JPS60260437A - Manufacture of glass base material for optical fiber - Google Patents

Manufacture of glass base material for optical fiber

Info

Publication number
JPS60260437A
JPS60260437A JP11662684A JP11662684A JPS60260437A JP S60260437 A JPS60260437 A JP S60260437A JP 11662684 A JP11662684 A JP 11662684A JP 11662684 A JP11662684 A JP 11662684A JP S60260437 A JPS60260437 A JP S60260437A
Authority
JP
Japan
Prior art keywords
gas
raw material
heated
burner
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11662684A
Other languages
Japanese (ja)
Other versions
JPH0480860B2 (en
Inventor
Keiji Osaka
啓司 大阪
Gotaro Tanaka
豪太郎 田中
Motohiro Nakahara
基博 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Original Assignee
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Sumitomo Electric Industries Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP11662684A priority Critical patent/JPS60260437A/en
Publication of JPS60260437A publication Critical patent/JPS60260437A/en
Publication of JPH0480860B2 publication Critical patent/JPH0480860B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/80Feeding the burner or the burner-heated deposition site
    • C03B2207/81Constructional details of the feed line, e.g. heating, insulation, material, manifolds, filters

Abstract

PURPOSE:To prevent the liquefaction or solidification of a gaseous starting material and to manufacture stably a glass base material for an optical fiber by feeding a heated gas for heating to the nozzle of a burner together with the gaseous starting material gasified by heating and by bringing the gaseous starting material into a vapor phase reaction. CONSTITUTION:A carrier gas such as Ar fed from a carrier gas feeding source 1a is sent to a starting material feeder 3 through a flow rate regulator 2, and a starting material for glass such as SiCl4 whose b.p. is above room temp. and additives are gasified by heating to produce a gaseous starting material. This gaseous starting material is regulated to a prescribed concn. with a concn. regulator 4 and introduced into a burner 6. A gas which is not degenerated by mixing with the gaseous starting material such as an inert gas is fed to a heater 10 from a heating gas feeding source 1b, heated, and allowed to join the gaseous starting material in a branch joint 82. The gaseous starting material is not liquefied or solidified in the nozzle of the burner 6 and piping, and a high quality glass base material 7 for an optical fiber can be obtd. continuously for a long time by a stable vapor phase reaction.

Description

【発明の詳細な説明】 く技術分野〉 本発明は多重管バーナを用いた気相反応による光フアイ
バ用ガラス母材の製造方法に係る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for manufacturing a glass preform for optical fiber by a gas phase reaction using a multi-tube burner.

〈従来技術〉 近年、光ファイバの製造方法としてVAD法が品質、製
造面で優ルた方法として用いられ、製造技術も洗練さn
つつあるが、製法上原料を長時間安定して供給すること
が高品質の長距離線路の光ファイバを得る上で必須の条
件となった。
<Prior art> In recent years, the VAD method has been used as a method for manufacturing optical fibers as it is superior in terms of quality and manufacturing, and the manufacturing technology has also become more sophisticated.
However, due to the manufacturing process, a stable supply of raw materials over a long period of time has become an essential condition in order to obtain high-quality optical fiber for long-distance lines.

VAD法は多重管バーナを用いて、気化さnたガラス原
料及びガラス添加剤を燃焼ガス・不活性ガスなどと共に
多重管バーナの所定のノズルに導き、ノズル前面で反応
させガラス微粒子を化学的に合成し、ターゲット上に軸
方向に堆積させることにより多孔質ガラス母材を得るも
のである。ガラス原料・ガラス添710剤トL−1j 
5iCt4 、GeC1,、POCt3. TiCz4
゜AICtsなどが用いられる。これらの化学物質は通
常室温では液体または固体であり、そのままではバーナ
に供給できない。そこで従来より他の気体によシ強制的
に気化でせ原料ガスとしたあと、原料の濃度調節装置で
濃度を一定に保持し、バーナに供給するという方式がと
られて来た。ガラス原料、ガラス添加剤を気化はせたも
のを包括して原料ガネと呼称する。従来のVAD法によ
る光フアイバ製造方法におけるガスバーナとこnに原料
ガスを供給する原料供給装置の例を第1図に示す。
The VAD method uses a multi-tube burner to guide vaporized glass raw materials and glass additives together with combustion gas, inert gas, etc. to a designated nozzle of the multi-tube burner, and react in front of the nozzle to chemically convert glass particles. A porous glass base material is obtained by synthesizing and depositing it on a target in the axial direction. Glass raw material/glass additive 710 agent L-1j
5iCt4, GeC1,, POCt3. TiCz4
゜AICts etc. are used. These chemicals are usually liquid or solid at room temperature and cannot be fed directly to the burner. Conventionally, therefore, a method has been adopted in which the raw material gas is forcibly vaporized using another gas, and then the raw material gas is maintained at a constant concentration using a concentration control device before being supplied to the burner. The term "raw material glass" includes the vaporized glass raw materials and glass additives. FIG. 1 shows an example of a raw material supply device for supplying raw material gas to a gas burner in a conventional optical fiber manufacturing method using the VAD method.

