JPH0459630A - Production of optical fiber - Google Patents

Production of optical fiber

Info

Publication number
JPH0459630A
JPH0459630A JP16676290A JP16676290A JPH0459630A JP H0459630 A JPH0459630 A JP H0459630A JP 16676290 A JP16676290 A JP 16676290A JP 16676290 A JP16676290 A JP 16676290A JP H0459630 A JPH0459630 A JP H0459630A
Authority
JP
Japan
Prior art keywords
preform
optical fiber
hydrogen
manufacturing
fiber according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16676290A
Other languages
Japanese (ja)
Inventor
Yuichi Oga
裕一 大賀
Shinji Ishikawa
真二 石川
Hiroo Kanamori
弘雄 金森
Hiroshi Yokota
弘 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP16676290A priority Critical patent/JPH0459630A/en
Publication of JPH0459630A publication Critical patent/JPH0459630A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/07Impurity concentration specified
    • C03B2201/075Hydroxyl ion (OH)
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/21Doped silica-based glasses doped with non-metals other than boron or fluorine doped with molecular hydrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To improve long-term stability by impregnating a preform consisting essentially of quartz or an intermediate preform to become a preform with H2, before melt spinning. CONSTITUTION:A perform for single mode fiber comprising a quartz core and a fluorine-containing quartz clad or an intermediate preform to become a pre form is heated in a furnace in an atmosphere of 100% H2 under 1-3atm. at 200-1,200 deg.C for 1-100 hours and H2 is sufficiently diffused into the core part. Then, the preform is subjected to melt spinning to give optical fiber having improved long-term stability. The preform is heated by using an oxyhydrogen burner in a ratio of H2/O2 of >=3 at 1,500-1,700 deg.C, impregnated with H2 along the whole length and then subjected to melt spinning to also give an optical fiber having the same characteristics.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光ファイバの製造方法に関し、詳しくは光フア
イバ用母材の加熱処理法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing an optical fiber, and more particularly to a method for heat treating a base material for an optical fiber.

〔従来の技術〕[Conventional technology]

コアが添加剤(ドーパント)を含まない純石英(Si 
Ox )ガラスからなり、クラッドがフッ素(F)を添
加して屈折率を低下させた石英ガラス(フッ素添加S1
0.ガラス)からなる光ファイバは、■散乱損失(レー
リー散乱)の原因となるドーパントをコアに含まないた
め原理的に伝送損失が少ない、■水素に対して安定であ
る、■純石英ガラスは構造欠陥が少ないので放射線によ
って誘起される欠陥が少なく、耐放射線特性に優れる、
等の理由から高信頼性高性能ファイバとして注目されて
いる。
The core is pure quartz (Si) containing no additives (dopants).
Ox ) glass, the cladding is quartz glass doped with fluorine (F) to lower the refractive index (fluorine-doped S1
0. Optical fibers made of glass (glass) have the following characteristics: ■The core does not contain dopants that cause scattering loss (Rayleigh scattering), so the transmission loss is theoretically low; ■It is stable against hydrogen; ■Pure silica glass has no structural defects. Since there are few defects induced by radiation, it has excellent radiation resistance characteristics.
For these reasons, it is attracting attention as a highly reliable, high-performance fiber.

この種のファイバの製造方法としては、すでに特願昭6
0−83243、同61−72433各号明細書に下記
のような方法が提案されている。
As a manufacturing method for this type of fiber, a patent application was filed in 1983.
The following methods are proposed in the specifications of No. 0-83243 and No. 61-72433.

