JPS60260150A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS60260150A
JPS60260150A JP11553684A JP11553684A JPS60260150A JP S60260150 A JPS60260150 A JP S60260150A JP 11553684 A JP11553684 A JP 11553684A JP 11553684 A JP11553684 A JP 11553684A JP S60260150 A JPS60260150 A JP S60260150A
Authority
JP
Japan
Prior art keywords
field plate
junction
film
concentration
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11553684A
Other languages
Japanese (ja)
Inventor
Junichi Oura
純一 大浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11553684A priority Critical patent/JPS60260150A/en
Publication of JPS60260150A publication Critical patent/JPS60260150A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates

Abstract

PURPOSE:To form a high voltage-resistant planar semiconductor device using an insulating film formed according to usual technique by a method wherein a floating field plate is provided. CONSTITUTION:An n type semiconductor substrate 21 has doner impurity concentration of 1X10<14>cm<-3>, specific resistance of 50OMEGAcm, and phosphorus of high concentration is diffused to the cathode side to form an n<+> type layer 22. Then an SiO2 film 24 is formed on the main surface on the anode side, boron is diffused selectively using the film thereof as a mask to form a p type region 23. To relieve the concentration of an electric field to be generated at the part having curvature in the neighborhood of the peripheral edge of p-n junction thereof, it is necessary to enlarge junction depth Xj, and to enlarge the radius of curvature, and made as Xj=30mum. A floating field plate 25 is formed of a poly-silicon film of flow resistance doped with boron, and after silicate glass 26 formed according to ta vapor phase chemical reaction is deposited thereon, aluminum electrodes 27, 28 are formed.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、半導体装置、とくに高耐圧のプレーナ形半
導体装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor device, and particularly to a high-voltage planar semiconductor device.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、プレーナ形半導体装置におけるPN接合の逆耐電
圧を高くする方法の1つとして、フィールドプレートを
用いる方法が知られている。この方法は、例えばN形半
導体基板にボロンの選択拡散を行って形成したPN接合
を例にとると、第1図に示した通りPN接合の周縁を覆
うように、絶縁膜を介して金属電極(フィールドプレー
ト)を設け、このフィールドプレートをアノード電極へ
接続し、アノード電位が負になってPN接合が逆バイア
ス条件になった場合に、フィールドプレートの下の半導
体基板表面が空乏領域となるようにしてPN接合周縁の
電界集中を緩和させ、逆耐電圧を高くするものである。
Conventionally, a method using a field plate has been known as one method for increasing the reverse withstand voltage of a PN junction in a planar semiconductor device. In this method, for example, taking a PN junction formed by selectively diffusing boron in an N-type semiconductor substrate, a metal electrode is placed through an insulating film so as to cover the periphery of the PN junction, as shown in Figure 1. (field plate) is provided, and this field plate is connected to the anode electrode, so that when the anode potential becomes negative and the PN junction becomes a reverse bias condition, the semiconductor substrate surface under the field plate becomes a depletion region. This reduces the electric field concentration around the PN junction and increases the reverse withstand voltage.

この場合、フィールドプレートは同電位でアノード電圧
がそのま\印加されるために、耐圧が400V以上の高
耐圧装置になると、フィールドプレートの端に電界が集
中してしまう。これを緩和するには、基板とフィールド
プレートとの間の絶縁膜厚を大きくすることが必要とな
るが、厚膜構造にすると、絶縁膜にクラツクが発生しゃ
すくなシ、電気的特性の劣化、信頼性の低下が起る。ま
た、厚膜構造にした場合は基板および基板上に形成した
各種拡散領域を含む配線を行う工程において、絶縁膜に
現われる大きな段差のために断線が起こシ易くなシ、歩
留も低下してしまう。
In this case, the field plates are at the same potential and the anode voltage is applied as is, so if the device becomes a high voltage device with a breakdown voltage of 400V or more, the electric field will be concentrated at the edge of the field plate. In order to alleviate this problem, it is necessary to increase the thickness of the insulating film between the substrate and the field plate, but a thick film structure will prevent cracks from occurring in the insulating film and reduce the deterioration of electrical characteristics. Deterioration of reliability occurs. In addition, when a thick film structure is used, during the process of wiring including the substrate and various diffusion regions formed on the substrate, disconnection is less likely to occur due to the large step difference that appears in the insulating film, and the yield is reduced. Put it away.

〔発明の目的〕[Purpose of the invention]

この発明の目的は、上記したフィールドプレートを用い
たプレーナ構造の半導体装置を改善したもので、フロー
ティング・フィールドプレートを設け、従来技術による
絶縁膜を用い、高耐圧のプレーナ形半導体装置を提供す
るにある。
An object of the present invention is to improve the above-described planar structure semiconductor device using a field plate, and to provide a planar semiconductor device with a high breakdown voltage by providing a floating field plate and using an insulating film according to the prior art. be.

