JPS60259165A - Method of control of salt concentration of laver mixture and its device - Google Patents
Method of control of salt concentration of laver mixture and its deviceInfo
- Publication number
- JPS60259165A JPS60259165A JP59116301A JP11630184A JPS60259165A JP S60259165 A JPS60259165 A JP S60259165A JP 59116301 A JP59116301 A JP 59116301A JP 11630184 A JP11630184 A JP 11630184A JP S60259165 A JPS60259165 A JP S60259165A
- Authority
- JP
- Japan
- Prior art keywords
- water
- concentration
- seaweed
- salinity
- seawater
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Edible Seaweed (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は海苔抄機に供給される海苔抄き原料の塩分濃度
調整方法およびその方法を実施するための装置に関する
ものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for adjusting the salinity of a raw material for making nori that is supplied to a nori making machine, and an apparatus for carrying out the method.
従来海苔抄製の際に割れ、破れ等が発生し歩留りが低下
していた。また、海苔抄き原料に僅かな塩分を含ませる
ことにより、歩留りが向上し、色、光沢も良くなるが、
塩分が多すぎると海苔保存時に吸湿したり、2次加工時
に塩分が析出して品質を害するおそれがあった。また、
海苔抄機には常時大量の海苔抄き原料を連続供給しなけ
ればならず、その塩分濃度を規定範囲に維持するのに困
難性があった。Conventionally, when making seaweed paper, cracks, tears, etc. occurred, resulting in a decrease in yield. In addition, adding a small amount of salt to the seaweed raw material improves the yield and improves the color and gloss.
If the salt content is too high, the seaweed may absorb moisture during storage or precipitate during secondary processing, which may impair its quality. Also,
A large amount of seaweed raw material must be continuously supplied to a seaweed machine at all times, and it is difficult to maintain the salt concentration within a specified range.
本発明は、上記の点に鑑み、海苔抄き原料の塩分を規定
範囲に維持しつつ大量供給に支障を来さないよう、海苔
抄き原料の塩分濃度を適正に調整することを可能ならし
め、以て海苔抄製の際の歩留りや製品海苔の色、光沢等
の品質を向上すると共に、保存時の吸湿や2次加工時の
塩分析出等のトラブルを解消せしめることを、その目的
としている。In view of the above-mentioned points, the present invention makes it possible to appropriately adjust the salt concentration of the raw material for making nori paste so as to maintain the salinity of the raw material for making nori paste within a specified range and not to interfere with large-scale supply. The purpose of this is to improve the yield during nori paper production and the quality of the product nori, such as its color and gloss, as well as to eliminate problems such as moisture absorption during storage and salt analysis during secondary processing. There is.
本発明は、海苔原藻をミンチ化して水洗した後、このミ
ンチ化した海苔を調合機において水と混合して海苔と水
との混合物を作る際に、この水の塩分濃度を海苔抄機に
供給するに適した適正濃度基準値を定め、その値に近い
濃度の混合水が得られるような比率で淡水と海水を同時
に混合槽に供給し、高水位に上昇したとき、同時供給を
止め、この混合水攪拌槽に設けた濃度センサによって混
合水の濃度を検出し、検出濃度が前記基準値に管理幅を
考慮した適正濃度範囲より高いときは淡水を供給し、検
出濃度が適正濃度範囲より低いときは海水を供給し、何
れの場合も濃度が適正濃度範囲に入れば供給停止し、混
合水の次段への供給に伴って水位が低水位に降下したと
き再度淡水、海水の同時供給を開始する点に新規な構成
を有しており、また本発明に従う装置は、塩分と水のm
!!檜に淡水を供給する手段、海水を供給する手段、各
供給手段の時間当り供給量をそれぞれ調節する手段、調
整槽内塩分濃度を検出するセンサ、当該センサに定電圧
高周波電源を与える発振変調回路、調整槽内の低水位お
よび高水位を検出する水位センサ、低水位センサ信号に
より淡水、海水湖供給手段を同時に駆動する出力信号を
出し、高水位セ 。In the present invention, after mincing raw seaweed and washing it with water, when mixing the minced seaweed with water in a blender to create a mixture of seaweed and water, the salinity of this water is controlled by a seaweed machine. Determine the appropriate concentration standard value for supply, simultaneously supply freshwater and seawater to the mixing tank at a ratio that will yield mixed water with a concentration close to that value, and when the water level rises to a high level, stop the simultaneous supply, The concentration sensor installed in this mixed water stirring tank detects the concentration of the mixed water, and when the detected concentration is higher than the appropriate concentration range that takes the control width into consideration with the reference value, fresh water is supplied, and the detected concentration is lower than the appropriate concentration range. When the water level is low, seawater is supplied, and in either case, the supply is stopped when the concentration falls within the appropriate concentration range, and when the water level drops to a low level as the mixed water is supplied to the next stage, freshwater and seawater are supplied simultaneously again. The apparatus according to the present invention has a novel configuration in that it starts with m
! ! A means for supplying fresh water to the cypress, a means for supplying seawater, a means for adjusting the supply amount per hour of each supply means, a sensor for detecting the salt concentration in the adjustment tank, and an oscillation modulation circuit for supplying constant voltage high frequency power to the sensor. , a water level sensor that detects low and high water levels in the adjustment tank, and a low water level sensor signal that outputs an output signal that simultaneously drives the freshwater and seawater lake supply means, and the high water level sensor.