すなわち、気相軸付法(VAD法)によりトーパン1−
を含まぬ純石英ガラス焼結体を作製し、これを電気炉等
で加熱して延伸し、表面にも水分を含まない、直径2〜
4 amφのコア用ガラスロッドを作製する。別途、V
AD法によりフッ素1重量%を含有する石英ガラス焼結
体を作成し、これに超音波穿孔機で穴を開けて、クラッ
ドとなるパイプ(クラットパイプ)を作成する。以上で
得られたコアを含むガラスロットをクラットパイプの中
空部に挿入し、この状態で該クラッドパイプの外部から
加熱して縮径することにより両者を一体化(コラップス
)する。得られたガラス体の外周にVAD法により多孔
質ガラス体を堆積させ、これをフッ素化合物を含む雰囲
気中で焼結することにより、フッ素添加石英ガラスのジ
ャケット部を形成する。このようにして得られた光フア
イバ用プリフォームを電気炉で加熱溶融して直ちに紡糸
することにより、コアが純石英でクラットがフッ素添加
石英からなる光ファイバを製造する。
That is, Toppan 1-
A pure silica glass sintered body containing no moisture is produced, and this is heated and stretched in an electric furnace to form a sintered body with a diameter of 2~
A glass rod for a core of 4 amφ is prepared. Separately, V
A sintered silica glass body containing 1% by weight of fluorine is produced by the AD method, and a hole is bored in this body using an ultrasonic drilling machine to produce a pipe to serve as a cladding (a clad pipe). The glass rod containing the core obtained above is inserted into the hollow part of the clad pipe, and in this state, the clad pipe is heated from the outside to reduce its diameter, thereby integrating the two (collapsing). A porous glass body is deposited on the outer periphery of the obtained glass body by a VAD method, and this is sintered in an atmosphere containing a fluorine compound, thereby forming a jacket portion of fluorine-doped quartz glass. The thus obtained optical fiber preform is heated and melted in an electric furnace and immediately spun to produce an optical fiber in which the core is made of pure quartz and the crat is made of fluorine-doped quartz.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記各号明細書に提案されるような、コアが純石英でク
ラットがフッ素添加石英からなる光ファイバの製法では
、プリフォームの溶融紡糸の際の高温においてはコアの
粘性がクラットのそれより大きいため、線引き紡糸によ
りファイバにかかる張力の大部分は、より粘性の大きい
コアが負担することになる。特に125μm程度のクラ
・ソド径に対しコア径が8.0〜10.5μm程度と小
さいンングルモードファイバの場合は、コアの断面積は
クラッドのそれの約1/250程度となるので、この種
のファイバのコアにかかる引張り応力は非常に大きく、
コアを構成しているーSi  OSi網目構造の弱い部
分を下記(1)式のように切断してしまう。
In the method of manufacturing an optical fiber in which the core is made of pure quartz and the crat is made of fluorinated quartz, as proposed in the above specifications, the viscosity of the core is greater than that of the crat at high temperatures during melt spinning of the preform. Therefore, most of the tension applied to the fiber by wire drawing and spinning is borne by the core, which has a higher viscosity. In particular, in the case of a ngle mode fiber whose core diameter is small, about 8.0 to 10.5 μm, while the cladding diameter is about 125 μm, the cross-sectional area of the core is about 1/250 of that of the cladding. The tensile stress on the core of the seed fiber is very large;
The weak part of the -Si OSi network structure that constitutes the core is cut as shown in equation (1) below.

=SL  OS+=→=iS+  O・十・5l=(1
)このような結合欠陥(切れたボンドの存在は、λ−0
.63μm付近での伝送損失増加をもたらす。
=SL OS+=→=iS+ O・10・5l=(1
) Such bond defects (existence of broken bonds are caused by λ−0
.. This results in an increase in transmission loss near 63 μm.

また、特に=S+−0・は水素と反応しやすく、室温で
容易に結合して=S+’OHとなり、λ÷1.38μm
の吸収増をもたらし、光ファイバの長期信頼性の点で問
題となる。
In addition, in particular, =S+-0・ easily reacts with hydrogen, and easily combines at room temperature to become =S+'OH, and λ ÷ 1.38 μm
This causes an increase in absorption, which poses a problem in terms of long-term reliability of optical fibers.

才たプリフォーム中においても欠陥は存在する。Defects exist even in the best preforms.

従来法では、この線引きされたファイバ及びプリフォー
ム状態での欠陥の存在に対し、欠陥を消滅させる手段は
何ら施されていなかった。
In the conventional method, no means was taken to eliminate defects in the drawn fiber and preform.

本発明は、上記した光ファイバの耐放射線特性、長期信
頼性等を左右する欠陥存在の問題を克服することを課題
としてなされたものである。本発明の目的は、耐放射線
性、長期信頼性(経時的変化がない)に優れた光ファイ
バの製造方法を提供することにある。
The present invention has been made with the object of overcoming the problem of the presence of defects, which affects the radiation resistance characteristics, long-term reliability, etc. of optical fibers described above. An object of the present invention is to provide a method for manufacturing an optical fiber with excellent radiation resistance and long-term reliability (no change over time).

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するための手段として、本発明は石英を
主成分とするプリフォームを溶融紡糸する光ファイバの
製造方法において、プリフォームまたはプリフォームと
なる中間母材を溶融紡糸前に水素含浸処理することを特
徴とする。
As a means for solving the above problems, the present invention provides a method for manufacturing an optical fiber in which a preform containing quartz as a main component is melt-spun. It is characterized by

上記水素含浸処理は水素を含む雰囲気中での加熱処理で
あることが特に好ましく、更には水素を含む雰囲気を保
った加熱炉内にプリフォームまたはプリフォームとなる
中間母材を保持することが好ましい。
It is particularly preferable that the hydrogen impregnation treatment is a heat treatment in an atmosphere containing hydrogen, and it is further preferable that the preform or the intermediate base material that will become the preform is held in a heating furnace that maintains an atmosphere containing hydrogen. .

上記水素を含む雰囲気を保った加熱炉内で大気圧または
加圧下で水素含浸処理することができる。
Hydrogen impregnation treatment can be carried out at atmospheric pressure or under pressure in a heating furnace that maintains an atmosphere containing hydrogen.

