JPS60260144A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS60260144A
JPS60260144A JP59116213A JP11621384A JPS60260144A JP S60260144 A JPS60260144 A JP S60260144A JP 59116213 A JP59116213 A JP 59116213A JP 11621384 A JP11621384 A JP 11621384A JP S60260144 A JPS60260144 A JP S60260144A
Authority
JP
Japan
Prior art keywords
conductivity type
well
epitaxial growth
parasitic
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59116213A
Other languages
Japanese (ja)
Other versions
JPH0714005B2 (en
Inventor
Kazuyoshi Kobayashi
和好 小林
Yasuo Hayashi
林 靖夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP59116213A priority Critical patent/JPH0714005B2/en
Publication of JPS60260144A publication Critical patent/JPS60260144A/en
Publication of JPH0714005B2 publication Critical patent/JPH0714005B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0921Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention

Abstract

PURPOSE:To check generation of latching up of a semiconductor device to be caused according to a parasitic thyristor by a method wherein a first conductive semiconductor substrate is constructed of an epitaxial growth layer of low resistance, and formed as to make the peak of impurity concentration thereof to be positioned at the deep position. CONSTITUTION:By implanting p type impurity ions, B ions for example, at an extremely high accelerating energy of 550keV, a p-well 4 is made to have a retrograde well construction, the betan of a parasitic n-p-n transistor can be made extremely small, moreover because a CMOS transistor is formed to an epitaxial growth layer 21 formed on an n type silicon substrate 1 of extremely low resistance of 0.01OMEGAcm, resistance RS is reduced sharply, consequently the voltage is reduced as IRSXRS<0.6(V) (IRS: a current to flow in RS), and a positive feedback is not applied to a parasitic p-n-p transistor. Because the distance (x) between the p-well 4 and the n type silicon substrate 1 is selected to about 1.0mum, Cj is extremely small, and especially generation of latching up at electric power source closing time can be checked.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、第1導電型の半導体基体中に形成されている
第2導電型の第1の半導体領域と、この第2導電型の第
1の半導体領域中に形成されている第1導電型の半導体
領域と、上記第1導電型の半導体基体中に形成されてい
る第2導電型の第2の半導体領域とをそれぞれ具備する
半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a first semiconductor region of a second conductivity type formed in a semiconductor substrate of a first conductivity type; The present invention relates to a semiconductor device including a semiconductor region of a first conductivity type formed in a semiconductor region and a second semiconductor region of a second conductivity type formed in the semiconductor substrate of the first conductivity type.

背景技術とその問題点 0MO3は、低消費電力、高ノイズ・マージン、広動作
電源電圧範囲、高負荷駆動能力等の種々の利点を有して
いるため、今後のVLS Iを構成する素子として最も
有望視されている。この0MO8においては、例えば第
1図に示すように、n型シリコン基板1中にp゛層から
成るソース領域2及びドレイン領域3が形成されている
。またn型シリコン基板1のドレイン領域3に隣接する
部分にはpウェル4が形成され、さらにこのpウェル4
中にn゛層から成るソース領域7及びドレイン領域8が
形成されている。一方、n型シリコン基板1上にはSi
O□膜から成るゲート絶縁膜IOが形成され、このゲー
ト絶縁膜10の上には多結晶シリコン膜から成るゲート
電極11が形成されている。同様に、pウェル4の上に
は5i02膜から成るゲート絶縁膜14が形成され、こ
のゲート絶縁膜14の上には多結晶シリコン膜から成る
ゲート電極15が形成されている。そして、上述のゲー
ト電極11、ゲート絶縁膜10、ソース領域2及びドレ
イン領域3からpチャネルMO3FET17が構成され
ると共に、ゲート電極15、ゲート絶縁膜14、ソース
領域7及びドレイン領域8からnチャネルMO3FET
18が構成され、これらのpチャネルMO’S FET
17及びnチャネルMO3FET18から0MO3が構
成されている。
BACKGROUND TECHNOLOGY AND PROBLEMS MO3 has various advantages such as low power consumption, high noise margin, wide operating power supply voltage range, and high load driving ability, so it will be the most suitable element for future VLSI. It is seen as promising. In this 0MO8, for example, as shown in FIG. 1, a source region 2 and a drain region 3 made of a p' layer are formed in an n-type silicon substrate 1. Further, a p-well 4 is formed in a portion of the n-type silicon substrate 1 adjacent to the drain region 3;
A source region 7 and a drain region 8 made of n' layers are formed therein. On the other hand, Si
A gate insulating film IO made of an O□ film is formed, and a gate electrode 11 made of a polycrystalline silicon film is formed on this gate insulating film 10. Similarly, a gate insulating film 14 made of a 5i02 film is formed on the p-well 4, and a gate electrode 15 made of a polycrystalline silicon film is formed on this gate insulating film 14. Then, a p-channel MO3FET 17 is formed from the gate electrode 11, gate insulating film 10, source region 2, and drain region 3, and an n-channel MO3FET is formed from the gate electrode 15, gate insulating film 14, source region 7, and drain region 8.
18 are configured, these p-channel MO'S FETs
17 and n-channel MO3FET 18 constitute 0MO3.

