JPH01148722A - Production of optical fiber preform - Google Patents

Production of optical fiber preform

Info

Publication number
JPH01148722A
JPH01148722A JP30459487A JP30459487A JPH01148722A JP H01148722 A JPH01148722 A JP H01148722A JP 30459487 A JP30459487 A JP 30459487A JP 30459487 A JP30459487 A JP 30459487A JP H01148722 A JPH01148722 A JP H01148722A
Authority
JP
Japan
Prior art keywords
core rod
reducing gas
materials
original fiber
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30459487A
Other languages
Japanese (ja)
Inventor
Akira Urano
章 浦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP30459487A priority Critical patent/JPH01148722A/en
Publication of JPH01148722A publication Critical patent/JPH01148722A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01248Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing by collapsing without drawing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/22Doped silica-based glasses doped with non-metals other than boron or fluorine doped with deuterium

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To obtain the title preform capable of providing an optical fiber having excellent resistance to hydrogen and radiation, stability, and reliability by inserting a core rod into a clad pipe, fusing and integrating both materials while allowing a reducing gas to flow in the gap between them so as to eliminate a peroxy bonding at the interface. CONSTITUTION:The core rod 1 consisting of pure quartz glass, etc., is inserted into the clad pipe 2 consisting of F-added quartz glass, etc., 0.5-50vol.% reducing gas such as D2 and CO, based on the total gas amt., an inert gas such as N2, Ar, and He, and a dehydrating agent such as Cl2 and SOCl2, if necessary, are supplied in the gap between both materials at a rate of 10-500cc/min (however the content of D2 is controlled to 0.5-4.0vol.% to prevent explosion when Cl2 is added as the dehydrating agent), the periphery of the pipe 2 is simultaneously heated by an H2/O2 burner 3, and both materials 1 and 2 are fused together at 1300-1800 deg.C collapsing temp.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ロッドインチューブ法による元ファイバ母材
の製造方法に関し、特にコアとクラッドとの界面の”5
Si−0・による非架橋酸素欠陥(Non Bridg
ingOxygen associated Ho1e
 Center−NBOHCと略す)のない元ファイバ
の母材を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing an original fiber base material by a rod-in-tube method, and particularly to
Non-bridging oxygen defects due to Si-0.
ingOxygen associatedHo1e
The present invention relates to a method of manufacturing a base material of an original fiber without any Center-NBOHC.

〔従来の技術〕[Conventional technology]

元ファイバは、例えば、クラッド用パイプにコア用ロッ
ドを挿入し、これらを加熱溶融して一体的にガラス化(
以下、コラプス)する所謂ロッドインチューブ法により
母材を製造し、これを線引して製造している。
For example, the original fiber is made by inserting a core rod into a cladding pipe and heating and melting them to vitrify them (
A base material is manufactured by the so-called rod-in-tube method (hereinafter referred to as "collapse"), and this is drawn into a wire.

上記のり2ソド用パイプは、例えば、中空マンドレル上
に、気相ガラス原料、酸素、水素、その他の気相成分を
、多重管バーナのような火炎加水分解用バーナにて供給
し、屑布外付法により多孔質ガラスを堆積させ、これを
脱水し、浴融してガラス化することによp製造される。
The above-mentioned pipe for glue 2 is produced by, for example, supplying gas phase glass raw materials, oxygen, hydrogen, and other gas phase components onto a hollow mandrel using a flame hydrolysis burner such as a multi-tube burner, and then P is manufactured by depositing porous glass using a deposition method, dehydrating it, and vitrifying it by bath melting.

ま次、上記のコア用ロッドも、上記の気相ガラス原料等
を、上記の火炎カロ水分解用バーナにて供給し、PJr
謂VAD法によシ多孔質ガラスを作り、これを脱水し、
加熱浴融してガラス化し、所望径に延伸して製造される
Next, the above-mentioned core rod is also made by supplying the above-mentioned vapor phase glass raw material etc. with the above-mentioned flame caloric water decomposition burner, and PJr.
Create porous glass using the so-called VAD method, dehydrate it,
It is manufactured by melting it in a heating bath, vitrifying it, and stretching it to a desired diameter.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のようにして製造されるクラッド用パイプ、コア用
ロッドには、多孔質ガラス裏作の際、あるいはガラス化
の際に、Slが酸素を過剰に取込ミ、パーオキシボンデ
ィングと呼ばれる≧5l−o−o−st @結合が含ま
れる場合がるる。
In the cladding pipes and core rods manufactured in the above manner, during the porous glass backing or vitrification, Sl takes in excess oxygen, which is called peroxy bonding. o-o-st @ bonds may be included.