本発明の特に好ましい他の実施態様として、上記水素含
浸処理が水素を燃焼用ガスとした火炎による加熱処理に
よる方法を挙げることができ、このとき、酸水素バーナ
ーを用いてそのHz / 02比か3以上として行なう
ことが特に好ましい。
Another particularly preferred embodiment of the present invention is a method in which the hydrogen impregnation treatment is performed by heating with a flame using hydrogen as the combustion gas, and in this case, the Hz/02 ratio is adjusted using an oxyhydrogen burner. It is particularly preferable to use 3 or more.

本発明においては、上記プリフォームが純粋石英コアと
フッ素添加石英クラッドからなるシングルモードファイ
バ用プリフォームであること、或いは上記プリフォーム
となる中間母材がコラップス法に用いる純粋石英コアま
たはコラップス法に用いるフッ素添加石英ガラスである
ことが特に好ましい。
In the present invention, the above-mentioned preform is a single-mode fiber preform consisting of a pure quartz core and a fluorine-doped quartz cladding, or the intermediate base material that becomes the above-mentioned preform is a pure quartz core used in the collapse method or a pure quartz core used in the collapse method. It is particularly preferable to use fluorine-doped quartz glass.

〔作用〕[Effect]

本発明者等は光ファイバに存在する欠陥によって左右さ
れる耐放射線特性、長期信頼性等の問題点を克服するた
め、予めプリフォームの段階で水素を十分プリフォーム
内に拡散させておけば、線引きする際に欠陥が生成して
もプリフォーム中に拡散させた水素により、−=Si・
、=S10・のような欠陥を=S4  H,=Si  
OHに変えることで欠陥を消滅させる、つまり欠陥生成
を抑制できると考えつき、本発明に到達できた。
In order to overcome problems such as radiation resistance and long-term reliability that are affected by defects existing in optical fibers, the inventors of the present invention have proposed that if hydrogen is sufficiently diffused into the preform at the preform stage, Even if defects are generated during wire drawing, hydrogen diffused into the preform ensures that −=Si・
,=S10・=S4 H,=Si
We came up with the idea that by changing to OH, defects could be eliminated, that is, defect generation could be suppressed, and we were able to arrive at the present invention.

なお、本発明の水素含浸処理により、1.38μmのロ
スは微増するものの、0.63μmにおけるロスは大幅
に減少できることを確認できた。
It was confirmed that by the hydrogen impregnation treatment of the present invention, although the loss at 1.38 μm slightly increased, the loss at 0.63 μm could be significantly reduced.

プリフォームまたはプリフォームとなる中間母材を作成
した後に、水素中で水素含浸処理を施し、ガラス母材中
に十分に水素を拡散させることにより、線引後に発生し
た欠陥はガラス中の水素と結合し、耐放射線性、長期信
頼性(経時的変化がない)に優れた光ファイバを製造す
ることができる。
After creating the preform or the intermediate base material that will become the preform, we perform a hydrogen impregnation treatment in hydrogen to sufficiently diffuse hydrogen into the glass base material, so that defects that occur after drawing are removed from the hydrogen in the glass. It is possible to manufacture optical fibers with excellent radiation resistance and long-term reliability (no change over time).

特に、クラッドに比してコア径が小さいシングルモード
ファイバ、中でも純粋石英コアと弗素添加石英クラッド
からなるシングルモードファイバのプリフォームを溶融
紡糸前に本発明により水素添加処理することは、小径の
コアにかかる大きな張力に由来する欠陥低減非常に有効
である。
In particular, hydrogenating a single mode fiber having a smaller core diameter than the cladding, especially a single mode fiber preform consisting of a pure quartz core and a fluoridated quartz cladding, before melt spinning, is advantageous. It is very effective in reducing defects resulting from large tensions applied to the surface.

加熱処理の温度は、室温以上1600℃(ガラスファイ
バの融点)以下であればよい。水素の拡散係数(D、、
)は下記(2)式で示される。
The temperature of the heat treatment may be at least room temperature and at most 1600° C. (melting point of glass fiber). Diffusion coefficient of hydrogen (D,
) is represented by the following formula (2).

D u = 6.63X 10−” exp(−1),
5(kcal/mol) / RT)・・・(21 拡散距離L= 2 (DHL)l” R:ガス定数(1,987cal/mo1. K)T:
絶対温度(k) [Lee、ガラスデータハンドブック p、 161〜162による] 上記り。、Lの式から水素の拡散距離を計算すると、温
度と時間に対し、概ね以下の表1に示す結果を得る。
D u = 6.63X 10-”exp(-1),
5 (kcal/mol) / RT)...(21 Diffusion length L = 2 (DHL) l" R: Gas constant (1,987 cal/mol. K) T:
Absolute temperature (k) [From Lee, Glass Data Handbook p. 161-162] Above. , L. When calculating the hydrogen diffusion distance from the equation, the results shown in Table 1 below are generally obtained with respect to temperature and time.