通常、VAD法においてガスバーナに供給されるガスは
次の3種に区分ざ牡る。
Generally, the gases supplied to the gas burner in the VAD method are classified into the following three types.

(1)原料ガス;四塩化ケイ素、四塩化ゲルマニウム、
オキシ塩化リン、四塩化チタン等のガラス原料あるいは
ガラス添加剤の気化さ扛たガスを1アルゴン、ヘリウム
、水素などの、上記塩化物と反応しないキャリヤガスで
送給する際のガス。
(1) Raw material gas; silicon tetrachloride, germanium tetrachloride,
A gas for supplying vaporized glass raw materials such as phosphorus oxychloride and titanium tetrachloride or glass additives with a carrier gas such as argon, helium, or hydrogen that does not react with the above chlorides.

(2)燃焼・助燃ガス:水素、酸素など、(1)の原料
ガスと反応することによってガラス粒子が生成さnると
同時に反応においてHzOを発生するガス。
(2) Combustion/combustion auxiliary gas: A gas such as hydrogen or oxygen that generates glass particles by reacting with the raw material gas in (1) and at the same time generates HzO in the reaction.

(3)シールガス;直接ガラス反応に関与しないが、バ
ーナノズル前面で反応が起ってノズルが劣化するのを防
止するためのガスであり、アルゴン、ヘリウム、窒素ガ
ス等が用いらnる。本発明で問題としているのは原料ガ
スの供給方法である。
(3) Seal gas: This is a gas that does not directly participate in the glass reaction, but is used to prevent the nozzle from deteriorating due to a reaction occurring in front of the burner nozzle, and argon, helium, nitrogen gas, etc. are used. The problem in the present invention is the method of supplying the raw material gas.

第1図において、供給源1よシ供給でれて、キャリアガ
ス(不活性ガス)は流it調節装置2で所定の流量に維
持され、原料供給槽3を通ってガラス原料あるいはガラ
ス添加剤を気化させる。次に気化された原料ガスは原料
濃度調節装置4で所定の濃度に制御さn1配管加熱装置
9で加熱された配管5を経由して、バーナ6へ送り出さ
れる。第1図に示す場合は、簡単のため、1つの原料系
が1種類の原料ガス’に1つのバーナノズルに送給する
原料供給装置について示しているが、実際はよシ複雑で
、複数の原料ガスが1つのノズルにつながれる場合が多
い。なお、81は継手である。
In FIG. 1, a carrier gas (inert gas) is supplied from a supply source 1, maintained at a predetermined flow rate by a flow rate adjustment device 2, and passed through a raw material supply tank 3 to add glass raw materials or glass additives. vaporize. Next, the vaporized raw material gas is controlled to a predetermined concentration by the raw material concentration adjusting device 4 and sent to the burner 6 via the pipe 5 heated by the n1 pipe heating device 9. In the case shown in Fig. 1, for simplicity, a raw material supply system is shown in which one raw material system feeds one type of raw material gas to one burner nozzle, but in reality it is much more complicated and involves multiple raw material gases. are often connected to one nozzle. Note that 81 is a joint.

第1図に示す従来の原料供給装置では、バーナ部及び原
料ガス発生装置からバーナまでの原料ガス供給系統配管
は原料ガスの液化・固化防止のため、少くとも原料ガス
の飽和温度よシ高温に維持さnる必要がある。ところが
従来法では配管系統にテープ状ヒータ・ニクロム線など
を巻きつけて保温しており、配管継手81の肉厚部や多
重管バー俟の中心部ノズル等では加熱効果が乏しく、こ
のような箇所でしはしば原料ガスの液化あるいは同化が
起り易く、原料ガスを定められた値を保って安定して送
給することができないことが起り、製造上妨げとなった
In the conventional raw material supply device shown in Fig. 1, the raw material gas supply system piping from the burner section and the raw material gas generator to the burner is heated to a temperature at least higher than the saturation temperature of the raw material gas to prevent the raw material gas from liquefying and solidifying. It needs to be maintained. However, in the conventional method, the piping system is kept warm by wrapping tape-shaped heaters, nichrome wire, etc., and the heating effect is poor in thick parts of piping joints 81 and central nozzles of multi-pipe bars, etc. However, the raw material gas is often prone to liquefaction or assimilation, making it impossible to maintain and stably supply the raw material gas at a predetermined value, which has hindered production.

〈発明の目的〉 本発明はかかる従来技術の欠点に鑑みてなき7したもの
で、バーナ内及び原料供給系配管内で、原料の液化−固
化の発生しない光フアイバ用ガラス母材の製造方法を提
供することを目的とするものでおる。
<Object of the Invention> The present invention has been developed in view of the drawbacks of the prior art, and provides a method for manufacturing a glass base material for optical fibers in which liquefaction and solidification of raw materials do not occur in the burner and the raw material supply system piping. The purpose is to provide.