また、クラッド用パイプの内表面や、コア用oツドの表
面には、Si−、5i−0・、 5i−0−0−、その
他の裡々の欠陥が存在し、これらをコラプスする際に、 Si・+ 5i−0−−+  5i−0−8iなる結合
のみを生成するなら問題ないが、51−0・+51−0
・ −+ 5i−0−0−8iなる結合、あるいは 5i−0−0−+ Si・−+  5i−0−0−8i
なる結合をも生成する。
In addition, there are Si-, 5i-0, 5i-0-0-, and other defects on the inner surface of the cladding pipe and the surface of the core opening, and when collapsing these defects, it is necessary to , Si・+5i-0--+5i-0-8i There is no problem if only the bond is generated, but 51-0・+51-0
-+ 5i-0-0-8i bond, or 5i-0-0-+ Si・-+ 5i-0-0-8i
It also creates a bond.

このパーオキシボンディングは、前記の線引の際に、あ
るいは放射線環境下において切断され、う51−0・の
所謂非果橋酸累欠陥(Non Bri”dgingOx
ygen associated Ho1e Cent
er −N B OHCと略す)を生成すると言われて
いる。
This peroxy bond is broken during the above-mentioned wire drawing or in a radiation environment, resulting in so-called non-bri”dgingOx defects in U51-0.
ygen associatedHo1e Cent
er -N B OHC) is said to be produced.

このNBOHCの存在の有無は、波長α63μmにおけ
る吸収が大となることで判別される。
The presence or absence of this NBOHC is determined by the large absorption at the wavelength α63 μm.

また、NBOHCが存在する元ファイバは、長期間の使
用において、うSl−〇・が使用環境中のH,Oや他の
H給源のHと反応してミS1−○H結合を生成し、波長
1.39μm付近の吸収を大とし、1.5μm帯、1.
5μm帯の伝送損失の増加をもたらす。
In addition, in the original fiber in which NBOHC exists, during long-term use, Sl-〇 reacts with H, O in the usage environment and H of other H sources to generate Mi-S1-○H bonds. High absorption near wavelength 1.39 μm, 1.5 μm band, 1.
This results in an increase in transmission loss in the 5 μm band.

従って、パーオキシボンディングは、NBOHCの前駆
体として元ファイバの耐放射線特注や耐水素特注を悪化
させ、長期間の安定性や信頼性を低下させている。
Therefore, peroxy bonding, as a precursor of NBOHC, worsens the radiation resistance and hydrogen resistance of the original fiber, reducing long-term stability and reliability.

ところで、パーオキシボンディングはクラッド用パイプ
、コア用ロッドの半径方向に散在する。一方、コア・ク
ラッドの界面は両者の物性差によシ歪が存在しているた
め、該ボンディングは該界面において切断し易すい。従
って、上記のNBOHCは、コア・クラッド界面で発生
し易すい。
By the way, peroxy bonding is scattered in the radial direction of the cladding pipe and the core rod. On the other hand, since strain exists at the core-clad interface due to the difference in physical properties between the two, the bonding is likely to be broken at the interface. Therefore, the above-mentioned NBOHC is likely to be generated at the core-cladding interface.