従って、水素雰囲気での加熱処理温度としては200〜
1200℃が好ましく、その温度により任意の時間水素
処理を施せばよい。
Therefore, the heat treatment temperature in a hydrogen atmosphere is 200~
The temperature is preferably 1200°C, and the hydrogen treatment may be carried out for an arbitrary period of time depending on the temperature.

更に、金属不純物と耐放射線特性との関係は明らかでは
ないが、プリフォームまたはプリフォームとなる中間母
材に水素含浸処理を施すことにより、ガラス中に微量歯
まれる遷移金属の価数を変化させる(還元させる)こと
ができ、吸収特性及び耐放射線特性を変えることも可能
となり得る。
Furthermore, although the relationship between metal impurities and radiation resistance properties is not clear, hydrogen impregnation treatment of the preform or the intermediate base material that will become the preform can change the valence of the transition metals present in small amounts in the glass. It may also be possible to change the absorption and radiation resistance properties.

水素含浸処理の具体的手段としては、常圧または加圧下
、水素雰囲気中で上記温度範囲で加熱処理する。さらに
具体的には加熱炉内での処理あるいは水素を燃焼ガスと
する火炎による処理が挙げられる。前者の方法では、加
熱炉内の雰囲気を水素(100%)1〜3気圧とし20
0〜1200°Cで、1〜100時間加熱する。また、
後者の方法では、例えば酸水素バーナーを用い、Hz 
/ Ox比を3以上として加熱することが好ましい。こ
のときの火炎温度は1500〜1700℃である。酸水
素炎による加熱は、手段、装置共に簡便で、低コストか
つ短時間で済む点で有利である。
As a specific means for the hydrogen impregnation treatment, heat treatment is performed in a hydrogen atmosphere at normal pressure or under increased pressure in the above temperature range. More specifically, treatment in a heating furnace or treatment using a flame using hydrogen as a combustion gas can be mentioned. In the former method, the atmosphere in the heating furnace is hydrogen (100%) at 1 to 3 atm and 20
Heat at 0-1200°C for 1-100 hours. Also,
In the latter method, for example, an oxyhydrogen burner is used, and the Hz
/Ox ratio is preferably 3 or more when heating. The flame temperature at this time is 1500 to 1700°C. Heating with an oxyhydrogen flame is advantageous in that both the means and equipment are simple, low cost, and can be completed in a short time.

本発明に用いるコアを含むガラスロット(コアのみから
なるもの及びコアの外周にクラットの内側部分を有する
ものを総称する)と、クラット(ジャケット部をもまと
めて総称する)となるガラスパイプは従来公知の方法、
例えばVAD法等により作成する。より具体的には、前
記した特願昭60−83243、同61−72433各
号明細書に記載の方法が好ましい方法として挙げられる
が、これに限定されるものではない。
The glass rod containing the core used in the present invention (generally refers to those consisting only of the core and those having the inner part of the crat on the outer periphery of the core) and the glass pipe serving as the crat (also collectively referred to as the jacket part) are conventionally used. known method,
For example, it is created using the VAD method. More specifically, the methods described in the above-mentioned Japanese Patent Applications No. 60-83243 and No. 61-72433 are preferred, but the method is not limited thereto.

〔実施例〕〔Example〕

以下、本発明を実施例により具体的に説明するが、本発
明はこれに限定されるものではない。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited thereto.

実施例1 純シリカコア、フッ素添加クラッドを有する、外径25
IIIInφのシングルモード光ファイバ用ガラス母材
(プリフォーム)を加熱炉内で水素雰囲気にて加熱処理
した。処理条件は、温度800°C124時間とし、H
l 100%雰囲気(1気圧)とした。予想されるH1
拡散距離りは約10叩であり、10市拡散していれば線
引時の熱処理により、水素(H2)はコア部まで充分に
拡散できる。
Example 1 Pure silica core with fluoridated cladding, outer diameter 25
A glass preform (preform) for a single mode optical fiber of IIIInφ was heat-treated in a hydrogen atmosphere in a heating furnace. The processing conditions were a temperature of 800°C for 124 hours, and H
l 100% atmosphere (1 atm). Expected H1
The diffusion distance is approximately 10 degrees, and if the distance is 10, hydrogen (H2) can be sufficiently diffused to the core by heat treatment during drawing.

処理後の本発明プリフォームを溶融紡糸し、外径125
μmの光ファイバとした。得られた光ファイバる伝送損
失特性を第1図に実線で示す。λ−0.63μmの吸収
は5.5 dB/kmであり、吸収ビクは見られなかっ
た。この事実から=si  O・の生成はないと推定さ
れる。
The treated preform of the present invention is melt-spun to obtain an outer diameter of 125 mm.
It was made into a μm optical fiber. The transmission loss characteristics of the obtained optical fiber are shown by solid lines in FIG. The absorption at λ-0.63 μm was 5.5 dB/km, and no absorption peak was observed. From this fact, it is presumed that =si O. is not produced.