く問題点解決のための具体的手段〉 かかる目的を達成した本発明による光フアイバ用ガラス
母材の製造方法の構成は、気相反応による光フアイバ用
ガラス母材の製造において、沸点が室温ニジ高い上記ガ
ラス母材のガラス原料あるいはガラス添加剤r原料供給
装置によって気化させ、原石ガスとしてバーナノズルに
送給するとともに、核原料ガスを、上記原料供給装置と
は別個に設けられた加熱装置によって加熱したガスで加
熱する仁とを特徴とするものである。尚、原料ガスを加
熱ガスで加熱する方法としては、原料ガスと反応しない
加熱ガスを原料ガスの配管の中に直接添加しこれをバー
ナに送シこむ方法と、他の方法はバーナ内で原料ガスノ
ズルに隣接するノズル内に加熱ガスを送給し、ノズル壁
を介して原料ガスを間接的に加熱する方法がある。
Concrete Means for Solving Problems〉 The structure of the method for manufacturing a glass base material for optical fiber according to the present invention that achieves the above object is that the boiling point of the glass base material for optical fiber can be varied from room temperature to The glass raw material of the glass base material or the glass additive r is vaporized by the raw material supply device and sent to the burner nozzle as raw gas, and the nuclear raw material gas is heated by a heating device provided separately from the raw material supply device. It is characterized by the fact that it is heated with a heated gas. There are two ways to heat the raw material gas with heated gas: one is to add heating gas that does not react with the raw gas directly into the raw gas piping and send it to the burner, and the other method is to heat the raw material in the burner. There is a method of feeding heating gas into a nozzle adjacent to a gas nozzle and indirectly heating the raw material gas through the nozzle wall.

〈実 施 例〉 本発明による光フアイバ用ガラス母材の製造方法の第1
の実施例を、第2図に示す。第2図はVAD法によるガ
ラス母材の製造装置の構成図である。第2図において、
laはキャリヤガス供給源、lbは加熱用ガス供給源、
2はキャリヤガス流量調節装置、3はガラス原料あるい
はガラス添加剤供給装置、4は原料ガス濃度調節装置、
 51,5gは配管、6はバーナ、7は生成ガラス母材
、8tij配管5i’、5xの継手、1Gは加熱用ガス
の加熱装置である。
<Example> First method for manufacturing a glass base material for optical fiber according to the present invention
An example of this is shown in FIG. FIG. 2 is a configuration diagram of an apparatus for manufacturing a glass base material by the VAD method. In Figure 2,
la is a carrier gas supply source, lb is a heating gas supply source,
2 is a carrier gas flow rate adjustment device, 3 is a glass raw material or glass additive supply device, 4 is a raw material gas concentration adjustment device,
51 and 5g are pipes, 6 is a burner, 7 is a produced glass base material, 8tij pipes 5i' and 5x joints, and 1G is a heating device for heating gas.

キャリヤガス供給源laからキャリヤガスとして不活性
ガスが供給され、キャリヤガス流量調節装置2によって
所望の流量に調節され、ガラス原料例えば液状の四塩化
珪−8iC14が貯えられた容器からなるガラス原料供
給装置3へ供給さnる。ガラス原料供給装置3では飽和
蒸気圧の原料ガスがキャリヤガスによって、原料濃度調
節装置4へ送られ、所望の濃度の原料ガスとされて配管
51ヲ経由してバーナ6へ送給される。原料ガスはバー
ナ6で反応を起しガラス微粒子としてターゲット上に堆
積され、ガラス母材7を形成する。第2図では更に、加
熱用ガス例えば不活性ガスあるいは、原料ガスと混合し
ても変質した〕反応しないガスの所望の流at加熱用ガ
ス供給装置1bから供給し、加熱装置lOによって原料
ガスの飽和温度以上の高温に加熱し、加熱さnたガスは
配管5宜を経てバーナ6の直前の分岐継手8zにおいて
、配管51中を送給される原料ガスへ合流でれる。原料
ガスは温度が下って液化し易いバーナ中心部や継手部8
2等でも加熱ガスによって直接加熱されるため、乾燥さ
れた状態でバーナ6へ送給される。
An inert gas is supplied as a carrier gas from a carrier gas supply source la, and the flow rate is adjusted to a desired value by a carrier gas flow rate regulator 2, and a glass raw material supply consisting of a container in which glass raw material, for example, liquid silicon tetrachloride-8iC14 is stored. Supplied to device 3. In the glass raw material supply device 3, the raw material gas at saturated vapor pressure is sent to the raw material concentration adjusting device 4 using a carrier gas, and the raw material gas having a desired concentration is sent to the burner 6 via a pipe 51. The raw material gas causes a reaction in the burner 6 and is deposited on the target as glass particles, forming a glass base material 7. In FIG. 2, a desired flow of a heating gas such as an inert gas or a gas that does not react even when mixed with the raw material gas is supplied from the heating gas supply device 1b, and the raw material gas is heated by the heating device IO. The heated gas is heated to a high temperature equal to or higher than the saturation temperature, and the heated gas passes through the pipe 5 and joins the source gas fed through the pipe 51 at the branch joint 8z just before the burner 6. The raw material gas tends to liquefy as the temperature drops, such as in the center of the burner and at the joints 8.
Since the second grade is also directly heated by the heating gas, it is sent to the burner 6 in a dry state.

