JPH01103922A - Production of synthetic quartz pipe - Google Patents

Production of synthetic quartz pipe

Info

Publication number
JPH01103922A
JPH01103922A JP25963987A JP25963987A JPH01103922A JP H01103922 A JPH01103922 A JP H01103922A JP 25963987 A JP25963987 A JP 25963987A JP 25963987 A JP25963987 A JP 25963987A JP H01103922 A JPH01103922 A JP H01103922A
Authority
JP
Japan
Prior art keywords
porous glass
mandrel
synthetic quartz
bulk density
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25963987A
Other languages
Japanese (ja)
Inventor
Akira Urano
章 浦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP25963987A priority Critical patent/JPH01103922A/en
Publication of JPH01103922A publication Critical patent/JPH01103922A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium

Abstract

PURPOSE:To obtain a synthetic quartz pipe giving an optical fiber having superior H2 and radiation resistances by depositing porous glass on a hollow mandrel made of a porous material, feeding a specified doping gas to the inside of the mandrel and vitrifying the porous glass. CONSTITUTION:Porous glass of pure quartz, etc., is deposited on a hollow mandrel made of a porous material by VAD or other method. A doping gas contg. GeCl4 and O2 is fed to the inside of the mandrel and the porous glass is vitrified by sintering in a red-hot state at such a high temp. as 1,600 deg.C in an atmosphere of gaseous He, etc. The porous glass is uniformly doped with GeO2 during the vitrification and the mandrel is pulled out after the vitrification.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、Gang を含有する合成石英管の製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a synthetic quartz tube containing Gang.

〔従来の技術] 従来1合成石英管は、マンドレル上に言わゆる外付法に
よ)多孔質ガラスを堆積させ、これを加熱溶融してガラ
ス化した後、上記のマンドレルを抜去して製造されて−
た。
[Prior Art] Conventional 1 synthetic quartz tubes are manufactured by depositing porous glass on a mandrel (using the so-called external deposition method), heating and melting it to vitrify it, and then removing the mandrel. Te-
Ta.

iな1石英ガラスに何らかの目的でQeO@ f:ドー
プする場合、G o OAh等のGe源は高温下で揮散
し易すいことから、多孔質ガラス製造時に該多孔質ガラ
スの原料と共にGe04等のGe 源を供給して、Ge
01  をドープする方法が一般に行われていた。
When QeO@f: is doped into quartz glass for some purpose, Ge sources such as G o OAh easily volatilize at high temperatures. By supplying a Ge source,
A method of doping with 01 was commonly used.

従って、Ge01 t−含有する合成石英管を製造する
には、上記のマンドレル上に外付法で多孔質ガラスを堆
積させる際にGe04等のGe 源を810t&等の8
1 源と共に供給させる方法が考えられてい九。
Therefore, in order to manufacture a synthetic quartz tube containing Ge01t, a Ge source such as Ge04 is added to a
1. A method is being considered in which it is supplied together with the source9.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上記の多孔質ガラスを堆積させる際にGe04
等のGo 源を供給する方法では%Ge01が多量に、
しかも管全体に比較的均一にドープされてしまい、Qe
O冨 を少量、かつ局在化させてドープする必要がある
場合には適していない。
However, when depositing the above porous glass, Ge04
In the method of supplying a Go source such as
Moreover, the entire tube is doped relatively uniformly, and Qe
It is not suitable when it is necessary to dope a small amount of O-rich in a localized manner.

ところで、光ファイバは、一般に、前記のようにして製
造された合成石英管をクラッド用パイプとし、この中に
WAD法等で製造しなコア用ロンドを挿入し、加熱して
ガラス化する所謂aラドインチューブ法を行い、これを
母材として線引する方法、あるいは上記のクラッド用パ
イプ内にコアとなる多孔質ガラスを堆積し、加熱してガ
ラス化する所謂肉付法を行い、これを母材として線引す
る方法等で製造されている。
By the way, optical fibers are generally made by using the synthetic quartz tube manufactured as described above as a cladding pipe, inserting a core rond not manufactured by the WAD method etc. into the cladding pipe, and heating and vitrifying it. The rad-in tube method is used to draw wire as a base material, or the so-called "filling method" is used to deposit porous glass as a core inside the cladding pipe and heat it to vitrify it. It is manufactured by drawing a wire as a base material.

上記の線引の際、一般には母材を外側から加熱するなめ
、外側が高温となり、内側が低温となる第4図に示すよ
うな温度分布が形成され。
During the above-mentioned wire drawing, the base material is generally heated from the outside, so that a temperature distribution as shown in FIG. 4 is formed in which the outside is high temperature and the inside is low temperature.