実施例2 純シリカコアロッドとしてVAD法により作成した純石
英ガラスから成り、直径4IIlfflφで、OH基含
有量0.O5ppm以下という十分に脱水されたガラス
ロッドを準備した。また、クラ・ノドとするガラスパイ
プとしては、VAD法により作成したフッ素を1゜3重
量%含む石英ガラスからなり、超音波穿孔機で穴を開け
てミ外径60m+oφ、内径4.5關φとしたものを準
備した。該クラッド/ぐイブを水素100%雰囲気中、
1000℃で24時間加熱処理した後、コアロッドとク
ラ・ンドノぐイブを加熱溶融一体化し、プリフォームと
した。本プリフォームを溶融紡糸し、外径125μmの
光ファイバとした後、λ=0.63μmにおける吸収を
測定したところ、第1図に実線で示す実施例1と同様で
、損失は5.5 dB/kmであり、この波長には吸収
ピークは存在しなかった。
Example 2 A pure silica core rod was made of pure silica glass prepared by the VAD method, had a diameter of 4IIlfflφ, and had an OH group content of 0. A glass rod was prepared that had been sufficiently dehydrated to have an O of 5 ppm or less. In addition, the glass pipe used as the clasp is made of quartz glass containing 1.3% by weight of fluorine, created by the VAD method, and drilled with an ultrasonic drilling machine to have an outer diameter of 60 m + oφ and an inner diameter of 4.5 mm. I prepared something like this. The clad/guive is placed in a 100% hydrogen atmosphere,
After heat treatment at 1000° C. for 24 hours, the core rod and the clamp rod were heated and melted to form a preform. After melt-spinning this preform into an optical fiber with an outer diameter of 125 μm, the absorption at λ = 0.63 μm was measured, and the loss was 5.5 dB, which was the same as in Example 1 shown by the solid line in Figure 1. /km, and there was no absorption peak at this wavelength.

実施例3 純シリカコアロットを有する光コアイノく用ガラス母材
(プリフォーム)を水素雰囲気にて加圧加熱処理した。
Example 3 A glass preform for an optical core injector having a pure silica core lot was subjected to pressure and heat treatment in a hydrogen atmosphere.

処理条件は、温度800°C1)0時間処理で水素10
0%、3気圧とした。本プリフォームを溶融紡糸し、外
径125μmの光ファイバとして、λ=0.63μmに
おける吸収を測定したところ、第1図に実線で示す実施
例1.2と同様で、5.5 dB/kmであり、吸収ピ
ークは存在しなかった。
The treatment conditions were: temperature 800°C 1) 0 hour treatment, hydrogen 10
0% and 3 atm. When this preform was melt-spun into an optical fiber with an outer diameter of 125 μm, the absorption at λ = 0.63 μm was measured, and it was 5.5 dB/km, which was the same as in Example 1.2 shown by the solid line in Figure 1. There was no absorption peak.

実施例4 純シリカコアを有する外径25叩φの光フアイバ用ガラ
ス母材(プリフォーム)に、酸水素lくすで水素含浸処
理を施した。酸水素ノく−すには、燃焼用ガスとしてH
3を12Of/分、助燃ガスとして02を301/分供
給し、5世/分の速度でバーナを5往復移動させ、プリ
フォーム全長に渡り水素を含浸させた。該プリフォーム
を50關切断し、表面をHFでエツチングしつつ、その
都度IR(赤外分光器)にて3670cm−’のOHピ
ーク量を測定したところ、表層から2 ff1m tエ
ツチングしたとき、OHピークが消滅した。従って、本
実施例の水素含浸処理によりプリフォーム表面から深さ
2 am tまで水素か拡散したと推定される。深さ2
mmまで拡散していれば、線引工程でコア部まで拡散で
きる。
Example 4 A glass preform for an optical fiber having an outer diameter of 25 mm and having a pure silica core was impregnated with hydrogen using oxyhydrogen sulfur. Oxyhydrogen gas contains H as a combustion gas.
3 was supplied at 12 Of/min, and 02 was supplied as an auxiliary gas at 301/min, and the burner was moved back and forth 5 times at a speed of 5/min to impregnate hydrogen over the entire length of the preform. The preform was cut into 50 sections and the surface was etched with HF, and the OH peak amount at 3670 cm-' was measured each time using an IR (infrared spectrometer). The peak has disappeared. Therefore, it is estimated that hydrogen was diffused from the preform surface to a depth of 2 am t by the hydrogen impregnation treatment of this example. depth 2
If it is diffused up to mm, it can be diffused to the core part in the wire drawing process.

該含浸処理を施したプリフォームを溶融紡糸し、λ=0
.83μmにおける損失を測定したところ、第1図に実
線で示すとおりで、5.5 dB 7kmの波長には吸
収ピークが存在しないことを確認した。
The impregnated preform is melt-spun, and λ=0
.. When the loss at 83 μm was measured, it was as shown by the solid line in FIG. 1, and it was confirmed that there was no absorption peak at a wavelength of 5.5 dB and 7 km.