第2図に示す本発明によるガラス母材の製造方法によれ
ば原料ガスに加熱ガスを混合して原料ガスを直接加熱す
ることによつ−て、配管継手部及びバーナノズル中心部
でも原料ガスの液化あるいは同化を起すことなく、原料
、。
According to the method for manufacturing a glass base material according to the present invention shown in FIG. 2, by mixing heating gas with the raw material gas and directly heating the raw material gas, the raw material gas can be heated even at the piping joint and the center of the burner nozzle. raw materials, without liquefaction or assimilation.

ガスは原料濃度調節装置4で所望の濃度に調節てれた値
全保ってバーナに供給式れるため、バーナによるガラス
母材の連続製造においてガラス原料及びガラス添加剤濃
度の変動を起すことはなく常に安定した原料供給のもと
に光フアイバ用ガラス母材を生成することができる。
Since the gas is supplied to the burner while keeping the desired concentration adjusted by the raw material concentration adjusting device 4, there is no fluctuation in the concentration of glass raw materials and glass additives during the continuous production of glass base material using the burner. Glass preforms for optical fibers can be produced with a constant supply of raw materials.

第2図に示す例では配管51の分岐継手8!をバーナの
直前に設けた例について説明したが、原料濃度調節装置
4の直后の継手を分岐継手として、加熱ガスを配管51
へ供給し、配管51及びバーナ6へ送給される原料ガス
を加熱してもよい。この場合は配管51、継手81、バ
ーナ管内部での原料ガスの液化あるいは固化を防止する
ことができる。
In the example shown in FIG. 2, the branch joint 8 of the pipe 51! In the above example, the joint immediately after the raw material concentration adjustment device 4 is used as a branch joint, and the heated gas is connected to the pipe 51.
The raw material gas supplied to the piping 51 and the burner 6 may be heated. In this case, it is possible to prevent the raw material gas from liquefying or solidifying inside the pipe 51, the joint 81, and the burner pipe.

第3図は第2図中のバーナ部を詳細に示したものである
。第3図中、多重管バーナのノズル61へ原料ガス、加
熱ガス、燃焼ガスが供給ぜれ、ノズル6f〜6nへはそ
の他のガス即ち、燃焼ガス(H意)、助燃ガス(0,)
 、シールガス(Ar 、 He・・自)、その他の原
料ガスが供給されている。尚、第2図に示されている原
料供給系は、第3図中ノズル61に供給される原料ガス
と加熱ガスに係わる部分に相当する。
FIG. 3 shows the burner section in FIG. 2 in detail. In Fig. 3, raw material gas, heating gas, and combustion gas are supplied to the nozzle 61 of the multi-tube burner, and other gases, namely combustion gas (H) and auxiliary combustion gas (0,), are supplied to the nozzles 6f to 6n.
, seal gas (Ar, He, etc.), and other source gases are supplied. The raw material supply system shown in FIG. 2 corresponds to the part related to the raw material gas and heating gas supplied to the nozzle 61 in FIG. 3.