そこで、本発明では、コア・クラッド界面近傍のパーオ
キシボンディングを消失させ、該ボンディングに起因す
るNBOHCのない元ファイバ用の母材を製造する方法
を提案するものでめるO 〔問題点を解決するための手段〕 本発明は、上記問題点を、コア用ロッドをクラッド用パ
イプに挿入し、これらをコラプスする際に、コア用ロッ
ドとクラッド用パイプとの隙間に、D2.Co等の還元
性ガスを流すことにより解決するものでろる〇 〔作 用〕 本発明において、コア用ロッドとクラッド用パイプとの
隙間に還元性ガスを流してコラゲスすると、コア用ロッ
ドの表面近傍と、クラッド用パイプの内表面近傍に存在
する前記の各棟の欠陥(Si・、S10・、 Si−〇
−〇・等)が上記・つ還元性ガスで還元され、コア・ク
ラッド界面部の離索量が減少し、この結果、  5i−
0−0−3iなる結合を生成する確率が低減する。
Therefore, in the present invention, we propose a method for manufacturing a base material for the original fiber without NBOHC caused by the bonding by eliminating the peroxy bonding near the core-cladding interface. Means for Solving] The present invention solves the above problem by inserting a D2. This problem can be solved by flowing a reducing gas such as Co. 〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〔Operation〕] In the present invention, when collagen is formed by flowing a reducing gas into the gap between the core rod and the cladding pipe, the problem will be solved by flowing a reducing gas such as Co into the gap between the core rod and the cladding pipe. Then, the above-mentioned defects (Si・, S10・, Si-〇-〇・, etc.) existing near the inner surface of the cladding pipe are reduced by the above-mentioned reducing gas, and the defects at the core-cladding interface are reduced. The amount of rope separation decreases, and as a result, 5i-
The probability of creating a 0-0-3i combination is reduced.

また、既に生成しているパーオキシボンディングは、先
ず、切断し、 ;5l−o−o−s1壬 → ′:51−o・次いで、
還元性ガスで、例えば次のように還元され。
In addition, the peroxy bond that has already been generated is first cut off, and then:
It is reduced with a reducing gas, for example, as follows.

ア5i−0・+D2−+ 7Si・+D、05S1−o
・ + co  −→ ”; Si−+ co。
A5i-0・+D2-+ 7Si・+D, 05S1-o
・+ co −→ ”; Si−+ co.

この還元性ガスとして、N2を使用すると、前記した1
、3μm帯や1.5μm帯での伝送損失を増加させる:
3Si−OH結合が生成される虞れがろる。
When N2 is used as this reducing gas,
, increases transmission loss in the 3μm band and 1.5μm band:
There is a possibility that a 3Si-OH bond will be generated.

一方、 D2使用により生成されるかも矧れないミ5i
−OD結合は、少くとも上記波長帯での伝送損失の増加
を持次らさないことを確認している。
On the other hand, the Mi5i that may be generated by using D2
It has been confirmed that -OD coupling does not cause an increase in transmission loss at least in the above wavelength band.

上記の還元性ガスは、希釈のためにN2 、 Ar 。The above reducing gases are N2 and Ar for dilution.

Ho 等の不活性ガスと共に、あるいはct2.5oc
z2等の脱水剤と共に供給される。
With inert gas such as Ho or ct2.5oc
Supplied together with a dehydrating agent such as z2.

これらの供給ガス中の還元性ガスの混合割合は、還元性
ガスが少な過ぎると上記した還元作用が生じず、多過ぎ
ても還元作用は飽和し、経済的でないので、還元性ガス
は全ガス量のQ、5〜50 vo1%とすることが好ま
しい0なお、還元性ガスとしてD2を、脱水剤としてC
2zを用いる場合は、爆発防止のために、D2は0.5
へ4.0701%とすることが望ましい。
The mixing ratio of reducing gas in these supplied gases is such that if the reducing gas is too small, the above-mentioned reducing effect will not occur, and if it is too large, the reducing effect will be saturated, which is not economical. The amount Q is preferably 5 to 50 vol%.0 Note that D2 is used as the reducing gas and C as the dehydrating agent.
When using 2z, D2 should be 0.5 to prevent explosion.
It is desirable to set it to 4.0701%.