〔発明の効果〕〔Effect of the invention〕

フローティング・フィールドプレートとアノードおよび
半導体基板との容量をそれぞれC1およびC2とすると
、アノード電圧(カソードを接地)’Jhは、それぞれ
の容量の逆数の比で分圧され、フローティング−フィー
ルドプレートの電圧VFFPは、 V FFP −−−−−9−1−−−−V A01+0
2 となる。VFFPは、C1およびC2で制御することが
出来、V^よシ低くすることができるので、薄い絶縁膜
を用いて高耐圧のプレーナ形半導体装置を製造すること
ができる。
If the capacitances of the floating field plate, anode, and semiconductor substrate are C1 and C2, respectively, the anode voltage (cathode is grounded)'Jh is divided by the ratio of the reciprocal of each capacitance, and the floating-field plate voltage VFFP is V FFP −−−−−9−1−−−−V A01+0
It becomes 2. Since VFFP can be controlled by C1 and C2 and can be made lower than V, a planar semiconductor device with high breakdown voltage can be manufactured using a thin insulating film.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明による高耐圧半導体装置の実施例として
シリコンのPN接合の場合について説明する。第2図は
その一実施例の構成を示す断面図である。N形半導体基
板21はドナー不純物濃度がlXl0 (+lK 、比
抵抗が50Ω儂で、カソード側に高濃度のリンを拡散し
てn+層22を形成しである。つぎにアノード側主面に
S i O,膜24を形成し、この膜をマスクとして選
択的にボロンの拡散を行い、p影領域23を形成した。
Hereinafter, a case of a silicon PN junction will be described as an embodiment of a high breakdown voltage semiconductor device according to the present invention. FIG. 2 is a sectional view showing the configuration of one embodiment. The N-type semiconductor substrate 21 has a donor impurity concentration of lXl0 (+lK) and a specific resistance of 50Ω, and is made by diffusing high concentration phosphorus on the cathode side to form an n+ layer 22. Next, Si is deposited on the main surface on the anode side. An O2 film 24 was formed, and boron was selectively diffused using this film as a mask to form a P shadow region 23.

このpn接合の周縁近くで、曲率をもつ部分に起る電界
集中を緩和するためには接合の深さXjを大きくして曲
率半径を大きくすることが必要で、実験ではxj=aQ
μm、!=した。フローティング・フィールドプレート
25は、ボロンをドープした低抵抗のポリシリコン膜で
形成し、その上に気相化学反応によるシリケートガラス
26を堆積したのち、アルミ電極27および28を形成
した。並行して試作した第1図に示した従来の構造の素
子の逆耐電圧が450vであったの忙対し、本発明によ
る第2図に示した構造の素子は同じ絶縁膜厚で、逆耐電
圧600Vを得た。
In order to alleviate the electric field concentration that occurs near the periphery of this pn junction, it is necessary to increase the junction depth Xj and the radius of curvature.In the experiment, xj = aQ
μm! =I did. The floating field plate 25 was formed of a low resistance polysilicon film doped with boron, on which silicate glass 26 was deposited by vapor phase chemical reaction, and then aluminum electrodes 27 and 28 were formed. The reverse withstand voltage of the device with the conventional structure shown in FIG. 1, which was prototyped in parallel, was 450 V, but the device of the present invention with the structure shown in FIG. A voltage of 600V was obtained.

〔発明の他の実施例〕[Other embodiments of the invention]

以上の実施例においては、半導体のpn接合の場合につ
いて説明したが、本発明は金属と半導体との接触によっ
て形成されるシ曽ットキ接合、異種の半導体同志の接合
であるペテロ接合に対しても同様な効果をもっている。
In the above embodiments, the case of a pn junction of a semiconductor has been described, but the present invention also applies to a Schottky junction formed by contact between a metal and a semiconductor, and a Peter junction, which is a junction between different types of semiconductors. It has a similar effect.

また半導体装置についてもダイオードに限らず、トラン
ジスタ、サイリスタ等にも適用することができる。
Furthermore, the present invention is applicable not only to diodes but also to transistors, thyristors, and the like for semiconductor devices.