上述の第1図に示す&Mosにおいては、例えばドレイ
ン領域3を構成するp゛層と、n型シリコン基Fi、1
と、pウェル4と、例えばソース領域7を構成するn゛
層とがpnpn構造、即ち寄生サイリスク構造となって
いるので、次のような問題がある。即ち、例えば外部雑
音等に起因して生ずるトリガ電流により上述の寄生サイ
リスクがターン・オンし、この結果、電源側から接地側
に貫通電流が流れてトランジスタを破壊したり、AN配
線を溶断したりすることがある。なお上述の寄生サイリ
スクにおける端子A、に間の電圧VAKとこれらの端子
A、に間を流れる電流IAI+との関係は第2図に示す
ようになり、この第2図において上記貫通電流IHは例
えば51程度である。
In the &Mos shown in FIG.
Since the p-well 4 and, for example, the n layer constituting the source region 7 have a pnpn structure, that is, a parasitic silicon structure, the following problems arise. That is, the above-mentioned parasitic silicon risk is turned on by a trigger current generated due to external noise, for example, and as a result, a through current flows from the power supply side to the ground side, destroying the transistor or blowing out the AN wiring. There are things to do. The relationship between the voltage VAK between the terminals A and the current IAI+ flowing between these terminals A in the above-mentioned parasitic silicon risk is shown in FIG. 2, and in this FIG. It is about 51.

上述のサイリスク現象、即ちいわゆるラッチ・アンプは
、例えばドレイン領域3を構成するp+層、n型シリコ
ン基板1及びpウェル4から成る寄生pnpトランジス
タと、n型シリコン基板1、pウェル4及び例えばソー
ス領域7を構成する04層から成る寄生npn)ランジ
スタとが同時にオンした時に起こることが知られている
。このため、従来の2μmルール程度の0MO3にお・
いては、pウェル4の接合深さを3〜6μm程度に深く
すると共に、pウェル4の不純物濃度を高めて上述の寄
生npn)ランジスタのβゎを小さくし、またpウェル
4とドレイン領域3を構成するp゛層との間隔を十分に
大きく取ったり、pウェル4の周囲にp+層(破線で示
す)を形成して寄生pnp )ランジスタのβ、を小さ
くすることにより、ラッチ・アンプを防止していた。し
かしながら、1.5μmルール程度以下の0MO3にお
いては、上述のような方法によりラッチ・ア・ノブの発
生を防止することは難しい。
The above-mentioned si-risk phenomenon, that is, the so-called latch amplifier is caused by a parasitic pnp transistor consisting of, for example, a p+ layer constituting the drain region 3, an n-type silicon substrate 1, and a p-well 4, and a parasitic pnp transistor comprising the n-type silicon substrate 1, p-well 4, and, for example, the source. It is known that this occurs when the parasitic npn (npn) transistor consisting of the 04 layer constituting region 7 is turned on at the same time. For this reason, the conventional 2μm rule of 0MO3
In this case, the junction depth of the p-well 4 is increased to about 3 to 6 μm, and the impurity concentration of the p-well 4 is increased to reduce βゎ of the above-mentioned parasitic npn) transistor, and the p-well 4 and drain region 3 are The latch amplifier can be It was being prevented. However, in 0MO3 of about 1.5 μm rule or less, it is difficult to prevent the occurrence of latch-a-knob by the method described above.

発明の目的 本発明は、上述の問題にかんがみ、従来のCMO8が有
する上述のような欠点を是正した半導体装置を提供する
ことを目的とする。
OBJECTS OF THE INVENTION In view of the above-mentioned problems, it is an object of the present invention to provide a semiconductor device that corrects the above-mentioned drawbacks of the conventional CMO8.