この温度分布に起因して母材の半径方向に外側が低粘度
、内側が高粘度の粘度差が生じる。
Due to this temperature distribution, a viscosity difference occurs in the radial direction of the base material, with the outer side having a lower viscosity and the inner side having a higher viscosity.

また、コアとクラッドとの組成の違いによっても粘度の
差が生じ、コアの粘度がクラッドの粘度よ)高い場合は
、これに上記の温度分布に起因する粘度差が加算されて
、線引時コア部がクラッド部に追随できず、コア部に線
引張力が集中してクラッド部との界面に歪が発生する。
In addition, a difference in viscosity occurs due to the difference in composition between the core and cladding, and if the viscosity of the core is higher than that of the cladding, the viscosity difference due to the temperature distribution mentioned above is added to this, and when drawing The core part cannot follow the cladding part, and the drawing tension concentrates on the core part, causing strain at the interface with the cladding part.

特に、例えば高Nム光ファイバ[nh=67=p−で定
義される(但し、nt>nmで、n!とn!ハ平均値)
開口数Nムが大きいマルチモード又はシングルモード光
ファイバ]や、材料分散と構造分散が零になる光波長(
雰分散波長)を通常のt3μm帯から1.5μm帯(1
,5〜1.6μm)ヘシフトさせたt5μm帯零分散シ
フトシングルモード光ファイバ等のように、コアとクラ
ッドとの屈折率差Δnの大きい光ファイバの場合、上記
の組成の違いによる粘度差が極端となるし、しかもコア
とクラッドとの径比が大きい光ファイバでは、上記の温
度分布による粘度差も極端とな〕、コア・クラッド界面
には極めて大きい歪が発生する。
In particular, for example, a high Nm optical fiber [defined as nh=67=p- (where nt>nm, n! and n!c average value)
multi-mode or single-mode optical fiber with a large numerical aperture Nm], or an optical wavelength where material dispersion and structural dispersion become zero (
atmospheric dispersion wavelength) from the normal t3μm band to the 1.5μm band (1
In the case of an optical fiber with a large refractive index difference Δn between the core and the cladding, such as a t5μm band zero dispersion shifted single mode optical fiber shifted to 5~1.6μm), the viscosity difference due to the above composition difference is extreme. Furthermore, in an optical fiber with a large diameter ratio between the core and the cladding, the difference in viscosity due to the above-mentioned temperature distribution is also extreme], and an extremely large strain occurs at the core-cladding interface.

斯る歪が発生すると、該歪を解放するために。When such distortion occurs, in order to release the distortion.

コア・クラッド界面における)81−0−81≦結合が
切れ、う81−0・の所謂非架橋酸素欠陥(WonBr
idging Oxygen aaaoaiated 
Ho1e (jenter−MBO)ICと略す)が出
現する。
)81-0-81≦ bond at the core-clad interface is broken, and the so-called non-bridging oxygen defect (WonBr
idging Oxygen
Hole (abbreviated as jenter-MBO) IC) appears.

このNEO)10の存在の有無は、波長0.65μmに
おける吸収が大となることで判別される。
The presence or absence of this NEO) 10 is determined by the large absorption at a wavelength of 0.65 μm.

また、1iBOHOが存在する光7アイパは、長期間の
使用において、′)81−0・が使用環境中のU=Oや
他のH給源の■と反応してう81−011  結合を生
成し、波長1.39μm付近の吸収を大とし、t3μm
帯、t5μm帯の伝送損失の増加をもたらす。
In addition, in Hikari 7 Aipah, in which 1iBOHO exists, during long-term use, ')81-0• reacts with U=O and other H sources in the usage environment to generate U81-011 bonds. , the absorption near the wavelength 1.39μm is large, and t3μm
This results in an increase in transmission loss in the t5 μm band.

しかも、上記の歪に、光ファイバの耐放射線特性や耐水
素特性を悪化させ、BIBOHOとして長期間の安定性
や信頼性の低下をもたらしている。
Moreover, the above-mentioned distortion deteriorates the radiation resistance and hydrogen resistance characteristics of the optical fiber, resulting in a decrease in long-term stability and reliability as a BIBOHO.

そこで本発明者らは、コア・クララ)°界面の歪を98
1−0−日1ε 結合よ)も切断し易i′−Go−〇−
Oeε結合の切断によシ解放し、上記の981−0・に
よるNBOHOを皆無とするために、クラッドの内側(
コアとの界面)にのみatのGe01 をドープさせた
層を設ける光ファイバを別途提案している。
Therefore, the present inventors set the strain at the core-clara)° interface to 98
1-0-day 1ε bond) is also easy to break i′-Go-〇-
The inside of the cladding (
We have separately proposed an optical fiber in which a layer doped with at Ge01 is provided only at the interface with the core.