また逆耐電圧が100OV以上の半導体装置に対しては
、第3図に示したように互に絶縁された多重のフローテ
ィング・フィールドプレートを設は隣接する70−テイ
ンク・フィールドプレートと容量で結合させて電圧と順
次低下させていく方法が適している。
In addition, for semiconductor devices with a reverse withstand voltage of 100 OV or more, multiple floating field plates that are insulated from each other can be connected capacitively to an adjacent 70-ten field plate as shown in Figure 3. A suitable method is to gradually lower the voltage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はフィールドプレートを用いた従来の構造による
半導体pn接合の断面図、第2図は本発明の一実施例で
あるフローティング・フィールドプレートを用いた半導
体pn接合の断面図、第3図は本発明の他の実施例を示
す高耐圧pn接合の断面図である。 11.21.31・・・n形シリコン半導体基板、22
 =・n+形拡散層、13 、23 、33 ・−p形
波散層、14,24,26,34.36・・絶縁膜、2
5.3535′・・・ポリシリコンの70−ティング・
フィールドプレート、17,27.3’7・・・アノー
ド、18・・・フィールドプレート、28 、38 、
38 ’・・フィールド電極、19,29.39・ カ
ソード。 代理人 弁理士 則 近 憲 佑 (ほか1名)第1図 第2図
FIG. 1 is a sectional view of a semiconductor pn junction with a conventional structure using a field plate, FIG. 2 is a sectional view of a semiconductor pn junction with a floating field plate according to an embodiment of the present invention, and FIG. 3 is a sectional view of a semiconductor pn junction with a conventional structure using a field plate. FIG. 7 is a cross-sectional view of a high voltage pn junction showing another embodiment of the present invention. 11.21.31...n-type silicon semiconductor substrate, 22
=・n+ type diffusion layer, 13, 23, 33・-p type wave diffusion layer, 14, 24, 26, 34.36・・insulating film, 2
5.3535'...Polysilicon 70-ting
Field plate, 17, 27.3'7... Anode, 18... Field plate, 28, 38,
38'...Field electrode, 19,29.39. Cathode. Agent Patent Attorney Kensuke Chika (and 1 other person) Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)第1の導電形を有する半導体基板上に、不純物を
選択的に拡散して第2の導電形を有する領域を形成して
得られ九PN接合面の周縁に沿って、PN接合面の端部
を取り囲むように設けられ、周囲を絶縁膜で囲まれたフ
ローティング・フィールドグレートと、このフローティ
ング・フィールドプレートの上に絶縁膜を介して設けら
れたフィールド電極とを有することを特徴とする半導体
装置。
(1) A PN junction surface obtained by selectively diffusing impurities to form a region having a second conductivity type on a semiconductor substrate having a first conductivity type. A floating field plate is provided to surround an end of the field plate and is surrounded by an insulating film, and a field electrode is provided on the floating field plate via an insulating film. Semiconductor equipment.
(2)前記フィールド電極に、PN接合が逆バイアス条
件となる場合に半導体基板表面の空乏層が拡がる極性の
電位が印加されるようにしたことを特徴とする特許請求
の範囲第1項記載の半導体装置。
(2) A potential having a polarity that expands a depletion layer on the surface of the semiconductor substrate when the PN junction is under a reverse bias condition is applied to the field electrode. Semiconductor equipment.
JP11553684A 1984-06-07 1984-06-07 Semiconductor device Pending JPS60260150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11553684A JPS60260150A (en) 1984-06-07 1984-06-07 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11553684A JPS60260150A (en) 1984-06-07 1984-06-07 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS60260150A true JPS60260150A (en) 1985-12-23

Family

ID=14664959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11553684A Pending JPS60260150A (en) 1984-06-07 1984-06-07 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS60260150A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4789886A (en) * 1987-01-20 1988-12-06 General Instrument Corporation Method and apparatus for insulating high voltage semiconductor structures

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4789886A (en) * 1987-01-20 1988-12-06 General Instrument Corporation Method and apparatus for insulating high voltage semiconductor structures

Similar Documents

Publication Publication Date Title
US5404040A (en) Structure and fabrication of power MOSFETs, including termination structures
KR0175277B1 (en) Apparatus and method for manufacturing power semiconductor device with a folding fieldplate structure
JPH09504656A (en) Field effect transistor made of SiC and manufacturing method thereof
JPH04127480A (en) High breakdown strength low resistance semiconductor device
JP2580850B2 (en) High voltage semiconductor device and manufacturing method thereof
US5508555A (en) Thin film field effect transistor having a doped sub-channel region
JP3221489B2 (en) Insulated gate field effect transistor
US4641164A (en) Bidirectional vertical power MOS device and fabrication method
US3710204A (en) A semiconductor device having a screen electrode of intrinsic semiconductor material
US20220139794A1 (en) Semiconductor device and semiconductor module
JPS60260150A (en) Semiconductor device
JPS6189666A (en) Semiconductor device
GB2084397A (en) Semiconductor integrated circuit
US4837608A (en) Double gate static induction thyristor and method for manufacturing the same
US5913130A (en) Method for fabricating a power device
US4700460A (en) Method for fabricating bidirectional vertical power MOS device
CN217485448U (en) Edge terminal with field plate and field limiting ring
JP3157245B2 (en) Semiconductor device and method of manufacturing the same
JP3703427B2 (en) MOS field effect transistor
JPS6145395B2 (en)
JP2916975B2 (en) Static induction semiconductor device
JP2000058869A (en) Semiconductor device
KR20000010289A (en) Semiconductor components for electric power and its manufacturing process
JPH03169081A (en) Semiconductor device
JPH02170469A (en) Semiconductor device