発明の概要 本発明に係る半導体装置は、第1導電型の半導体基体中
に形成されている第2導電型の第1の半導体領域(例え
ばpウェル)と、この第2導電型の第1の半導体領域中
に形成されている第1導電型の半導体領域(例えばn゛
層から成るソース領域及びドレイン領域)と、上記第1
導電型の半導体基体中に形成されている第2導電型の第
2の半導体領域(例えばp゛層から成るソース領域及び
ドレイン領域)とをそれぞれ具備する半導体装置(例え
ばLSIを構成する0MO3)において、上記第1導電
型の半導体基体を第1導電型の低抵抗の半導体基板上に
形成されている第1導電型のエピタキシャル成長層で構
成すると共に、上記第1導電型の半導体領域と上記第2
導電型の第1の半導体領域との接合よりも深い位置にそ
の不純物濃度のピークが位置するように上記第2導電型
の第1の半導体領域を形成している。このように構成す
ることによって、第2導電型の第2の半導体領域と、第
1導電型のエピタキシャル成長層と、第2導電型の第1
の半導体領域と、第1導電型の半導体領域とで構成され
る寄生サイリスクに起因して生ずるランチ・アンプを効
果的に防止することができる。
Summary of the Invention A semiconductor device according to the present invention includes a first semiconductor region of a second conductivity type (for example, a p-well) formed in a semiconductor substrate of a first conductivity type, and a first semiconductor region of the second conductivity type formed in a semiconductor substrate of the first conductivity type. A semiconductor region of a first conductivity type (for example, a source region and a drain region made of n layers) formed in the semiconductor region;
In a semiconductor device (for example, 0MO3 constituting an LSI) each comprising a second semiconductor region of a second conductivity type (for example, a source region and a drain region made of a p layer) formed in a semiconductor substrate of a conductivity type. , the semiconductor substrate of the first conductivity type is constituted by an epitaxial growth layer of the first conductivity type formed on the low resistance semiconductor substrate of the first conductivity type, and the semiconductor region of the first conductivity type and the second conductivity type
The first semiconductor region of the second conductivity type is formed such that the peak of its impurity concentration is located at a position deeper than the junction with the first semiconductor region of the second conductivity type. With this configuration, the second semiconductor region of the second conductivity type, the epitaxial growth layer of the first conductivity type, and the first semiconductor region of the second conductivity type are formed.
It is possible to effectively prevent a launch amplifier caused by a parasitic silicon risk formed by the semiconductor region of the first conductivity type and the semiconductor region of the first conductivity type.

実施例 以下本発明にかかる半導体装置をLSIを構成する0M
O3に適用した一実施例につき図面を参照しながら説明
する。なお第3A図〜第3G図においては、第1図と同
一部分には同一の符号を付し、必要に応じて説明を省略
する。
Examples Below, a semiconductor device according to the present invention constitutes an LSI.
An example applied to O3 will be described with reference to the drawings. Note that in FIGS. 3A to 3G, the same parts as in FIG. 1 are designated by the same reference numerals, and description thereof will be omitted as necessary.

第3A図に示すように、まず例えば比抵抗が0.01Ω
Gの低抵抗のn型シリコン基板1上に例えば膜厚が2.
5μmで比抵抗が20acmのエピタキシャル成長層2
1を形成する。
As shown in Figure 3A, first, for example, the specific resistance is 0.01Ω.
For example, a film with a thickness of 2.5 mm is formed on a low resistance n-type silicon substrate 1 of G.
Epitaxial growth layer 2 with resistivity of 20acm and 5μm
form 1.

次に第3B図に示すように、エピタキシャル成長層21
の表面に例えば熱酸化法により膜厚が300人のSiO
□膜22膜形2した後、このSin、膜22上に例えば
CVD法により例えば膜厚が1000人の5iJn膜2
3を被着形成する。
Next, as shown in FIG. 3B, an epitaxial growth layer 21 is formed.
For example, a SiO film with a thickness of 300 nm is deposited on the surface of the
□After forming the film 22, a 5iJn film 2 with a thickness of 1000, for example, is formed on this Sin film 22 by, for example, the CVD method.
3 is deposited and formed.