しかし、前記のように、従来考えられている合成石英管
へのGISO! のドープ方法でに、管全体に大量のG
e01 がドープされてしまい、上記のクラッドの内側
にのみ微量のGe01 をドープさせることには適して
いない。
However, as mentioned above, GISO! With this doping method, a large amount of G is distributed throughout the tube.
Since e01 is doped, it is not suitable to dope only a small amount of Ge01 inside the cladding.

本発明は1以上の諸点に鑑み、管全体に微量のGe01
 f含有する合成石英管、又は管の内側にのみ微量のG
e01 f含有する合成石英管を製造する方法を提案す
るものである。
In view of one or more points, the present invention provides a trace amount of Ge01 throughout the tube.
Synthetic quartz tube containing F or a trace amount of G only on the inside of the tube
A method for manufacturing a synthetic quartz tube containing e01f is proposed.

〔問題点を解決する九めの手段〕[Ninth way to solve the problem]

本発明は、管全体に微量のGe01 を含有する合成石
英管の製造は、多孔質材からなる中空マンドレル上に多
孔質ガラスを堆積させ、該多孔質ガラスを加熱してガラ
ス化する際に前記マンドレル内部にGe04及び0!を
含むガスを送入して前記ガラス化中の多孔質ガラスにG
low tドープし、ガラス化後前記マンドレルを抜去
することを特徴とする合成石英管の製造方法により達成
するものである。
In the present invention, a synthetic quartz tube containing a small amount of Ge01 throughout the tube is manufactured by depositing porous glass on a hollow mandrel made of porous material, and heating the porous glass to vitrify it. Ge04 and 0 inside the mandrel! G
This is achieved by a method for manufacturing a synthetic quartz tube, which is characterized in that it is low-t doped and the mandrel is removed after vitrification.

また、本発明は、管の内側にの′み0601 を含有す
る合成石英管の製造μ、多孔質材からなる中空マンドレ
ル上に多孔質ガラスを堆積させ、次いで該多孔質ガラス
を熱処理して該多孔質ガラスの前記マンドレル側から所
定の厚さの部分を嵩密度α5〜tSt/α1とし、しか
る後該多孔質ガラスを加熱してガラス化する際に前記マ
ンドレル内部にGa04及びO!ヲ含むガスを送入して
前記ガラス化中の多孔質ガラスにGao!をドープし、
ガラス化後前記マンドレルを抜去することを特徴とする
合成石英管の製造方法によシ達成するものである。
The present invention also provides a method for producing a synthetic quartz tube containing 0601 on the inside of the tube, depositing porous glass on a hollow mandrel made of porous material, and then heat-treating the porous glass to form a synthetic quartz tube. A predetermined thickness portion of the porous glass from the mandrel side is made to have a bulk density α5 to tSt/α1, and then when the porous glass is heated and vitrified, Ga04 and O! A gas containing Gao! is introduced into the porous glass being vitrified. dope and
This is achieved by a method for manufacturing a synthetic quartz tube, which is characterized in that the mandrel is removed after vitrification.

〔作用〕[Effect]

本発明では、先ず、多孔質材からなる中空マンドレル上
に、例えば気相ガラス原料、0鳳、IEI!、その他必
要な成分を供給する多重管バーナのような火炎加水分解
用バーナによ)多孔質ガラスを堆積させる。
In the present invention, first, for example, vapor-phase glass raw material, 00, IEI! The porous glass is deposited by a flame hydrolysis burner, such as a multi-tube burner, which supplies the other necessary components.

次に、この多孔質ガラスを加熱してガラス化(以下、焼
結)するのであるが、本発明では、この焼結の際に、上
記の中空マンドレル内にG e O4とol とを含む
ガスを供給する。
Next, this porous glass is heated to vitrify (hereinafter referred to as sintering), but in the present invention, during this sintering, a gas containing G e O4 and ol is introduced into the hollow mandrel. supply.

このガスは、中空マンドレル構成材中の孔を通して上記
の多孔質ガラスの内部に入シ、該ガラスの内部で、或い
は中空マンドレルの中空部や構成材通過中にG e O
4とOl とが反応して生成したGaoI が、焼結さ
れたガラス管すなわち合成石英管にドープされるのであ
る。
This gas enters the interior of the above-mentioned porous glass through the holes in the hollow mandrel constituent material, and G e O inside the glass or while passing through the hollow part of the hollow mandrel or the constituent material.
GaoI produced by the reaction of 4 and OI is doped into a sintered glass tube, that is, a synthetic quartz tube.