また、還元性ガスの供給量は、上記の還元性ガスの混合
割合により異なるが、余り少ないと上記の還元作用が生
じず、逆に多過ぎると、コラプスの際にコア・り2ラド
界面部分に気泡が残り易くなるため、10〜500 c
c/分が好ましく、待に安定した還元作用を得るために
は50〜500 cc/分とすることが適している0更
に、還元性ガスは、コラプス前に予め上記隙間に流し、
該隙間を還元雰囲気に置換しておき、コラプス中も引き
続き流すことが最も好ましいが、コラゲス中のみ流して
も良好な結果が得られる場合がろる。但し、コラゲス前
のみ還元性ガスを流す場合は、余り良い結果が得られな
い。
The amount of reducing gas supplied varies depending on the mixing ratio of the above-mentioned reducing gases, but if it is too small, the above-mentioned reducing effect will not occur, and if it is too large, the core-li-2-rad interface will be damaged. 10 to 500 c.
c/min is preferable, and in order to obtain a stable reducing effect, it is suitable to set the rate to 50 to 500 cc/min. Furthermore, the reducing gas is allowed to flow into the gap in advance before collapse,
It is most preferable to replace the gap with a reducing atmosphere and continue to flow the atmosphere during the collapse, but good results may be obtained even if the atmosphere is flowed only during the collagen. However, if the reducing gas is flowed only before collagen formation, good results cannot be obtained.

また、本発明におけるコラゲス@度は、通常の温度13
00〜1800℃が採用できる。この温度範囲でおれば
、上記還元作用も良好に生じる。
In addition, collagenase@degree in the present invention is a normal temperature of 13
00 to 1800°C can be adopted. Within this temperature range, the above-mentioned reduction effect also occurs satisfactorily.

〔実施例〕〔Example〕

実施例1 純粋石英ガラスからなるコア用ロッドと、F添加石英ガ
ラスからなるクラッド用パイプで、該コアとクラッドと
の屈折率△nが一α7%のものを用いた。
Example 1 A core rod made of pure silica glass and a cladding pipe made of F-doped silica glass were used, in which the core and cladding had a refractive index Δn of -α7%.

上記のコア用ロッドを上記のクラッド用パイプ内に挿入
し、両者の隙間にN2を950 cc/分、D2  を
50 cc/分の割合で供給して該隙間部分の雰囲気を
置換した。
The above core rod was inserted into the above cladding pipe, and N2 was supplied to the gap between the two at a rate of 950 cc/min and D2 at a rate of 50 cc/min to replace the atmosphere in the gap.

しかる後、第1図に示すように、コア用ロッド1とクラ
ッド用パイプ2の一端を封止し、反対側端からN、とD
2を上記の割合で供給しつつ、クラッド用パイプ2の外
周より N2102バーナ6で加熱し、+700cの@
度でコラプスし、元ファイバ母材を製造した。
After that, as shown in Fig. 1, one end of the core rod 1 and cladding pipe 2 is sealed, and from the opposite end N and D
2 at the above ratio, heat it from the outer periphery of the cladding pipe 2 with the N2102 burner 6, and heat it to +700c @
The original fiber matrix was produced by collapsing the fiber at a certain temperature.

この母材を線引して得た元ファイバの伝送損失は、λ=
α66μmで& OdB/km% λ=1.38μmで
(L 8 clB/km bλ= 1.55 Jimで
[119dEl/kmでめった。
The transmission loss of the original fiber obtained by drawing this base material is λ=
α at 66 μm & OdB/km% at λ=1.38 μm (L 8 clB/km bλ= 1.55 Jim at [119 dEl/km).

この元ファイバを200℃のH,1気圧雰囲気中に20
時間装さ、その後の伝送損失を調べたところ、上記の値
と何ら変化は見られなかった。
This original fiber was placed in a H, 1 atm atmosphere at 200°C for 20 minutes.
When we investigated the transmission loss after the time change, we found no change from the above value.

比較をシリ N2  のみを1000 cc/分流す以外は、実施例
1と全く同じ条件でコラプスし、元ファイバ母材を製造
した。
For comparison, collapse was carried out under exactly the same conditions as in Example 1, except that only SiN2 was flowed at 1000 cc/minute, and an original fiber preform was produced.

この母材を線引して得た元ファイバの伝送損失は、λ=
163μmで20 dB/km、λ=1.38μmで[
LB aB/km、λ= 1.55 Amで[L20d
B/kmで6D、; 5t−O−によるNBOHCが存
在することが明らかである。
The transmission loss of the original fiber obtained by drawing this base material is λ=
20 dB/km at 163 μm, [
LB aB/km, λ = 1.55 Am [L20d
6D at B/km; the presence of NBOHC due to 5t-O- is evident.