次に第3C図に示すように、SiJg膜230所定部分
をエツチング除去して所定形状のSi 3N、膜23a
、23bを形成する。次に全面に例えば厚いフォトレジ
ストを塗布し、次いでこのフォトレジストの所定部分を
除去して所定形状のフォトレジスト24を形成する。
Next, as shown in FIG. 3C, a predetermined portion of the SiJg film 230 is removed by etching to form a Si 3N film 23a with a predetermined shape.
, 23b. Next, for example, a thick photoresist is applied to the entire surface, and then a predetermined portion of this photoresist is removed to form a photoresist 24 having a predetermined shape.

次にフォトレジスト24をマスクとして、エピタキシャ
ル成長層21中にSL+N4膜23a、23b及び5i
O7膜22を介してp型不純物、例えばホウ素Bを例え
ば加速エネルギー550KeVでイオン注入することに
より、第3D図に示すように、エピタキシャル成長層2
1中にpウェル4を形成する。なおpウェル4における
不純物濃度のピークはpウェル4の下部に位置している
ため、pウェル4の下部の両端には突出部4a、4bが
形成されている。
Next, using the photoresist 24 as a mask, SL+N4 films 23a, 23b and 5i are formed in the epitaxial growth layer 21.
By ion-implanting a p-type impurity such as boron B through the O7 film 22 at an acceleration energy of 550 KeV, the epitaxial growth layer 2 is formed as shown in FIG. 3D.
A p-well 4 is formed in 1. Note that since the peak of the impurity concentration in the p-well 4 is located at the bottom of the p-well 4, protrusions 4a and 4b are formed at both ends of the bottom of the p-well 4.

次にフォトレジスト24を除去した後、第3E図に示す
ように、p型不純物、例えばB(ドーズ量は例えば5 
Xl013cm−2)と、n型不純物、例えばP(ドー
ズ量は例えば1.5 x1012cm−2)とをSiO
□膜22膜形2てエピタキシャル成長層21中にそれぞ
れイオン注入する(エピタキシャル成長層21中のB 
t−oで、Pを・でそれぞれ表す)。
Next, after removing the photoresist 24, as shown in FIG.
Xl013cm-2) and an n-type impurity, such as P (dose amount is, for example, 1.5x1012cm-2) in SiO
□ Ions are implanted into the epitaxial growth layer 21 using the film 22 and film type 2 (B in the epitaxial growth layer 21).
t−o, and P is represented by ・, respectively).

次に5iJ4膜23a、23bを酸化マスクとしてエピ
タキシャル成長層21を熱酸化することにより、第3F
図に示すように、SiO□膜22膜形2なる厚いSiO
□膜゛25(フィールド酸化膜)を形成する。またこの
熱酸化の際には、第3E図に示す工程においてエピタキ
シャル成長層21中にイオン注入されたP、Bが深さ方
向に拡散されてSiO□膜25膜下5にチャネル・スト
ッパ26.27が形成されると共にpウェル4がアニー
ルされる。
Next, by thermally oxidizing the epitaxial growth layer 21 using the 5iJ4 films 23a and 23b as an oxidation mask, the third F
As shown in the figure, a thick SiO□ film 22 film type 2
□Film 25 (field oxide film) is formed. Further, during this thermal oxidation, P and B ions implanted into the epitaxial growth layer 21 in the step shown in FIG. is formed, and the p-well 4 is annealed.

次にSi3N4膜23a、23bをエツチング除去した
後、第3G図に示すように、Sing膜22上22上晶
シリコン膜から成るゲート電極11..15を形成する
。次にゲート電極11をマスクとして5i02膜25a
と5t(h膜25bとの間におけるエピタキシャル成長
層21に5iOz膜22を介してp型不純物、例えばB
を高濃度にイオン注入することによりp゛層から成るソ
ース領域2及びドレイン領域3を形成すると共に、ゲー
ト電極15をマスクとして5i(h膜25 b &5i
(h膜25cとの間にお&Jるpウェル4にSing膜
22を介してn型不純物、例えばPをイオン注入するこ
とによりn“層から成るソース領域7及びドレイン領域
8を形成する。
Next, after removing the Si3N4 films 23a and 23b by etching, as shown in FIG. .. form 15. Next, using the gate electrode 11 as a mask, the 5i02 film 25a is
A p-type impurity, for example, B, is added to the epitaxial growth layer 21 between the
The source region 2 and drain region 3 made of the P layer are formed by ion implantation at a high concentration.
(By ion-implanting an n-type impurity, for example, P into the p-well 4 between the h-film 25c and the p-well 4 through the sing film 22, a source region 7 and a drain region 8 made of an n'' layer are formed.