このように、本発明では、中空マンドレル構成材が上記
のガス流に対し成る程度の通過抵抗作用を示し、かつ多
孔質ガラス自体もガス−流に対し成る程度の通過抵抗作
用を示すため、0804 、  Og 、  Ge01
 の多孔質ガラス内への供給を微量とし、結果的に合成
石英管へ含有されるGe01 が微量となるのである。
In this way, in the present invention, the hollow mandrel constituent material exhibits a certain degree of passage resistance effect against the above-mentioned gas flow, and the porous glass itself also exhibits a certain degree of passage resistance effect against the gas flow. , Og , Ge01
A very small amount of Ge01 is supplied into the porous glass, and as a result, a very small amount of Ge01 is contained in the synthetic quartz tube.

ところで、中空マンドレル上に堆積された多孔質ガラス
は、焼結の過程において、一般に、第3図に示すような
嵩密度分布の挙動を示す。
By the way, porous glass deposited on a hollow mandrel generally exhibits bulk density distribution behavior as shown in FIG. 3 during the sintering process.

すなわち、焼結前においては、第3図中曲線aで示す嵩
密度分布であったものが、焼結処理によシ徐々に嵩密度
が増し、例えば1200℃で焼結処理をする場合41 
N!r 後の嵩密度は同図中曲線すで示す分布となシ、
また1300℃で焼結処理をする場合は、嵩密度の増加
速度がやや速くなfi、ll1r後で同図中曲線Cで示
す嵩密度分布となる。1400℃以上の温度で焼結処理
をした場合に、同図中曲線dで示すようにどの部分にお
いても一定の嵩密度を示すようになる。
That is, before sintering, the bulk density distribution was as shown by curve a in FIG.
N! The bulk density after r is the same as the distribution shown by the curve in the same figure.
Further, when the sintering treatment is performed at 1300° C., the bulk density distribution becomes as shown by curve C in the same figure after fi and ll1r, where the rate of increase in bulk density is somewhat faster. When sintering is performed at a temperature of 1400° C. or higher, a constant bulk density is exhibited at any portion, as shown by curve d in the figure.

従って、前述のように、焼結中に中空マンドレル内にG
e04  と01を含むガスを供給する方法であると、
マンドレル直近の嵩密度の最も高い部分を通過したガス
は、多孔質ガラスの内部から表面部に亘って均一に浸透
し1合成石英管全体にG1110g が均一にドープさ
れる。
Therefore, as mentioned above, G in the hollow mandrel during sintering
A method of supplying a gas containing e04 and 01,
The gas that has passed through the part with the highest bulk density in the vicinity of the mandrel permeates uniformly from the inside of the porous glass to the surface, and the entire synthetic quartz tube is uniformly doped with G1110g.

そこで、本発明では、焼結に先立って、中空マンドレル
に堆積させた多孔質ガラスを熱処理し、第1図に示すよ
うに、中空マンドレル1側から多孔質ガラス20所定の
厚さtl  の部分の嵩密度をα5〜1.8 tlas
”としておく。
Therefore, in the present invention, prior to sintering, the porous glass deposited on the hollow mandrel is heat-treated, and as shown in FIG. The bulk density is α5~1.8 tlas

しかる後、中空マンドレル内にG e C4とOlを含
むガスを供給しつつ焼結すれば、該ガス流は上記の嵩密
度の部分で大きな通過抵抗を受け、該ガス流が保有する
通過エネルギが消費されてしまい、該ガス流はこの嵩密
度の部分で停止する。
After that, if sintering is carried out while supplying a gas containing G e C4 and Ol into the hollow mandrel, the gas flow will experience a large passage resistance in the above-mentioned bulk density area, and the passage energy held by the gas flow will be reduced. is consumed and the gas flow stops at this bulk density.

これによシ、Ge01は上記嵩密度の部分塩しかドープ
されないため、マンドレル側すなわち内側にのみGe0
1 を含有する合成石英管が製造されるのである。
As a result, Ge01 is only doped with a partial salt having the above bulk density, so Ge01 is only doped on the mandrel side, that is, on the inside.
A synthetic quartz tube containing 1 is produced.

上記のガス流の通過抵抗を大とし1通過エネルギを消費
させて、ガス流を停止させるためには、多孔質ガラスの
嵩密度は少くともα51151”を必要とし、また嵩密
度が高過ぎると上記の作用が飽和するのみならず、第3
図から明らかなように曲線dに近似して全体が均一の嵩
密度分布を示すようになシ、極く僅かのガスもガラス内
に侵入しなくなるため、上限Htatl副3とする。
In order to increase the passage resistance of the gas flow mentioned above, consume energy per passage, and stop the gas flow, the bulk density of the porous glass needs to be at least α51151'', and if the bulk density is too high, the above Not only does the effect of
As is clear from the figure, the upper limit of Htatl is set to 3 because it approximates the curve d and shows a uniform bulk density distribution throughout, and even a small amount of gas does not enter the glass.

