of semiconductor light-emitting device
US4032950A (en) Liquid phase epitaxial process for growing semi-insulating gaas layers
JPH08264455A (en) Semiconductor device and manufacture thereof
US3669763A (en) Traveling solvent method of growing silicon carbide crystals and junctions utilizing yttrium as the solvent
JP2566800B2 (en) Light emitting device manufacturing method
JPH0279422A (en) Liquid phase epitaxial growth device and growth method
CN116324047A (en) Indium phosphide substrate, semiconductor epitaxial wafer, method for producing indium phosphide single-crystal ingot, and method for producing indium phosphide substrate
JPH05190476A (en) Manufacture of semiconductor layer
JP3427466B2 (en) Manufacturing method of semiconductor epitaxial wafer
JP2696928B2 (en) Heteroepitaxial growth method
JPS63117425A (en) Manufacture of semiconductor device
JPH10284512A (en) Method for producing ii-vi compound semiconductor single crystal wafer and ii-vi compound semiconductor single crystal wafer
JPS6052578B2 (en) Manufacturing method of semiconductor device
JPH0536895A (en) Manufacture of semiconductor device
JPH1012560A (en) Manufacturing of semiconductor multilayer film
JPH02307889A (en) Liquid phase epitaxy