このようにして、pチャネルMO3FET17とnチャ
ネルMO3FET18とから成るCMO8が完成される
。なおpウェル4の接合深さは約1.5μmであり、ま
たpウェル4とn型シリコン基板1との間隔Xは約1μ
mである。
In this way, CMO 8 consisting of p-channel MO3FET 17 and n-channel MO3FET 18 is completed. Note that the junction depth of the p-well 4 is approximately 1.5 μm, and the distance X between the p-well 4 and the n-type silicon substrate 1 is approximately 1 μm.
It is m.

上述の第3G図に示す0MO3における矢印A方向の不
純物濃度分布を第4図に示す。この第4図から明らかな
ように、pウェル4の不純物濃度のピークはエピタキシ
ャル成長層21の深い部分に位置しており、このような
不純物濃度分布を有するpウェル4はretrogra
de well と称されている。
FIG. 4 shows the impurity concentration distribution in the direction of arrow A in 0MO3 shown in FIG. 3G above. As is clear from FIG. 4, the peak of the impurity concentration of the p-well 4 is located deep in the epitaxial growth layer 21, and the p-well 4 having such an impurity concentration distribution is
It is called de well.

上述の実施例により製造された第3G図に示す0MO3
につき、第2図と同様にvAに とIAXとの関係を調
べて貫通電流I11をめた所1.IHさ0であった。こ
のことから、第3G図に示す0MO3においては、ラッ
チ・アンプが殆に完全に防止されていることがわかる。
0MO3 shown in FIG. 3G produced according to the above-mentioned example
1. The through current I11 was determined by examining the relationship between vA and IAX in the same way as in Fig. 2. IH was 0. From this, it can be seen that the latch amplifier is almost completely prevented in the 0MO3 shown in FIG. 3G.

このようにランチ・アンプが防止されるのは、第1にB
を550KeVと極めて高い加速エネルギーでイオン注
入することにより、第4図に示すようにpウェル4を 
retrograde well構造として寄生npn
l−ランジスタのβnを極めて小さくすることができた
からである。また第2に、0.01acmと極めて低抵
抗のn型シリコン基板1上に形成されたエビタキシャル
成長層21に0MO3を形成しているため、抵抗Rs(
第3G図参照)が大幅に低減され、従ってIi、xns
<0.6(v)(tit : Rsを流れる電流)とな
って寄生pnpトランジスタに正帰還がかからなくなっ
たからである。
The first reason why launch amplifiers are prevented is that B
By implanting ions at an extremely high acceleration energy of 550 KeV, the p-well 4 is formed as shown in Figure 4.
Parasitic npn as retrograde well structure
This is because βn of the l-transistor could be made extremely small. Secondly, since 0MO3 is formed in the epitaxial growth layer 21 formed on the n-type silicon substrate 1, which has an extremely low resistance of 0.01acm, the resistance Rs (
(see Figure 3G) is significantly reduced, so Ii, xns
This is because <0.6 (v) (tit: current flowing through Rs), and positive feedback is no longer applied to the parasitic pnp transistor.

また0MO3の従来の製造方法においては、エピタキシ
ャル成長層21にまず比較的低エネルギーでBをイオン
注入した後、例えば1200℃程度の高温で所定時間熱
処理(ドライブイン拡散)を行うことにより所要の接合
深さのpウェル4を形成しているため、上記熱処理の際
にBが横方向に例えば1.5〜3μm程度拡散し、この
ためpウェル4の平面的な大きさを小さくするのが難し
かった。
In addition, in the conventional manufacturing method of 0MO3, B is first ion-implanted into the epitaxial growth layer 21 at relatively low energy, and then heat treatment (drive-in diffusion) is performed at a high temperature of about 1200° C. for a predetermined period of time to obtain the required junction depth. Since the p-well 4 is formed in a large size, B diffuses in the horizontal direction by, for example, about 1.5 to 3 μm during the above heat treatment, which makes it difficult to reduce the planar size of the p-well 4. .