実施例5 実施例1において、水素加熱処理条件を温度200℃、
2時間とし、線引しファイバ化したところ、λ=0.6
3μmでの吸収ピークは見られなかった。
Example 5 In Example 1, the hydrogen heat treatment conditions were changed to a temperature of 200°C;
After 2 hours and drawn into fiber, λ=0.6
No absorption peak at 3 μm was observed.

実施例6 実施例1において、水素加熱処理条件を温度200℃、
1時間としたところ、λ= 0.63 μmでの吸収ピ
ークが僅か(1,5dB/km )に認められた。
Example 6 In Example 1, the hydrogen heat treatment conditions were changed to a temperature of 200°C;
After 1 hour, a slight absorption peak (1.5 dB/km) was observed at λ=0.63 μm.

比較例1 実施例1と同様のプリフォームを、水素雰囲気中の加熱
処理なしに溶融紡糸した。本光ファイバのλ=0.63
μmの吸収を測定したところ、8.5dB/kmであり
、3dB/kmの吸収ピークが存在した。
Comparative Example 1 A preform similar to Example 1 was melt-spun without heat treatment in a hydrogen atmosphere. λ of this optical fiber = 0.63
When the absorption in μm was measured, it was 8.5 dB/km, and there was an absorption peak of 3 dB/km.

比較例2 実施例2と同様の純シリカコアロット、フッ素添加クラ
ッドパイプを準備した。該クラッドバイブを水素雰囲気
中で加熱処理することなしに、コアと加熱溶融一体化し
、得られたプリフォームを外径125μmの光ファイバ
に溶融紡糸し、λ=0.63μmにおける損失を測定し
たところ、第1図に破線で示すとおりで、I!lz/B
/ka+であった。
Comparative Example 2 A pure silica core lot and a fluorine-doped clad pipe similar to those in Example 2 were prepared. The clad vibrator was heat-fused and integrated with the core without heat treatment in a hydrogen atmosphere, the obtained preform was melt-spun into an optical fiber with an outer diameter of 125 μm, and the loss at λ = 0.63 μm was measured. , as shown by the dashed line in Figure 1, I! lz/B
/ka+.

即ち、9.54B /ktmの吸収ピークが存在するこ
とになる。
That is, an absorption peak of 9.54 B/ktm exists.

〔発明の効果〕〔Effect of the invention〕

本発明は、純粋石英コアを存する光ファイバにおいて、
溶融紡糸後、ガラスの網目構造が切断されてできる=S
i−0・、=S1・という欠陥を、予めプリフォーム中
に拡散させた水素分子が埋めて、ミSi −OH、=S
t  Hとするため、0.63 μmでの吸収ピークを
解消できて、紡糸後のファイバの長期安定性を向上でき
る。
The present invention provides an optical fiber having a pure quartz core.
After melt spinning, the glass network structure is cut = S
The defects i−0・,=S1・ are filled with hydrogen molecules that have been diffused into the preform in advance, resulting in the formation of MiSi−OH,=S
Since t H is used, the absorption peak at 0.63 μm can be eliminated, and the long-term stability of the fiber after spinning can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第】図は本発明の実施例1〜4及び比較例2で製造され
た各光ファイバの伝送損失特性を比較して示す図であり
、実線は実施例1〜4のファイバの場合、破線は比較例
2のファイバの場合を示す。 惰1図
Figure 1 is a diagram comparing and showing the transmission loss characteristics of each optical fiber manufactured in Examples 1 to 4 of the present invention and Comparative Example 2, where the solid line is for the fiber of Examples 1 to 4, and the broken line is for the fiber of Examples 1 to 4. The case of the fiber of Comparative Example 2 is shown. Ina 1 diagram

Claims (10)