また、本発明方法で得られた合成石英管をクラッド用パ
イプとして用い光ファイバを製造する場合、該パイプ中
にドープされている9Ge −0−Ge% 結合は、−
381−0−8/%結合よ〕結合力が弱く、−〇−Go
6間の切断が一〇−131’:間の切断に先立って生じ
る。
Furthermore, when manufacturing an optical fiber using the synthetic quartz tube obtained by the method of the present invention as a cladding pipe, the 9Ge -0-Ge% bond doped in the pipe is -
381-0-8/% bond] The bond strength is weak, -〇-Go
The cut between 6 occurs prior to the cut between 10 and 131':.

従って、上記パイプを用いれば、母材の線引時にコア部
とクラッド部との組成の違いや温度分布に起因する粘度
差によル生じるコア・クラッド界面の歪は、該界面のク
ラッド側に存在する9Go −0−Ge−の結合が替れ
ることによって解放される。
Therefore, if the above pipe is used, the strain at the core-clad interface caused by the viscosity difference caused by the difference in composition and temperature distribution between the core and cladding parts during drawing of the base material will be reduced to the cladding side of the interface. It is released by changing the existing 9Go-0-Ge- bond.

そして、上記界面のコア側の′−5t−o−s1%結合
は、そのまま残フ、従来のようなン51−0・によるN
BOHOは発生しない。
Then, the '-5t-o-s1% bond on the core side of the interface remains as it is, and the N
BOHO will not occur.

なお、7Ge−0−Geε結合は微量であるため。Note that the amount of 7Ge-0-Geε bond is very small.

生成するうGe−0・の量も微量であること、またそれ
がコア部分の外にある九め、影響が小さいシと、更に低
軟化点ガラス中に存在する九め。
The amount of Ge-0 produced is also very small, and it exists outside the core part, where the influence is small, and furthermore, it exists in the low softening point glass.

ス)I/スが緩和された後に再結合が行われること等の
理由によ)、:;Ge−o・の影響は無視し得るものと
推定される。
It is estimated that the influence of Ge-o. is negligible due to reasons such as recombination occurring after I/S is relaxed.

故に、本発明方法で得られた合成石英管をクラッド用パ
イプとして用いれば、純51ol コア光ファイバに特
有の優れた耐放射線特性や耐水素特性を長期間安定して
維持し得るのである。
Therefore, if the synthetic quartz tube obtained by the method of the present invention is used as a cladding pipe, the excellent radiation resistance and hydrogen resistance characteristic of pure 51 ol core optical fiber can be stably maintained for a long period of time.

〔実施例〕〔Example〕

実施911 外径17■φのZr0g 製中空マンドレル上にWAD
法によシ純粋石英の多孔質ガラスを堆積させた。
Implementation 911 WAD on Zr0g hollow mandrel with outer diameter 17 φ
A porous glass of pure quartz was deposited by the method.

この多孔質ガラスは、外−径120■φ、平均嵩密度1
25 t/副3でめった。
This porous glass has an outer diameter of 120 φ and an average bulk density of 1
25 tons/sub3 was rare.

この多孔質ガラスを雰囲気ガスとしてHe ft10L
/分の割合で流し、かつ中空マンドレル内にHe  t
−900CC7分、G e O14を40CC/分、O
l  をl5OCC/分の割合で流し、最高温度160
0℃の均熱炉中で焼結処理を行った。この結果、合成石
英管(焼結体)全体に経方向、軸方向ともに均一にGa
ot が約α08 wt%添加されていた。
He ft10L using this porous glass as an atmospheric gas.
/min, and the Het
-900CC7min, G e O14 40CC/min, O
1 at a rate of 15 OCC/min, with a maximum temperature of 160
Sintering treatment was performed in a soaking furnace at 0°C. As a result, Ga is uniformly distributed throughout the synthetic quartz tube (sintered body) in both the longitudinal and axial directions.
About α08 wt% of ot was added.

実施例2 外径17■φのZrO冨製中空マンドレル上にWAD法
によル純粋石英の多孔質ガラスを堆積させた。
Example 2 Pure quartz porous glass was deposited on a ZrO-rich hollow mandrel having an outer diameter of 17 mm by the WAD method.

この多孔質ガラスは、外径120■φ、平均嵩密度0.
23f/cm”、マンドレル側から20■迄の厚さの部
分の嵩密度a、46 t/lx”で6つな。
This porous glass has an outer diameter of 120 mm and an average bulk density of 0.
23f/cm", the bulk density a of the thickness part from the mandrel side to 20cm, 46t/lx", 6.