本発明の第2の実施例を第4図に示すガラ ゛ス母材の
製造装置によって説明する。第4図においてlaはキャ
リヤガス供給源、lbu加熱旧ガス供給源、2はキャリ
ヤガス流量調節製電、3はガラス原料あるいはガラス添
加剤供給装置、4は原料ガス濃度調節装置、51゜5!
は配管、6Viバーナ、7は生成ガラス母材、F3tJ
d継手、9は配管用加熱装置、lOは加熱用ガス加熱装
置である。第4図において、キャリヤガス供給源1aか
ら不活性ガスのキャリヤガスが供給され、キャリヤガス
流量調節装置2によって所望の流量に調節される。キャ
リヤガスは更にガラス原料例えば液状四塩化珪素S i
 C14が入nらnた容器からなるガラス原料供給装置
3へ供給てれ、気化されたガラス原料を飽和蒸気圧の原
料ガスとして、原料濃度調節装置4へ送り、所望の濃度
の原料ガスとして配管51′f、経由して第5図に示す
如くバーナ6のノズル61へ送給する。原料ガスはバー
ナ6で反応を起しガラス微粒子としてターゲット上にユ
ホ積さn、ガラス母材7を生成する。第4図では更に、
加熱用ガス例えば不活性ガスをガス供給源1bから供給
し、加熱装置10によって原料ガスの飽和濃度以上の高
温に加熱し、加熱されたガスは継手8!、配管5zi介
して第5図に示す如くバーナ6のノズル62へ供給さn
る。ノズル61と62との間はノズルの隔壁があるため
、配管5Iを介してノズル61へ供給さnた原料ガスは
ノズルの隔壁を介して間接的に加熱ざnる。従って従来
のものの如く中心部のノズルに供給さnた原料ガスがノ
ズル内での温度不足のため液化あるいは固化するといっ
たことに起らない。なお、第4図に示す実施例中、配管
51i1を従来と同じく配管用加熱装置9によって加熱
され、配管並びに継手部分で原料ガスが液化あるいは固
化することを防止している。第5図は第4図に示すバー
ナ6の構造をより詳細に示したものである。第4図中に
示す原料供給系においてバーナ6のノズル61へ供給さ
nる原料ガスは、第5図において、多重管バーナ6のノ
ズル61へ供給さnる原料ガスに相当する。
A second embodiment of the present invention will be explained using a glass base material manufacturing apparatus shown in FIG. In FIG. 4, la is a carrier gas supply source, lbu heated old gas supply source, 2 is a carrier gas flow rate adjustment device, 3 is a glass raw material or glass additive supply device, 4 is a raw material gas concentration adjustment device, 51° 5!
is piping, 6Vi burner, 7 is produced glass base material, F3tJ
d joint, 9 is a heating device for piping, and 10 is a heating gas heating device. In FIG. 4, an inert carrier gas is supplied from a carrier gas supply source 1a, and the carrier gas flow rate is adjusted to a desired flow rate by a carrier gas flow rate adjustment device 2. In FIG. The carrier gas is further used as a glass raw material such as liquid silicon tetrachloride Si.
The vaporized glass raw material is supplied to a glass raw material supplying device 3 consisting of a container containing C14, and is sent to a raw material concentration adjustment device 4 as a raw material gas at a saturated vapor pressure, and then transferred to a piping as a raw material gas at a desired concentration. 51'f, and is fed to the nozzle 61 of the burner 6 as shown in FIG. The raw material gas causes a reaction in the burner 6 and is deposited on the target as glass fine particles to form a glass base material 7. In Figure 4, furthermore,
A heating gas such as an inert gas is supplied from the gas supply source 1b and heated to a high temperature higher than the saturation concentration of the raw material gas by the heating device 10, and the heated gas is transferred to the joint 8! , is supplied to the nozzle 62 of the burner 6 through the pipe 5zi as shown in FIG.
Ru. Since there is a nozzle partition between the nozzles 61 and 62, the source gas supplied to the nozzle 61 via the pipe 5I is indirectly heated through the nozzle partition. Therefore, the raw material gas supplied to the central nozzle does not liquefy or solidify due to insufficient temperature within the nozzle, as in the conventional case. In the embodiment shown in FIG. 4, the piping 51i1 is heated by the piping heating device 9 as in the prior art to prevent the source gas from liquefying or solidifying at the piping and joints. FIG. 5 shows the structure of the burner 6 shown in FIG. 4 in more detail. The raw material gas supplied to the nozzle 61 of the burner 6 in the raw material supply system shown in FIG. 4 corresponds to the raw material gas supplied to the nozzle 61 of the multi-tube burner 6 in FIG.

また第4図中バーナのノズル6!へ供給さnる加熱ガス
は、第5図における多重管バーナ6のノズル61へ供給
さnる加熱ガスに相当している。また、第5図において
、多重管バーナ6のその他のノズル63〜6nに対して
はその他のガスとして燃焼ガス(Hz)’−助燃ガス(
0□)lシールガス(Ar 、 He・・・)、その他
の原料ガス等が供給でれている。
Also, burner nozzle 6 in Figure 4! The heated gas supplied to corresponds to the heated gas supplied to the nozzle 61 of the multi-tube burner 6 in FIG. In addition, in FIG. 5, for the other nozzles 63 to 6n of the multi-tube burner 6, other gases include combustion gas (Hz)' - auxiliary combustion gas (
0□)l Seal gas (Ar, He...), other raw material gases, etc. are supplied.

以上の本発明の二つの実施例に第2図及び第4図によっ
て説明したが勿論これら二つの方法を組合せて用いるこ
とができる。例えば、特定の原料ガスに対し加熱ガスを
混合して加熱しバーナの一つのノズルに供給するととも
に、バーナの隣接するノズルに加熱ガスヲ送給して原料
ガスの液化、固化を防止することができる。また1本の
多重管バーナに複数の原料を用いる場合、本発明による
2種の加熱方法を例えば原料A、Bに対してそれぞn用
いることも可能である。この場合の多重管バーナ部分を
第6図に示す。第6図に示すものは多重管バーナ6のノ
ズル61に本発明による第1の実施例方法により、原料
ガス人と加熱ガスを混合して供給するとともに、本発明
の第2の実施例方法により、原料ガスBlノズル6!に
供給し、こnt−加熱する加熱ガスtv4接ノズル63
に供給して原料ガスBを間接的に加熱している。第6図
中ノズル64・* @6n Kはその他のガスとして、
燃焼ガス(Hり、助燃ガス(01)、シールガx(Ar
、Heaas)、その他の原料ガス等が供給される。
Although the above two embodiments of the present invention have been described with reference to FIGS. 2 and 4, it is of course possible to use these two methods in combination. For example, it is possible to mix and heat a specific raw material gas with heated gas and supply it to one nozzle of a burner, and also to prevent the raw material gas from liquefying or solidifying by feeding the heated gas to an adjacent nozzle of the burner. . Furthermore, when a plurality of raw materials are used in one multi-tube burner, it is also possible to use two types of heating methods according to the present invention, for example, for raw materials A and B, respectively. The multi-tube burner section in this case is shown in FIG. What is shown in FIG. 6 is that the raw material gas and the heating gas are mixed and supplied to the nozzle 61 of the multi-tube burner 6 by the method of the first embodiment according to the present invention, and the mixture is supplied by the method of the second embodiment of the present invention. , raw material gas Bl nozzle 6! The heating gas tv4 contact nozzle 63 is supplied to and heated.
The raw material gas B is indirectly heated by being supplied to the gas. In Fig. 6, nozzle 64・* @6n K represents other gases,
Combustion gas (H), auxiliary combustion gas (01), seal gas (Ar
, Heaas), other raw material gases, etc. are supplied.