【特許請求の範囲】[Claims] (1)石英を主成分とするプリフォームを溶融紡糸する
光ファイバの製造方法において、プリフォームまたはプ
リフォームとなる中間母材を溶融紡糸前に水素含浸処理
することを特徴とする光ファイバの製造方法。
(1) A method for producing an optical fiber in which a preform containing quartz as a main component is melt-spun, which is characterized in that the preform or an intermediate base material serving as the preform is subjected to hydrogen impregnation treatment before melt-spinning. Method.
(2)上記水素含浸処理が水素を含む雰囲気中での加熱
処理であることを特徴とする請求項(1)記載の光ファ
イバの製造方法。
(2) The method for manufacturing an optical fiber according to claim 1, wherein the hydrogen impregnation treatment is a heat treatment in an atmosphere containing hydrogen.
(3)上記加熱処理が水素を含む雰囲気を保った加熱炉
内にプリフォームまたはプリフォームとなる中間母材を
保持することを特徴とする請求項(2)記載の光ファイ
バの製造方法。
(3) The method for manufacturing an optical fiber according to claim (2), wherein the heat treatment involves holding the preform or an intermediate base material to become the preform in a heating furnace in which an atmosphere containing hydrogen is maintained.
(4)上記加熱処理が水素を含む雰囲気を保った加熱炉
内で大気圧または加圧下で水素含浸処理すること特徴と
する請求項(3)記載の光ファイバの製造方法。
(4) The method for manufacturing an optical fiber according to claim (3), wherein the heat treatment is a hydrogen impregnation treatment under atmospheric pressure or pressurization in a heating furnace that maintains an atmosphere containing hydrogen.
(5)上記水素含浸処理が水素を燃焼用ガスとした火炎
による加熱処理であることを特徴とする請求項(1)記
載の光ファイバの製造方法。
(5) The method for manufacturing an optical fiber according to claim (1), wherein the hydrogen impregnation treatment is a heat treatment using a flame using hydrogen as a combustion gas.
(6)上記加熱処理が酸水素バーナーによることを特徴
とする請求項(5)記載の光ファイバの製造方法。
(6) The method for manufacturing an optical fiber according to claim (5), wherein the heat treatment is performed using an oxyhydrogen burner.
(7)上記酸水素バーナーにおいてH_2/O_2比が
3以上であることを特徴とする請求項(6)記載の光フ
ァイバの製造方法。
(7) The method for manufacturing an optical fiber according to claim (6), wherein the oxyhydrogen burner has a H_2/O_2 ratio of 3 or more.
(8)上記プリフォームが純粋石英コアとフッ素添加石
英クラッドからなるシングルモードファイバ用プリフォ
ームであることを特徴とする請求項(1)記載の光ファ
イバの製造方法。
(8) The method for manufacturing an optical fiber according to claim (1), wherein the preform is a single mode fiber preform consisting of a pure quartz core and a fluorine-doped quartz cladding.
(9)上記プリフォームとなる中間母材がコラップス法
に用いる純粋石英コアであることを特徴とする請求項(
1)記載の光ファイバの製造方法。
(9) Claim characterized in that the intermediate base material that becomes the preform is a pure quartz core used in the collapse method (
1) The method for manufacturing the optical fiber described above.
(10)上記プリフォームとなる中間母材がコラップス
法に用いるフッ素添加石英ガラスであることを特徴とす
る請求項(1)記載の光ファイバの製造方法。
(10) The method for manufacturing an optical fiber according to claim (1), wherein the intermediate base material serving as the preform is fluorine-doped silica glass used in the collapse method.
JP16676290A 1990-06-27 1990-06-27 Production of optical fiber Pending JPH0459630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16676290A JPH0459630A (en) 1990-06-27 1990-06-27 Production of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16676290A JPH0459630A (en) 1990-06-27 1990-06-27 Production of optical fiber

Publications (1)

Publication Number Publication Date
JPH0459630A true JPH0459630A (en) 1992-02-26

Family

ID=15837242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16676290A Pending JPH0459630A (en) 1990-06-27 1990-06-27 Production of optical fiber

Country Status (1)

Country Link
JP (1) JPH0459630A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0999190A2 (en) * 1998-11-04 2000-05-10 Heraeus Quarzglas GmbH & Co. KG Core glass for an optical fibre preform, a preform produced using the core glass and processes for producing the core glass and an optical fibre
WO2001092173A1 (en) * 2000-05-31 2001-12-06 Schneider Laser Technologies Ag Sio2-based fibre optical waveguide for transmitting a high light power density and corresponding production method
WO2006056296A1 (en) * 2004-11-22 2006-06-01 Heraeus Quarzglas Gmbh & Co. Kg Method for the production of an optical component made of quartz glass, and blank suitable for carrying out said method
JP2007536580A (en) * 2004-05-06 2007-12-13 ベイカー ヒューズ インコーポレイテッド Long wavelength pure silica core single mode fiber and method of forming the fiber
JP2013238676A (en) * 2012-05-11 2013-11-28 Fujikura Ltd Low-loss optical fiber over wide wavelength range and method of manufacturing the same
JP2017076137A (en) * 2007-01-12 2017-04-20 エヌケイティー フォトニクス アクティーゼルスカブNkt Photonics A/S Method for manufacturing micro-structured fiber with improved lifetime and performance, and method for manufacturing super-continuum light source having the fiber
US9971230B2 (en) 2008-07-11 2018-05-15 Nkt Photonics A/S Lifetime extending and performance improvements of optical fibers via loading
US10228510B2 (en) 2014-12-18 2019-03-12 Nkt Photonics A/S Photonic crystal fiber, a method of production thereof and a supercontinuum light source