これに対して1本実施例によれば、Bの高エネルギーイ
オン注入により所望の接合深さを有するpウェル4を形
成することができるので、pウェル4を所要の接合深さ
とするために従来のように高温で長時間の熱処理を行う
必要がない。このためBの横方向の拡散が実質的にOと
なり、従ってpウェル4の平面的な大きさを従来に比べ
て極めて小さくすることができるので、0MO3の微細
化が可能である。
On the other hand, according to this embodiment, the p-well 4 having a desired junction depth can be formed by high-energy B ion implantation. There is no need for long-term heat treatment at high temperatures. Therefore, the lateral diffusion of B becomes substantially O, and therefore, the planar size of the p-well 4 can be made extremely small compared to the conventional one, so that miniaturization of 0 MO3 is possible.

さらに上述の実施例によれば、次のような利点もある。Further, according to the above-described embodiment, there are also the following advantages.

即ち、pウェル4とエピタキシャル成長層21との間の
容量Cjが大きいと0MO3の電源投入時にラッチ・ア
ンプが起きやすくなるためC4は小さい程良いが、上述
の実施例においてはpウェル4とn型シリコン基板1と
の間隔X(第3G図参照)を約1.0μmに選定してい
るため第5図に示すようにC4は極めて小さく、殆どバ
ルクの値と等しい。このため、特に電源投入時における
ラッチ・アップの発生を効果的に防止することができる
。なおpウェル4とエピタキシャル成長層21との間の
耐圧は約15V程度であり、実用上全く問題がない。
That is, if the capacitance Cj between the p-well 4 and the epitaxial growth layer 21 is large, latch amplifier is likely to occur when the power is turned on for 0MO3, so the smaller C4 is, the better. Since the distance X (see FIG. 3G) with respect to the silicon substrate 1 is selected to be approximately 1.0 μm, C4 is extremely small as shown in FIG. 5, and is almost equal to the bulk value. Therefore, it is possible to effectively prevent latch-up from occurring particularly when the power is turned on. Note that the breakdown voltage between the p-well 4 and the epitaxial growth layer 21 is about 15V, which poses no practical problem.

本発明は上述の実施例に限定されるものではなく、本発
明の技術的思想に基づく種々の変形が可能である。例え
ば、上述の実施例においては、pウェル4を形成するた
めのBのイオン注入時の加速エネルギーを550KeV
としたが、ソース領域7及びドレイン領域8とpウェル
4との接合よりも深い位置に不純物濃度のピークが位置
すれば必要に応じて加速エネルギーを変更することが可
能である。またn型シリコン基板1の比抵抗も上述の実
施例で用いた値に限定されるものではないが、比抵抗が
大きいとRsを低減することが難しいので、例えば0.
1Ω〔以下とするのが好ましい。同様にエピタキシャル
成長層21の膜厚及び比抵抗も上述の実施例で用いた値
に限定されるものではないが、膜厚が大きすぎると膜の
結晶性が悪くなったり、膜の成長時に突起が生じたりす
るばかりでなく、膜の形成に要する費用が高くなるので
、膜厚は5μm以下とするのが好ましい。またpウェル
4とn型シリコン基板1との間隔Xも必要に応じて変更
可能であるが、Xが小さすぎるとCJが大きいので、X
は0.5μm以上であるのが好ましい。
The present invention is not limited to the above-described embodiments, and various modifications can be made based on the technical idea of the present invention. For example, in the above embodiment, the acceleration energy during B ion implantation to form the p-well 4 is set to 550 KeV.
However, if the peak of the impurity concentration is located at a position deeper than the junction between the source region 7 and drain region 8 and the p-well 4, it is possible to change the acceleration energy as necessary. Further, the resistivity of the n-type silicon substrate 1 is not limited to the value used in the above embodiment, but if the resistivity is large, it is difficult to reduce Rs, so for example 0.
It is preferably 1Ω or less. Similarly, the film thickness and resistivity of the epitaxial growth layer 21 are not limited to the values used in the above embodiments, but if the film thickness is too large, the crystallinity of the film may deteriorate or protrusions may occur during film growth. It is preferable that the thickness of the film is 5 μm or less, since not only this may occur, but also the cost required to form the film increases. Also, the distance X between the p-well 4 and the n-type silicon substrate 1 can be changed as necessary, but if X is too small, CJ will be large.
is preferably 0.5 μm or more.

なお上述の実施例においてはpウェル4を形成したが、
第3G図に示す0MO3の各部の導電型を全て逆にして
、nウェル構造とすることも可能である。
Although the p-well 4 was formed in the above embodiment,
It is also possible to reverse the conductivity type of each part of OMO3 shown in FIG. 3G to form an n-well structure.