また本発明VCよる方法は、従来用いらnている加熱方
法、即ち配管やバーナ自体を外部加熱装置で加熱する方
法と組合せて使用することも勿論可能である。
Moreover, the method using the VC of the present invention can of course be used in combination with a conventional heating method, that is, a method of heating the piping or burner itself with an external heating device.

本発明による光フアイバ用ガラス母材の製造方法の具体
例を以下に示す。
A specific example of the method for producing a glass preform for optical fiber according to the present invention will be shown below.

(1)原料ガスに5iC1< (四塩化珪素)、htc
t。
(1) 5iC1< (silicon tetrachloride), htc in the raw material gas
t.

塩化アルミニウム)′f、気化させたものをステンレス
の配管を用いて石英ガラス製の7重管バーナに供給し、
加熱用ガスとしてアルゴンガス全周い加熱装置lOで2
10℃に加熱してiI[接原料ガス(40℃pに混合し
てバーナに送給した。この際のバーナ管でのガスの配置
及び流量条件全第1表に示す。この結果はバーナ部にお
いて原料の液化・固化が起らず不安定性を生ずることな
く直径7(Lm、長さ350Mのきわめて良質な多孔性
ガラス母材を得た。更にこのガラス母材を加熱透明化し
たガラス体は長手方向に均質な構成をもち、これを紡糸
したB ところ、損失がi 4 (1,6μ犠)の極めて低ロス
の長距離線路の光ファイバを得た。
Aluminum chloride)'f, the vaporized material is supplied to a quartz glass seven-tube burner using stainless steel piping,
Argon gas is used as the heating gas.
It was heated to 10°C and fed to the burner after being mixed with iI [in contact gas (at 40°C p).The gas arrangement and flow rate conditions in the burner tube at this time are all shown in Table 1.The results are shown in Table 1. An extremely high quality porous glass base material with a diameter of 7 (Lm and a length of 350M) was obtained without liquefaction or solidification of the raw material and without causing instability.Furthermore, this glass base material was heated and made transparent. B has a homogeneous structure in the longitudinal direction, and by spinning this, an optical fiber with an extremely low loss of i 4 (1.6μ sacrificial) and a long distance line was obtained.

(2)原料ガスIc 5iCz4(四塩化珪素) 、 
GeCta(四塩化ゲルマニウム) 、 TiCl4 
(四塩化チタン)を気化して用いフッ素樹脂製及びステ
ンレス製配管51を用い外径φ=50箇の多重石英ガラ
ス製バーナのノズルに供給し隣接するバーナのノズルに
へ〃ラムとアルゴンの混合ガスを150℃に加熱して供
給し原料ガスを加熱してガラス母材を製−造した。この
際のガスの配置及び流量条件を第2表に示す。この結果
はバーナ部で原料ガスの液化・固化扛起らず不安定性を
生ずることなく、直径75sa+、長さ350mのきわ
めて良好な多孔質ガラス母材r得た。
(2) Raw material gas Ic5iCz4 (silicon tetrachloride),
GeCta (germanium tetrachloride), TiCl4
(titanium tetrachloride) is vaporized and supplied to the nozzles of multiple quartz glass burners with outer diameter φ = 50 using pipes 51 made of fluororesin and stainless steel, and mixed with argon to the nozzles of adjacent burners. Gas was heated to 150° C. and supplied, and the raw material gas was heated to produce a glass base material. The gas arrangement and flow rate conditions at this time are shown in Table 2. As a result, the raw material gas did not liquefy or solidify in the burner section, causing no instability, and an extremely good porous glass base material r with a diameter of 75 sa+ and a length of 350 m was obtained.

この母材を加熱透明化したガラス体は長手方向に均質な
構成音もち、ガラス体のシリカに対する屈折率差は約3
係であった。このガラス体を紡糸したとζろ、損失が2
0”)。
The glass body made by heating this base material to make it transparent has a homogeneous sound structure in the longitudinal direction, and the difference in refractive index of the glass body with respect to silica is approximately 3.
He was in charge. When this glass body is spun, the loss is 2
0”).

(1,6μm)の極めて低ロスの長距離線路の光ファイ
バを得た。
A long-distance optical fiber with an extremely low loss of (1.6 μm) was obtained.