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0999190A2 (en) * 1998-11-04 2000-05-10 Heraeus Quarzglas GmbH & Co. KG Core glass for an optical fibre preform, a preform produced using the core glass and processes for producing the core glass and an optical fibre
EP0999190A3 (en) * 1998-11-04 2001-10-10 Heraeus Quarzglas GmbH & Co. KG Core glass for an optical fibre preform, a preform produced using the core glass and processes for producing the core glass and an optical fibre
WO2001092173A1 (en) * 2000-05-31 2001-12-06 Schneider Laser Technologies Ag Sio2-based fibre optical waveguide for transmitting a high light power density and corresponding production method
DE10027263B4 (en) * 2000-05-31 2011-11-24 Jenoptik Laser Gmbh A method of making an SiO2-based optical fiber for transmitting a high power density
JP2007536580A (en) * 2004-05-06 2007-12-13 ベイカー ヒューズ インコーポレイテッド Long wavelength pure silica core single mode fiber and method of forming the fiber
WO2006056296A1 (en) * 2004-11-22 2006-06-01 Heraeus Quarzglas Gmbh & Co. Kg Method for the production of an optical component made of quartz glass, and blank suitable for carrying out said method
EP3367161B1 (en) * 2007-01-12 2022-06-08 NKT Photonics A/S Lifetime extending and performance improvements of micro-structured fibres via high temperature loading
JP2017076137A (en) * 2007-01-12 2017-04-20 エヌケイティー フォトニクス アクティーゼルスカブNkt Photonics A/S Method for manufacturing micro-structured fiber with improved lifetime and performance, and method for manufacturing super-continuum light source having the fiber
US9971230B2 (en) 2008-07-11 2018-05-15 Nkt Photonics A/S Lifetime extending and performance improvements of optical fibers via loading
US10281797B2 (en) 2008-07-11 2019-05-07 Nkt Photonics A/S Lifetime extending and performance improvements of optical fibers via loading
US10474003B2 (en) 2008-07-11 2019-11-12 Nkt Photonics A/S Lifetime extending and performance improvements of optical fibers via loading
US11048145B2 (en) 2008-07-11 2021-06-29 Nkt Photonics A/S Lifetime extending and performance improvements of optical fibers via loading
US11988940B2 (en) 2008-07-11 2024-05-21 Nkt Photonics A/S Lifetime extending and performance improvements of optical fibers via loading
JP2013238676A (en) * 2012-05-11 2013-11-28 Fujikura Ltd Low-loss optical fiber over wide wavelength range and method of manufacturing the same
US10228510B2 (en) 2014-12-18 2019-03-12 Nkt Photonics A/S Photonic crystal fiber, a method of production thereof and a supercontinuum light source
US10557987B2 (en) 2014-12-18 2020-02-11 Nkt Photonics A/S Photonic crystal fiber, a method of production thereof and a supercontinuum light source
US10928584B2 (en) 2014-12-18 2021-02-23 Nkt Photonics A/S Photonic crystal fiber, a method of production thereof and a supercontinuum light source
US11409033B2 (en) 2014-12-18 2022-08-09 Nkt Photonics A/S Photonic crystal fiber, a method of production thereof and a supercontinuum light source
US11719881B2 (en) 2014-12-18 2023-08-08 Nkt Photonics A/S Photonic crystal fiber, a method of production thereof and a supercontinuum light source

Similar Documents

Publication Publication Date Title
CA1251044A (en) Fluorine doped optical waveguide
US4822399A (en) Glass preform for dispersion shifted single mode optical fiber and method for the production of the same
US4453961A (en) Method of making glass optical fiber
US4772302A (en) Optical waveguide manufacture
EP0666836B1 (en) Process and device for producing preforms for silica glass optical waveguides
JPS6113203A (en) Single mode optical fiber
US4643751A (en) Method for manufacturing optical waveguide
US4648891A (en) Optical fiber
KR100866266B1 (en) Method and apparatus for fabricating optical fiber using improved oxygen stoichiometry and deuterium exposure
US4295869A (en) Process for producing optical transmission fiber
US4165152A (en) Process for producing optical transmission fiber
RU2271025C2 (en) Single-mode optical fiber and method of production of single-mode optical fiber
JPH0459630A (en) Production of optical fiber
EP1270522B1 (en) Method for fabricating optical fiber from preforms, using control of the partial pressure of oxygen during preform dehydration
CN1022681C (en) Method for mfg. fiber preform for single-mode fibers
JP3434428B2 (en) Optical fiber for communication and method of manufacturing the same
JPH01148722A (en) Production of optical fiber preform
JPH0820574B2 (en) Dispersion shift fiber and manufacturing method thereof
US20040118164A1 (en) Method for heat treating a glass article
JPH06263468A (en) Production of glass base material
JPH0791088B2 (en) Rare-earth element-doped silica glass optical fiber preform and method for producing the same
JP2001192233A (en) Optical fiber and method for manufacturing the same
JPH02141437A (en) Production of optical fiber
JPS598634A (en) Preparation of base material for optical fiber having retained plane of polarization
JPH0948630A (en) Production of preform for optical fiber