この多孔質ガラスを雰囲気ガスとしてHe t−101
/分の割合で流しつつ、1100℃で211rの嵩密度
調整処理を行つ念。この結果、多孔質ガラスはマンドレ
ル側から20■迄の部分の厚さの嵩密度が158 t/
cps”に調整されていた。
Using this porous glass as an atmospheric gas, Het-101
The bulk density adjustment process of 211r was carried out at 1100°C while flowing at a rate of /min. As a result, the bulk density of the porous glass at a thickness of 20 cm from the mandrel side is 158 t/
cps” was adjusted.

この嵩密度調整後、雰囲気ガスとしてlis t−10
t/分の割合で流し、かつ中空マンドレル内にGe04
40 %と0.401’i含むHeft1t/分の割合
で流し、1600℃でa 5 Hr・の焼結処理を行っ
た。この結果、合成石英管(焼結体)の内側約12−の
厚さの部分にGe0!が約0. 5 wt%添加されて
いた。
After this bulk density adjustment, list t-10 is used as the atmospheric gas.
t/min and inside the hollow mandrel.
40% and 0.401'i at a rate of 1 t/min, and sintered at 1600°C for a 5 Hr. As a result, Ge0! is about 0. 5 wt% was added.

実施例3 実施例2と同じ方法で得友実施例2と同じ性状の多孔質
ガラスを、雰囲気ガスとしてHe  をSb2分、B 
F、、を7000C/分の割合で流しつつ、1100℃
でI Hrの嵩密度調整処理を行った。この結果、多孔
質ガラスにマンドレル側から20w迄の厚さの部分の嵩
密度がα−65t/個3に調整されていた。
Example 3 A porous glass having the same properties as Example 2 was prepared using the same method as in Example 2, and 2 parts of He and 2 parts of Sb and B were used as atmospheric gases.
1100℃ while flowing F at a rate of 7000C/min.
The I Hr bulk density adjustment process was carried out. As a result, the bulk density of the portion of the porous glass with a thickness of up to 20W from the mandrel side was adjusted to α-65t/3 pieces.

この嵩密度調整後、雰囲気ガスとしてHe と8IF、
ft上記と同じ割合で流し、かつ中空マンドレル側にG
o04ガxsocc/分、0,50CC/分、He1t
/分、EIF、2500C/分を流し、1450℃でI
 Hr の焼結処理を行った。この結果1合成石英管の
内側約7−の厚さの部分に  。
After this bulk density adjustment, He and 8IF as atmospheric gas,
ft at the same rate as above and G on the hollow mandrel side.
o04gaxsocc/min, 0,50CC/min, He1t
/min, EIF, 2500C/min, I at 1450℃
A sintering process of Hr was performed. This results in a section approximately 7-cm thick inside the synthetic quartz tube.

Ge01 が約CL 3 vt91添加され、該管全体
に1が約1.5 wt9b添加されていた。
About CL 3 vt91 of Ge01 was added and about 1.5 wt9b of 1 was added to the entire tube.

この合成石英管をクラッド用パイプとし、該パイプ内に
純石英からなるコア用ロンドを挿入し、加熱してガラス
化するロンド・インチューブ法により母材ft調製し、
これを線引して光ファイバを得た。
This synthetic quartz tube is used as a cladding pipe, a core rond made of pure quartz is inserted into the pipe, and a base material ft is prepared by the rond-in-tube method of heating and vitrifying it.
This was drawn to obtain an optical fiber.

この光ファイバの初期伝送損失特性t−調べたところ、
第2図に示すように、波長163μmでは& 4 dB
/に!l−波長波長55 pm では1194E/km
、波長1.581111 でに185 aE/―と、い
ずれの波長においても良好な伝送損失特性を示し、コア
・クラッド界面の歪に起因するNBOHOが存在しない
ことが明らかである。
After examining the initial transmission loss characteristic t of this optical fiber,
As shown in Figure 2, at a wavelength of 163 μm, &4 dB
/to! l-wavelength 1194E/km at wavelength 55 pm
, 185 aE/- at a wavelength of 1.581111, showing good transmission loss characteristics at all wavelengths, and it is clear that NBOHO caused by distortion at the core-cladding interface does not exist.

また、この光ファイバを、200℃のH!1気圧雰囲気
中に20時間置き、その後の伝送損失特性を調べたとこ
ろ、上記の初期特性との差はみられず、耐水素特゛性の
優れ素光7アイパであることが明らかである。
In addition, this optical fiber was heated to 200°C at H! When the transmission loss characteristics were examined after being left in an atmosphere of 1 atm for 20 hours, there was no difference from the initial characteristics as described above, and it is clear that the material is a 7-eye lens with excellent hydrogen resistance.