第 1 表 ※投入量g/分 その他は47分 第2表 ※投入量27分 その他は47分 く発、明1の効果〉 本発明による光フアイバ用ガラス母材の製造方法によれ
ば、原料供給装置で作られた原料ガスを別途加熱したガ
スを用いて直接あるいは間接的に加熱するため配管ある
いはバーナ中で原料ガラスの液化・固化を起きず、従つ
て長時間連続運転しても、得られたガラス母材は長さ方
向にきわめて品質が安定したもの會得ることができた。
Table 1 *Input amount g/min Others are 47 minutes Table 2 *Input amount 27 minutes Others are 47 minutes Effect of invention 1> According to the method for manufacturing a glass base material for optical fiber according to the present invention, the raw material Because the raw material gas produced by the supply device is heated directly or indirectly using separately heated gas, the raw material glass does not liquefy or solidify in the piping or burner, so even if the raw material glass is operated continuously for a long time, no profit can be obtained. The quality of the glass base material thus obtained was extremely stable in the longitudinal direction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の、VAD法によるガラス母材製造のバー
ナと原料供給装置の構成図、第2図は本発明による光フ
ァイバ用ガラ玉母材の製導方法の第1の実施例を説明す
る装置の構成図、第3図は第2図中のバーナ部の詳細図
、第4図は本発明の他の実施例を説明する装置の構成図
、第5図は第4図に示すバーナ部の詳細図、第6図は本
発明方法の二つの実施例を併用した場合のバーナ部の構
成を示す図をそnぞれ示す。 図 面 中、 lはガス供給源、 laはキャリヤガス供給源、 lbは加熱用ガス供給源、 2はキャリヤガス流it’調節装置、 3は原料供給装置、 4は原料ガス濃度詞節装置、 51、 5zは配管、 6はバーナ、 7はガラス母材、 81は継手、 82は分岐継手、 9け配管用加熱装置、 10け加熱用ガス加熱装置である。 特許出願人 住友電気工業株式会社 日本電信電話公社 代 理 人 弁理士 光 石 士 部 (他1名) 第1因 第2図 4 3 2 第5図 第6図
Fig. 1 is a configuration diagram of a burner and raw material supply device for producing a glass preform by the conventional VAD method, and Fig. 2 illustrates a first embodiment of the method for producing a glass bead preform for optical fiber according to the present invention. FIG. 3 is a detailed view of the burner section in FIG. 2, FIG. 4 is a configuration diagram of an apparatus explaining another embodiment of the present invention, and FIG. 5 is a diagram of the burner shown in FIG. 4. FIG. 6 is a diagram showing the structure of the burner section when two embodiments of the method of the present invention are used together. In the figure, l is a gas supply source, la is a carrier gas supply source, lb is a heating gas supply source, 2 is a carrier gas flow adjustment device, 3 is a raw material supply device, 4 is a raw material gas concentration control device, 51 and 5z are pipes, 6 is a burner, 7 is a glass base material, 81 is a joint, 82 is a branch joint, a heating device for 9 pipes, and a gas heating device for heating 10 pipes. Patent Applicant: Sumitomo Electric Industries, Ltd. Nippon Telegraph and Telephone Public Corporation Representative Patent Attorney: Shibu Mitsuishi (and 1 other person) 1st Cause Figure 2 4 3 2 Figure 5 Figure 6

Claims (4)

【特許請求の範囲】[Claims] (1) 気相反応による光ファイバ用ガ?ス母材の製造
方法において、沸点が室温よシ高い上記ガラス母材の原
料あるいはガラス添加剤を原料供給装置によって加熱気
化させ原料ガスとしてバーナノズルに送給するとともに
、該原料ガス會上記原料供給装置とは別個に設けられた
加熱装置によって加熱したガスで加熱することを特徴と
する光フアイバ用ガラス母材の與遣方法。
(1) Gas phase reaction for optical fiber? In the method for producing a glass base material, the raw material for the glass base material or the glass additive, whose boiling point is higher than room temperature, is heated and vaporized by a raw material supply device and fed to the burner nozzle as a raw material gas, and the raw material gas is supplied to the burner nozzle as a raw material gas. 1. A method for supplying a glass preform for an optical fiber, characterized by heating with gas heated by a heating device provided separately from the method.
(2) 前記原料供給装置とは別個に設けられた加熱装
置rCよって加熱されたガスが、前記原料ガスと混合さ
nても使用範囲で変質しないガスであって、該加熱ガス
を前記原料ガスに混合して、原料ガスを加熱することを
特徴とする特許請求の範囲第1項記載の光フアイバ用ガ
ラス母材の製造方法。−
(2) The gas heated by the heating device rC provided separately from the raw material supply device is a gas that does not change in quality within the range of use even when mixed with the raw material gas, and the heated gas is used as the raw material gas. 2. The method for producing a glass preform for optical fiber according to claim 1, wherein the raw material gas is heated. −
(3)前記加熱ガスが不活性ガスであることを特徴とす
る特許請求の範囲第2項記載の光フアイバ用ガラス母材
の製造方法。
(3) The method for manufacturing a glass preform for optical fiber according to claim 2, wherein the heating gas is an inert gas.
(4)前記原料供給装置とは別個に設けら扛た加熱装置
によって加熱されたガス全バーナノズルで前、記原料ガ
スが流れるノズルvca接したノズルに流すことにより
、前記原料ガスをノズルの壁を介して加熱することを特
徴とする特許請求の範囲第1項記載の光フアイバ用ガラ
ス母材の製造方法。
(4) A gas burner nozzle heated by a heating device provided separately from the raw material supply device is used to flow the raw material gas through a nozzle that is in contact with the nozzle vca through which the raw material gas flows, so that the raw material gas is heated by the nozzle wall. 2. A method for producing a glass preform for optical fiber according to claim 1, wherein the glass preform for optical fiber is heated.
JP11662684A 1984-06-08 1984-06-08 Manufacture of glass base material for optical fiber Granted JPS60260437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11662684A JPS60260437A (en) 1984-06-08 1984-06-08 Manufacture of glass base material for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11662684A JPS60260437A (en) 1984-06-08 1984-06-08 Manufacture of glass base material for optical fiber