ンサ信号により当該出力信号を停止する水位制御回路、
塩分適正濃度範囲と調整槽内塩分濃度測定値を比較し測
定値が塩分適正濃度範囲より大なる時に淡水供給手段を
駆動する出力信号を出し、測定値が適正濃度範囲より小
なる時は海水供給手段゛を駆動する出力信号を出す塩分
濃度制御回路より成ることを特徴とするものである。a water level control circuit that stops the output signal based on the sensor signal;
The appropriate salinity concentration range is compared with the measured value of the salinity concentration in the adjustment tank, and when the measured value is greater than the appropriate salinity concentration range, an output signal is output to drive the fresh water supply means, and when the measured value is less than the appropriate concentration range, seawater is supplied. The apparatus is characterized by comprising a salinity concentration control circuit which outputs an output signal for driving the means.
以下、本発明を図面に示す実施例に基づいて説明する。 Hereinafter, the present invention will be explained based on embodiments shown in the drawings.
第1図は本発明のフローシートを示すものであって、海
苔原藻をミンチ機により細小片に裁断することによって
ミンチ化し、この海苔を充分に水洗して塩分や挾雑物を
取除いた後、このミンチ化した海苔を調合機において海
苔と水との混合物、即ち海苔混合物を作り、この海苔混
合物は海苔混合物攪拌槽内に攪拌しながら一旦貯溜する
。攪拌槽内では必要に応じて濃度調整することもできる
。Figure 1 shows the flow sheet of the present invention, in which the seaweed is minced by cutting it into small pieces using a mincing machine, and the seaweed is thoroughly washed with water to remove salt and other impurities. Thereafter, a mixture of seaweed and water, ie, a seaweed mixture, is made from the minced seaweed in a blender, and this seaweed mixture is temporarily stored in a seaweed mixture stirring tank while being stirred. The concentration can also be adjusted in the stirring tank as needed.
この場合の水は、僅かな塩分を加えた混合水とし、混合
水を貯清し調整する混合水調整槽よりポンプ(P、)に
より調合機へ、また濃度調整の際1;必要な水はポンプ
(P4)により供給する。混合水調整槽へは淡水タンク
より淡水、海水タンクより海水がそれぞれポンプ(P工
)、(pz)により供給される。In this case, the water is mixed water with a slight amount of salt added, and from the mixed water adjustment tank where the mixed water is stored and adjusted, it is sent to the blender by a pump (P,), and when adjusting the concentration 1; Supplied by pump (P4). The mixed water adjustment tank is supplied with fresh water from the freshwater tank and seawater from the seawater tank by pumps (P) and (pz), respectively.
混合水調整槽内には塩分濃度を検知する濃度センサと槽
内水位を検知する水位センサを備え、混合水制御装置に
は濃度センサ出力を受けて駆動する濃度制御回路、水位
センサの出力を受けて作動する水位制御回路、これら濃
度制御回路、水位制御回路の出力を受けて作動する駆動
回路を有する。The mixed water adjustment tank is equipped with a concentration sensor that detects the salinity concentration and a water level sensor that detects the water level in the tank.The mixed water control device has a concentration control circuit that receives the concentration sensor output and drives it, and a concentration control circuit that receives the output of the water level sensor. It has a water level control circuit that operates based on the concentration control circuit, and a drive circuit that operates in response to the output of the concentration control circuit and the water level control circuit.
濃度センサおよび水位センサの出力を受けて作動する混
合水制御装置の駆動回路出力信号によりポンプ(Pl)
、(P2)が作動され、淡水及び海水の供給量、従って
混合水の供給量と塩分濃度が制御される。調合機の海苔
混合物は海苔混合物攪拌槽に給送され、この攪拌槽内で
攪拌、調整された海苔混合物は海苔抄機へ供給される。The pump (Pl) is activated by the drive circuit output signal of the mixed water control device that operates in response to the output of the concentration sensor and water level sensor.