発明の効果 本発明に係る半導体装置によれば、第1導電型の半導体
基体を第1導電型の低抵抗の半導体基板上に形成されて
いる第1導電型のエピタキシャル成長層で構成すると共
に、上記第り導電型の半導体領域と上記第2導電型の第
1の半導体領域との接合よりも深い位置にその不純物濃
度のピークが位置するように上記第2導電型の第1の半
導体領域を形成しているので、第一2導電型の第2の半
導体領域と、第1導電型のエピタキシャル成長層と、第
2導電型の第1の半導体領域と、第1導電型の半導体領
域とで構成される寄生サイリスクに起因して生ずるラン
チ・アップを効果的に防止することができる。
Effects of the Invention According to the semiconductor device according to the present invention, the semiconductor substrate of the first conductivity type is constituted by an epitaxially grown layer of the first conductivity type formed on the low resistance semiconductor substrate of the first conductivity type, and the above-mentioned The first semiconductor region of the second conductivity type is formed such that the peak of its impurity concentration is located at a position deeper than the junction between the semiconductor region of the second conductivity type and the first semiconductor region of the second conductivity type. Therefore, it is composed of a second semiconductor region of the first conductivity type, an epitaxial growth layer of the first conductivity type, a first semiconductor region of the second conductivity type, and a semiconductor region of the first conductivity type. It is possible to effectively prevent launch-up caused by parasitic cyrisks.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はLSIを構成する従来の0MO3の゛構造を示
す断面図、第2図は寄生サイリスクのVAKとIAXと
の関係を示すグラフ、第3A図〜第3G図は本発明に係
る半導体装置の一実施例としてのLSIを構成する0M
O3の製造方法の一例を工程順に示す断面図、第4図は
第3G図の矢印A方向の不純物濃度分布を示すグラフ、
第5図は第3G図のpウェルとn型シリコン基板との間
隔Xをパラメータとしてこれらの間に印加される電圧V
とCjとの関係を示すグラフである。 なお図面に用いた符号において、 11 、15.22−−−−−−ゲート電極17−−−
−−−−−−−−・−−−−−−pチャネルMO3FE
T18−−−−−−−−−−−−−− nチャネルMO
5FET21−一−−・−・−−−−一−−−−エピタ
キシャル成長層である。 代理人 上屋 勝 常包芳男
Fig. 1 is a cross-sectional view showing the structure of a conventional OMO3 constituting an LSI, Fig. 2 is a graph showing the relationship between VAK and IAX of parasitic silicon risk, and Figs. 3A to 3G are semiconductor devices according to the present invention. 0M constituting an LSI as an example of
4 is a cross-sectional view showing an example of an O3 manufacturing method in the order of steps; FIG. 4 is a graph showing the impurity concentration distribution in the direction of arrow A in FIG. 3G;
FIG. 5 shows the voltage V applied between the p-well and n-type silicon substrate using the distance X between them in FIG. 3G as a parameter.
It is a graph showing the relationship between and Cj. In addition, in the symbols used in the drawings, 11, 15.22------ Gate electrode 17---
−−−−−−−−・−−−−−p channel MO3FE
T18---------------n-channel MO
5FET21-1---------1---Epitaxially grown layer. Agent Yoshio Katsutsunekane Ueya

Claims (1)

【特許請求の範囲】[Claims] 第1導電型の半導体基体中に形成されている第2導電型
の第1の半導体領域と、この第2導電型の第1の半導体
領域中に形成されている第1導電型の半導体領域と、上
記第1導電型の半導体基体中に形成されている第2導電
型の第2の半導体領域とをそれぞれ具備する半導体装置
において、上記第1導電型の半導体基体を第1導電型の
低抵抗の半導体基板上に形成されている第1導電型のエ
ピタキシャル成長層で構成すると共に、上記第1導電型
の半導体領域と上記第2導電型の第1の半導体領域との
接合よりも深い位置にその不純物濃度のピークが位置す
るように上記第2導電型の第1の半導体領域を形成した
ことを特徴とする半導体装置。
a first semiconductor region of a second conductivity type formed in a semiconductor substrate of a first conductivity type; a semiconductor region of a first conductivity type formed in the first semiconductor region of the second conductivity type; and a second semiconductor region of a second conductivity type formed in the semiconductor substrate of the first conductivity type, wherein the semiconductor substrate of the first conductivity type has a low resistance of a first conductivity type. an epitaxially grown layer of a first conductivity type formed on a semiconductor substrate of the present invention, and an epitaxial growth layer of a first conductivity type formed on a semiconductor substrate of the first conductivity type; A semiconductor device characterized in that the first semiconductor region of the second conductivity type is formed such that a peak of impurity concentration is located.
JP59116213A 1984-06-06 1984-06-06 Semiconductor device Expired - Lifetime JPH0714005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59116213A JPH0714005B2 (en) 1984-06-06 1984-06-06 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59116213A JPH0714005B2 (en) 1984-06-06 1984-06-06 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS60260144A true JPS60260144A (en) 1985-12-23
JPH0714005B2 JPH0714005B2 (en) 1995-02-15