Publications (2)

Publication Number Publication Date
JPS60260437A true JPS60260437A (en) 1985-12-23
JPH0480860B2 JPH0480860B2 (en) 1992-12-21

Family

ID=14691850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11662684A Granted JPS60260437A (en) 1984-06-08 1984-06-08 Manufacture of glass base material for optical fiber

Country Status (1)

Country Link
JP (1) JPS60260437A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151032A (en) * 1984-12-24 1986-07-09 Hitachi Cable Ltd Apparatus for feeding raw material gas for production of optical fiber preform
JPS61191533A (en) * 1985-02-18 1986-08-26 Sumitomo Electric Ind Ltd Gas reaction apparatus
JPS6321233A (en) * 1986-07-15 1988-01-28 Sumitomo Electric Ind Ltd Production of base material for optical fiber
US8356494B2 (en) 2009-02-24 2013-01-22 Asahi Glass Company, Limited Process for producing porous quartz glass object, and optical member for EUV lithography
JP2014224007A (en) * 2013-05-15 2014-12-04 住友電気工業株式会社 Manufacturing method of stack of glass fine particles, and burner for manufacturing stack of glass fine particles
JP2017036172A (en) * 2015-08-07 2017-02-16 株式会社フジクラ Manufacturing method for optical fiber preform

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151032A (en) * 1984-12-24 1986-07-09 Hitachi Cable Ltd Apparatus for feeding raw material gas for production of optical fiber preform
JPS61191533A (en) * 1985-02-18 1986-08-26 Sumitomo Electric Ind Ltd Gas reaction apparatus
JPS6321233A (en) * 1986-07-15 1988-01-28 Sumitomo Electric Ind Ltd Production of base material for optical fiber
US8356494B2 (en) 2009-02-24 2013-01-22 Asahi Glass Company, Limited Process for producing porous quartz glass object, and optical member for EUV lithography
JP5578167B2 (en) * 2009-02-24 2014-08-27 旭硝子株式会社 Method for producing porous quartz glass body and optical member for EUV lithography
JP2014224007A (en) * 2013-05-15 2014-12-04 住友電気工業株式会社 Manufacturing method of stack of glass fine particles, and burner for manufacturing stack of glass fine particles
JP2017036172A (en) * 2015-08-07 2017-02-16 株式会社フジクラ Manufacturing method for optical fiber preform
US10167543B2 (en) 2015-08-07 2019-01-01 Fujikura Ltd. Method for manufacturing optical fiber preform

Also Published As

Publication number Publication date
JPH0480860B2 (en) 1992-12-21

Similar Documents

Publication Publication Date Title
JP4536805B2 (en) Optical fiber preform manufacturing method and apparatus
US10167543B2 (en) Method for manufacturing optical fiber preform
JPS60260437A (en) Manufacture of glass base material for optical fiber
JPS6168340A (en) Production of parent glass material for optical fiber
JPH01148722A (en) Production of optical fiber preform
JPS63307137A (en) Production of glass preform for optical fiber
JPS61151032A (en) Apparatus for feeding raw material gas for production of optical fiber preform
JP3133392B2 (en) Manufacturing method of soot base material for optical fiber
JPS6321233A (en) Production of base material for optical fiber
JP3017724B1 (en) Silica glass manufacturing equipment
JPS62223037A (en) Formation of porous glass layer
JPS6126504B2 (en)
JP3131087B2 (en) Method for producing porous glass preform for optical fiber
JPS60239338A (en) Preparation of parent material for optical fiber
JP2005060118A (en) Method for producing glass microparticle deposit and method for producing glass
JPS61183140A (en) Production of base material for optical fiber
JPS5978943A (en) Manufacture of glass containing fluorine
JPH0332501Y2 (en)
JPH0322257Y2 (en)
JPS62162638A (en) Production of preform for optical fiber
JPS5978947A (en) Method for depositing optical glass
JPS604979Y2 (en) Glass particle synthesis torch
JPS59121129A (en) Preparation of parent material for optical fiber
JPS5945936A (en) Preparation of base material for optical fiber
JPS62113731A (en) Production of base material for optical fiber

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term