実施列4 実施例2と同じ方法で得た実施例2と同じ性状の多孔質
ガラスを、雰囲気ガスとしてHe  t−10t/分の
割合で流しつつ、1500℃で211rの嵩密度調整処
理を行った。この結果・多孔質ガラスはマンドレル側か
ら20■迄の厚さの部分の嵩密度が190f/の3に調
整されてい友。
Example 4 A porous glass having the same properties as Example 2 obtained by the same method as Example 2 was subjected to a bulk density adjustment treatment of 211r at 1500°C while flowing He as an atmospheric gas at a rate of t-10t/min. Ta. As a result, the bulk density of the porous glass in the 20 mm thick portion from the mandrel side was adjusted to 190 f/3.

この嵩密度調整後、雰囲気ガスとしてHe  を10t
/分の7割合で流し、かつ中空マンドレル内にGa04
ガス100cCZ分、01100cc/分、BeIA/
分t−iし、1600℃でα5 Hrの焼結処理を行っ
た。この結果、合成石英管の内側的5mの厚さの部分に
Ge01 が約Q、 5 wt%添加されていた。
After adjusting the bulk density, 10 tons of He was added as the atmospheric gas.
Ga04 was poured into the hollow mandrel at a rate of 7/min.
Gas 100cCZ min, 01100cc/min, BeIA/
t-i, and a 5 Hr sintering treatment was performed at 1600°C. As a result, approximately Q, 5 wt% of Ge01 was added to the inner 5 m thick portion of the synthetic quartz tube.

なお、以上の実施例においては、中空マンドレルとして
Zr0g 製のものを用い九が、本発明では、これ以外
に、A4o、、  El  等の高耐熱性で、しかも酸
化性雰囲気中で安定な多孔質材のものが使用できる。
In the above embodiments, a hollow mandrel made of Zr0g was used. Materials made of wood can be used.

〔発明の効果〕〔Effect of the invention〕

本発明では、多孔質材製の中空マンドレルから該マンド
レル上に堆積され素条孔質ガラスにGaol・e  o
l 或いはGe0gを含むガスが浸透して行き、管全体
に均一に微量のGaol t−含む合成石英管を製造す
ることができる。
In the present invention, Gaol.e o
A gas containing Gaol t- or GeOg permeates through the tube, making it possible to manufacture a synthetic quartz tube containing a small amount of Gaol t- uniformly throughout the tube.

また本発明では、上記の処理に先立ち、上記多孔質ガラ
スを熱処理して、該ガラスのマンドレル側から所定の厚
さの部分の嵩密度t−15〜1、8 t /3”として
おけば、この嵩密度の部分でG104.O@ 或いはG
e01  を含むガス流が停止し、この部分(すなわち
管の内側)のみにGaolを含む合成石英管を製造する
ことができる。
Further, in the present invention, prior to the above treatment, the porous glass is heat-treated to have a bulk density of t-15 to 1.8 t/3" at a predetermined thickness from the mandrel side of the glass, At this bulk density part, G104.O@ or G
The gas flow containing e01 is stopped and a synthetic quartz tube containing Gaol only in this part (ie inside the tube) can be produced.

そして、この管の内側にのみGe01  を含む合成石
英管は、クラッド用パイプとして用いた場合に、コアと
クラッドとの界面の歪を’;Go−0−Ge−’  結
合の切断によシ解放するため、該界面の;51−O・に
よるHBOHOを皆無とでき、耐水素特性や耐放射線特
性に優れた光ファイバを提供できる利点がある。
When this synthetic quartz tube containing Ge01 only on the inside of the tube is used as a cladding pipe, the strain at the interface between the core and the cladding is released by breaking the ';Go-0-Ge-' bond. Therefore, there is an advantage that HBOHO due to ;51-O. at the interface can be completely eliminated, and an optical fiber with excellent hydrogen resistance and radiation resistance can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の一工程における多孔質ガラスの性
状を示す説明図、第2図は本発明方法の実施列で得られ
た合成石英管をクラッド用パイプとして製造した光ファ
イバの伝送損失特性を示すグラフ、第3図は多孔質ガラ
スを焼結する際の嵩密度分布の挙動を示すグラフ、第4
図は光フアイバ母材の線引時に母材の半径方向に生じる
温度分布を示す説明図である。
Figure 1 is an explanatory diagram showing the properties of porous glass in one step of the method of the present invention, and Figure 2 is the transmission loss of an optical fiber manufactured using a synthetic quartz tube obtained in a series of implementations of the method of the present invention as a cladding pipe. Graph showing the characteristics, Figure 3 is a graph showing the behavior of bulk density distribution when porous glass is sintered, Figure 4 is a graph showing the behavior of bulk density distribution when porous glass is sintered.
The figure is an explanatory diagram showing the temperature distribution generated in the radial direction of the optical fiber base material during drawing of the base material.