また、この元ファイバを実施例1と同じ条件でのH,浸
透後の伝送損失は、λ=(L63μmで7aB/km、
λ= 1.58μmで7.6dB/kmbλ=1.55
#mでcL62dB/km′″′ch!:t、5si−
o−が3s1−oHとなっていることが明らかである。
In addition, the transmission loss after penetration of this original fiber into H under the same conditions as in Example 1 is λ = (7aB/km at L63μm,
7.6dB/kmb at λ=1.58μmλ=1.55
cL62dB/km''''ch at #m: t, 5si-
It is clear that o- has become 3s1-oH.

実施例2 N2  を500 cc/分、Coを500 cc/分
の割合で供給する以外は、実施例1と全く同じ条件でコ
ラプスし、元ファイバ母材を製造し次。
Example 2 An original fiber preform was produced by collapsing under the same conditions as in Example 1, except that N2 was supplied at a rate of 500 cc/min and Co at a rate of 500 cc/min.

この母材を線引して得た元ファイバの伝送損失は、λ=
0.65μmで5.9 dB/km、λ=1.38μm
で119 dB/km、λ=1.55μmで1119d
B/kmであった。
The transmission loss of the original fiber obtained by drawing this base material is λ=
5.9 dB/km at 0.65 μm, λ=1.38 μm
119 dB/km at 1119 d at λ=1.55 μm
It was B/km.

この元ファイバを実施例1と同じ条件でHtを浸透させ
た後の伝送損失は、上記の値と何ら変化は見られなかっ
た。
The transmission loss after this original fiber was impregnated with Ht under the same conditions as in Example 1 showed no change from the above value.

実施例3 コラプス中のみ、N2を500 cc/分、Coを50
0 cc/分の割合で供給する以外は実施例1と同じ条
件で元ファイバを製造した。
Example 3 N2 at 500 cc/min and Co at 50 cc/min only during collapse.
A raw fiber was manufactured under the same conditions as in Example 1 except that the supply was performed at a rate of 0 cc/min.

この元ファイバの伝送損失はλ=[1L63μmで6−
2aB/km%λ=1.38μmでα9 dB/km。
The transmission loss of this original fiber is λ=[1L63μm and 6-
α9 dB/km at 2aB/km%λ=1.38μm.

λ=1.55μmでα+ 94B/kmであり、実施例
1と同じ条件でのN2 浸透後は上記初期値と何ら変化
はなかった。
When λ=1.55 μm, α+ was 94 B/km, and after N2 penetration under the same conditions as in Example 1, there was no change from the above initial value.

実施例4 コラプス直前のみ、N2を500 cc/分、COを5
00 cc/分の割合で供給する以外は実施例1と同じ
条件で元ファイバを製造した。
Example 4 N2 at 500 cc/min and CO at 5 cc/min just before collapse.
A raw fiber was manufactured under the same conditions as in Example 1 except that the fiber was supplied at a rate of 0.00 cc/min.

この元ファイバの伝送損失は、初期値がλ=α63μm
でa 2 dB/kmb λ= 1.58 Amで1.
0a13/ km %  λ= 1.55 μmで(L
 20 dB/krnでl)、実施例1と同じ条件での
H,浸透後はλ=(L63μmで−1,2dB/km、
λ=1.55μmで+11dB/kmでめった。
The transmission loss of this original fiber has an initial value of λ=α63μm
At a 2 dB/kmb λ= 1.58 Am at 1.
0a13/km % λ = 1.55 μm (L
l) at 20 dB/krn, H under the same conditions as Example 1, and after penetration, λ = (-1.2 dB/km at L63 μm,
At λ=1.55 μm, it was +11 dB/km.

実施例5 Ct、を500 cc/分、N宜を300 cc/分、
C0を200 cc/分の割合で供給する以外は、実施
例1と全く同じ条件で元ファイバを製造した。
Example 5 Ct: 500 cc/min, N: 300 cc/min,
A raw fiber was manufactured under exactly the same conditions as in Example 1, except that C0 was supplied at a rate of 200 cc/min.