Family

ID=14681633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59116213A Expired - Lifetime JPH0714005B2 (en) 1984-06-06 1984-06-06 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0714005B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2826182A1 (en) * 2001-06-15 2002-12-20 St Microelectronics Sa High voltage CMOS integrated circuit includes substrate and casing of different conductivity, and inter-casing separation regions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5480091A (en) * 1977-12-08 1979-06-26 Nec Corp Manufacture of complementary field effect semiconductor device
JPS5932163A (en) * 1982-08-18 1984-02-21 Nec Corp C-mos integrated circuit
JPS5984462A (en) * 1982-11-04 1984-05-16 Nec Corp Complementary type metallic oxide semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5480091A (en) * 1977-12-08 1979-06-26 Nec Corp Manufacture of complementary field effect semiconductor device
JPS5932163A (en) * 1982-08-18 1984-02-21 Nec Corp C-mos integrated circuit
JPS5984462A (en) * 1982-11-04 1984-05-16 Nec Corp Complementary type metallic oxide semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2826182A1 (en) * 2001-06-15 2002-12-20 St Microelectronics Sa High voltage CMOS integrated circuit includes substrate and casing of different conductivity, and inter-casing separation regions
WO2002103797A3 (en) * 2001-06-15 2003-03-13 St Microelectronics Sa High-voltage integrated cmos circuit
US7012309B2 (en) 2001-06-15 2006-03-14 Stmicroelectronics S.A. High-voltage integrated CMOS circuit

Also Published As

Publication number Publication date
JPH0714005B2 (en) 1995-02-15

Similar Documents

Publication Publication Date Title
US4965220A (en) Method of manufacturing a semiconductor integrated circuit device comprising an MOS transistor and a bipolar transistor
Snoeys et al. A new NMOS layout structure for radiation tolerance
US7268394B2 (en) JFET structure for integrated circuit and fabrication method
JP2006173602A (en) Bipolar junction transistor with high gain that can be integrated with cmos process, and its forming method
TWI232546B (en) Manufacturing method of semiconductor device and semiconductor device
US20070170517A1 (en) CMOS devices adapted to reduce latchup and methods of manufacturing the same
KR970000425B1 (en) Bicmos type field effect transistor and manufacturing method thereof
KR920008422B1 (en) Semiconductor device
JPS60163452A (en) Integrated circuit with bipolar device and field effect device and method of producing same
US5218224A (en) Semiconductor device including inversion preventing layers having a plurality of impurity concentration peaks in direction of depth
JPH02203566A (en) Mos type semiconductor device
Brassington et al. An advanced single-level polysilicon submicrometer BiCMOS technology
JP2001035933A (en) Semiconductor device and fabrication thereof
JPS60260144A (en) Semiconductor device
Sharma et al. A 1 μm CMOS technology with low temperature processing
JP2001176986A (en) Method for producing semiconductor device
JP2508218B2 (en) Complementary MIS integrated circuit
JP3168676B2 (en) Complementary MIS transistor device and method of manufacturing the same
JP2953915B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JP3059009B2 (en) Semiconductor device and manufacturing method thereof
Yamaguchi et al. Process and device performance of 1/spl mu/m channel n-well CMOS technology
JPH02170571A (en) Semiconductor device and manufacture thereof
JP3272596B2 (en) Semiconductor device and manufacturing method thereof
JPH0645533A (en) Cmos type field effect semiconductor device and its manufacture
JP2571449B2 (en) Manufacturing method of bipolar IC

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term