Claims (2)

【特許請求の範囲】[Claims] (1)多孔質材からなる中空マンドレル上に多孔質ガラ
スを堆積させ、該多孔質ガラスを加熱してガラス化する
際に前記マンドレル内部にGeCl_4及びO_2を含
むガスを送入して前記ガラス化中の多孔質ガラスにGe
O_2をドープし、ガラス化後前記マンドレルを抜去す
ることを特徴とする合成石英管の製造方法。
(1) Porous glass is deposited on a hollow mandrel made of porous material, and when the porous glass is heated and vitrified, a gas containing GeCl_4 and O_2 is introduced into the mandrel to vitrify it. Ge in the porous glass inside
A method for manufacturing a synthetic quartz tube, comprising doping with O_2 and removing the mandrel after vitrification.
(2)多孔質材からなる中空マンドレル上に多孔質ガラ
スを堆積させ、次いで該多孔質ガラスを熱処理して該多
孔質ガラスの前記マンドレル側から所定の厚さの部分を
嵩密度0.5〜1.8g/cm^3とし、しかる後該多
孔質ガラスを加熱してガラス化する際に前記マンドレル
内部にGeCl_4及びO_2を含むガスを送入して前
記ガラス化中の多孔質ガラスにGeO_2をドープし、
ガラス化後前記マンドレルを抜去することを特徴とする
合成石英管の製造方法。
(2) Porous glass is deposited on a hollow mandrel made of porous material, and then the porous glass is heat-treated to remove a portion of the porous glass from the mandrel side to a predetermined thickness with a bulk density of 0.5 to 1.8 g/cm^3, and then when the porous glass is heated and vitrified, a gas containing GeCl_4 and O_2 is introduced into the mandrel to add GeO_2 to the porous glass being vitrified. dope,
A method for manufacturing a synthetic quartz tube, comprising removing the mandrel after vitrification.
JP25963987A 1987-10-16 1987-10-16 Production of synthetic quartz pipe Pending JPH01103922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25963987A JPH01103922A (en) 1987-10-16 1987-10-16 Production of synthetic quartz pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25963987A JPH01103922A (en) 1987-10-16 1987-10-16 Production of synthetic quartz pipe

Publications (1)

Publication Number Publication Date
JPH01103922A true JPH01103922A (en) 1989-04-21

Family

ID=17336852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25963987A Pending JPH01103922A (en) 1987-10-16 1987-10-16 Production of synthetic quartz pipe

Country Status (1)

Country Link
JP (1) JPH01103922A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8020411B2 (en) 2001-07-30 2011-09-20 The Furukawa Electric Co., Ltd. Method of manufacturing single mode optical fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8020411B2 (en) 2001-07-30 2011-09-20 The Furukawa Electric Co., Ltd. Method of manufacturing single mode optical fiber

Similar Documents

Publication Publication Date Title
US4157906A (en) Method of drawing glass optical waveguides
US4165223A (en) Method of making dry optical waveguides
CA1251044A (en) Fluorine doped optical waveguide
US4413882A (en) Low viscosity core glass optical fiber
US4298365A (en) Method of making a soot preform compositional profile
US20080260339A1 (en) Manufacture of depressed index optical fibers
JPH0948629A (en) Optical fiber and its production
JP2527849B2 (en) Optical fiber transmission line manufacturing method
CN111278780B (en) Method for producing halogen-doped silicon dioxide
US6418757B1 (en) Method of making a glass preform
US6923024B2 (en) VAD manufacture of optical fiber preforms with improved deposition control
JPH01103922A (en) Production of synthetic quartz pipe
US6834516B2 (en) Manufacture of optical fiber preforms using modified VAD
US4318726A (en) Process for producing optical fiber preform
EP0251312B1 (en) Method of manufacturing fiber preform for single-mode fibers
US6928841B2 (en) Optical fiber preform manufacture using improved VAD
JPH01148722A (en) Production of optical fiber preform
US20040118164A1 (en) Method for heat treating a glass article
JPH01126236A (en) Production of optical fiber preform
EP0135175B1 (en) Methods for producing optical fiber preform and optical fiber
JPH09100132A (en) Preform for optical fiber
JPS60107003A (en) Material of light transmitting path
CN111315696A (en) Halogen-doped silica for optical fiber preform
JPS5924093B2 (en) Manufacturing method of glass fiber base material for optical transmission
JP2001335338A (en) Method of manufacturing optical fiber