この元ファイバの伝送損失は、初期値がλ=16511
mで6.2 aB/ km % λ= 1.58 Am
で[1L7aB/km %  λ= 1.55 μmで
[119dB/kmでl)、実施例1と則し条件でのH
2浸透後は上記の値と何ら変化はなかった。
The transmission loss of this original fiber has an initial value of λ=16511
6.2 aB/km % λ = 1.58 Am
[1L7aB/km % λ = 1.55 μm [119dB/km 1], H under the conditions consistent with Example 1
After the second infiltration, there was no change from the above value.

実施例6 He  を500 cc/分、COを500 cc/分
の割合で供給する以外は、実施fl11と全く同じ条件
で元ファイバ′ft1K造した。
Example 6 Original fiber 'ft1K was manufactured under exactly the same conditions as in Example fl11, except that He was supplied at a rate of 500 cc/min and CO at a rate of 500 cc/min.

この元ファイバの伝送損失はλ=(L63μmで5.9
 dB/km、λ: t 38μmで[19dB/fa
n。
The transmission loss of this original fiber is λ = (5.9 at L63μm)
dB/km, λ: t [19 dB/fa at 38 μm
n.

λ= 1.55μmでCL 19 dB/kmでロク、
実施例1と同じ条件でのH2浸透後は上記の値と何ら変
化は見られなかった。
CL at λ = 1.55μm, 19 dB/km,
After H2 infiltration under the same conditions as in Example 1, no change was observed from the above values.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、コア・クラッド界面のパーオキシボン
ディング95t−o−o−st−E−をD2.CO等の
還元性ガスにて還元して消失させるため、コア・クラッ
ド界面に上記ボンディングが切断して生じる9 51−
o・によるNBOHCが皆無の元ファイバ母材を製造す
ることができる。
According to the present invention, peroxy bonding 95t-o-o-st-E- at the core-cladding interface is performed in D2. The bonding is cut at the core-cladding interface to eliminate it by reducing it with a reducing gas such as CO9 51-
It is possible to produce an original fiber base material free of NBOHC due to o.

そして、この元ファイバ母材を線引して得られる元ファ
イバは、耐水素特注や耐放射線特注が劣化することがな
く、長時間の安定性や信頼性の優れたものである。
The original fiber obtained by drawing this original fiber base material has excellent long-term stability and reliability without deteriorating in its hydrogen-resistant or radiation-resistant properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の一実施態様Nを示す図である。 FIG. 1 is a diagram showing an embodiment N of the method of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)コア用ロッドをクラッド用パイプ内に挿入し、両
者を溶融一体化させて光ファイバ母材を製造する方法に
おいて、前記コア用ロッドとクラッド用パイプとの間に
還元性ガスを流し、該コア用ロッドとクラッド用パイプ
とを溶融一体化することを特徴とする光ファイバ母材の
製造方法。
(1) In a method of manufacturing an optical fiber preform by inserting a core rod into a cladding pipe and melting and integrating the two, flowing a reducing gas between the core rod and the cladding pipe, A method for manufacturing an optical fiber preform, which comprises melting and integrating the core rod and cladding pipe.
(2)還元法ガスとして重水素又は一酸化炭素を用いる
特許請求の範囲(1)記載の方法。
(2) The method according to claim (1), in which deuterium or carbon monoxide is used as the reduction gas.
JP30459487A 1987-12-03 1987-12-03 Production of optical fiber preform Pending JPH01148722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30459487A JPH01148722A (en) 1987-12-03 1987-12-03 Production of optical fiber preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30459487A JPH01148722A (en) 1987-12-03 1987-12-03 Production of optical fiber preform

Publications (1)

Publication Number Publication Date
JPH01148722A true JPH01148722A (en) 1989-06-12

Family

ID=17934881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30459487A Pending JPH01148722A (en) 1987-12-03 1987-12-03 Production of optical fiber preform

Country Status (1)

Country Link
JP (1) JPH01148722A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0716047A3 (en) * 1994-12-02 1996-10-09 Fibercore Inc Method and apparatus for producing optical fiber preform
WO2000064825A1 (en) * 1999-04-26 2000-11-02 Corning Incorporated Low water peak optical waveguide fiber and method of manufacturing same
KR100490135B1 (en) * 2001-11-12 2005-05-17 엘에스전선 주식회사 Method of making optical fiber preform having ultimate low PMD
JP2005314179A (en) * 2004-04-30 2005-11-10 Sumitomo Electric Ind Ltd Manufacturing method of optical fiber preform, optical fiber, and manufacturing method of optical fiber
US8020411B2 (en) 2001-07-30 2011-09-20 The Furukawa Electric Co., Ltd. Method of manufacturing single mode optical fiber
JP2012230156A (en) * 2011-04-25 2012-11-22 Kohoku Kogyo Kk Fiber and manufacturing method thereof
WO2016007693A1 (en) * 2014-07-09 2016-01-14 Corning Incorporated Method of making optical fibers in a reducing atmosphere

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0716047A3 (en) * 1994-12-02 1996-10-09 Fibercore Inc Method and apparatus for producing optical fiber preform
WO2000064825A1 (en) * 1999-04-26 2000-11-02 Corning Incorporated Low water peak optical waveguide fiber and method of manufacturing same
US6477305B1 (en) 1999-04-26 2002-11-05 Corning Incorporated Low water peak optical waveguide and method of manufacturing same
US8020411B2 (en) 2001-07-30 2011-09-20 The Furukawa Electric Co., Ltd. Method of manufacturing single mode optical fiber
KR100490135B1 (en) * 2001-11-12 2005-05-17 엘에스전선 주식회사 Method of making optical fiber preform having ultimate low PMD
JP4513403B2 (en) * 2004-04-30 2010-07-28 住友電気工業株式会社 Optical fiber preform manufacturing method, optical fiber, and optical fiber manufacturing method
JP2005314179A (en) * 2004-04-30 2005-11-10 Sumitomo Electric Ind Ltd Manufacturing method of optical fiber preform, optical fiber, and manufacturing method of optical fiber
JP2012230156A (en) * 2011-04-25 2012-11-22 Kohoku Kogyo Kk Fiber and manufacturing method thereof
WO2016007693A1 (en) * 2014-07-09 2016-01-14 Corning Incorporated Method of making optical fibers in a reducing atmosphere
US9586853B2 (en) 2014-07-09 2017-03-07 Corning Incorporated Method of making optical fibers in a reducing atmosphere
CN107074613A (en) * 2014-07-09 2017-08-18 康宁股份有限公司 The method that optical fiber is prepared in reducing atmosphere
JP2017526600A (en) * 2014-07-09 2017-09-14 コーニング インコーポレイテッド Method of making optical fiber in a reducing atmosphere
US9919946B2 (en) 2014-07-09 2018-03-20 Corning Incorporated Method of making optical fibers in a reducing atmosphere

Similar Documents

Publication Publication Date Title
US7469559B2 (en) Method for making low loss optical fiber
CA1251044A (en) Fluorine doped optical waveguide
US4157906A (en) Method of drawing glass optical waveguides
US4822399A (en) Glass preform for dispersion shifted single mode optical fiber and method for the production of the same
US6917740B2 (en) Optical fiber having reduced viscosity mismatch
US4846867A (en) Method for producing glass preform for optical fiber
JPS61155225A (en) Manufacture of optical wave guide tube
JPS59202401A (en) Optical fiber and its manufacture
US4504297A (en) Optical fiber preform manufacturing method
US4880452A (en) Method for producing glass preform for optical fiber containing fluorine in cladding
JPH01148722A (en) Production of optical fiber preform
JP4124198B2 (en) Method of manufacturing optical fiber preform using MCVD method including dehydration and dechlorination processes, and optical fiber manufactured by this method
US4875918A (en) Method of manufacturing fiber preform for single-mode fibers
JPH0459630A (en) Production of optical fiber
JPH01160840A (en) Preform for dispersion-shift optical fiber and production thereof
JPH01126236A (en) Production of optical fiber preform
JPH0798671B2 (en) Method for manufacturing preform for optical fiber
JPS60239334A (en) Manufacture of base material for optical fiber
JPS598634A (en) Preparation of base material for optical fiber having retained plane of polarization
JPS61168549A (en) Production of optical fiber keeping plane of polarization
JPH04342427A (en) Production of high-level oh group-containing silica glass
JPS59111939A (en) Manufacture of optical fiber matrix
JPS63222042A (en) Optical fiber preform and production thereof
JPS6065740A (en) Production of porous base material for optical fiber
JPH01103922A (en) Production of synthetic quartz pipe