, (P2) are activated to control the supply amounts of fresh water and seawater, and therefore the supply amount and salinity of mixed water. The seaweed mixture from the mixer is fed to a seaweed mixture stirring tank, and the seaweed mixture stirred and adjusted in this stirring tank is supplied to a seaweed machine.
第2図は本発明の方法を実施するための混合水の塩分濃
度調整装置の一実施例を示すもので、混合水調整槽(1
)は、淡水タンク(2)より淡水、海水タンク(3)よ
り海水がそれぞれポンプ(Pi)、 (Pi)により送
られ貯溜するよう設置されている。Figure 2 shows an embodiment of a mixed water salinity adjusting device for carrying out the method of the present invention.
) are installed so that fresh water from the fresh water tank (2) and sea water from the sea water tank (3) are sent and stored by pumps (Pi) and (Pi), respectively.
混合水調整槽(1)には、槽内に貯溜された混合水を攪
拌する攪拌機(4)と混合水の塩分濃度を検出するため
の濃度センサ(5)と、槽内の水位が予め設定された高
水位(Hレベル)および低水位(Lレベル)に達したと
きにそれぞれ作動して信号を発する水位センサ(6)と
が取付けられている。混合水調整槽w(7)には電源回
路(8)1発振変調回路(9)、濃度制御回路(10)
、水位制御回路(14)、第1の駆動回路(15)、
第2の駆動回路(16)、表示回路(17)、表示灯(
18)、警報回路(19)、警報ブザ−(20)を有し
ている。濃度制御回路(10)は整流器(ll)、増幅
回路(12)、信号弁別器(13)より成る。第1、第
2の駆動回路(15)、(16)の出力により淡水およ
び海水の供給手段であるポンプ(P□)、 (P、)が
駆動され、淡水タンク(2)、海水タンク(3)よりそ
九ぞれ淡水、海水が混合水調整槽(1)に供給される。The mixed water adjustment tank (1) includes a stirrer (4) for stirring the mixed water stored in the tank, a concentration sensor (5) for detecting the salt concentration of the mixed water, and a preset water level in the tank. A water level sensor (6) is installed which operates and issues a signal when the high water level (H level) and low water level (L level) are reached. The mixed water adjustment tank w (7) includes a power supply circuit (8), a single oscillation modulation circuit (9), and a concentration control circuit (10).
, water level control circuit (14), first drive circuit (15),
Second drive circuit (16), display circuit (17), indicator light (
18), an alarm circuit (19), and an alarm buzzer (20). The concentration control circuit (10) consists of a rectifier (ll), an amplifier circuit (12), and a signal discriminator (13). The outputs of the first and second drive circuits (15) and (16) drive pumps (P□) and (P,), which are freshwater and seawater supply means, and the freshwater tank (2) and seawater tank (3) are driven. ) freshwater and seawater are respectively supplied to the mixed water adjustment tank (1).
淡水、海水の供給路にはそれぞれの供給量を調節する手
段としてバルブ(vxL (vi)がおかれ時間当り供
給量の調節を可能にしている。調合機(21)へ海苔と
水が供給されるが、その水は混合水調整槽よりポンプ(
Pi)によって供給される。A valve (vxL (vi)) is placed in the freshwater and seawater supply channels as a means to adjust the supply amount of each, making it possible to adjust the supply amount per hour.Nori and water are supplied to the blender (21). However, the water is pumped from the mixed water adjustment tank (
Pi).
海苔混合物攪拌槽(22)には調合機(21)より海苔
混合物が供給され、ここで海苔濃度調整の必要がある場
合、am用の水は混合水調整槽(1)よりポンプ(P4
)により供給される。海苔混合物攪拌槽(22)内にて
攪拌調整された海苔混合物は海苔抄き原料として海苔抄
機へ供給される。The seaweed mixture is supplied to the seaweed mixture stirring tank (22) from the mixer (21), and if it is necessary to adjust the seaweed concentration here, water for am is supplied from the mixing water adjustment tank (1) to the pump (P4).
) powered by The seaweed mixture stirred and adjusted in the seaweed mixture stirring tank (22) is supplied to the seaweed machine as a raw material for seaweed cutting.
第3図は濃度センサの実施例を示し、絶縁筒体(23)
内に所定の間隔を隔てて電極(24)、 (25)を置
き、その先端は筒体(23)内に突出せしめ、基部は筒
体に埋込みそれぞれ信号線(24a)、 (25a)を
導出する。電極の一方1例えば(25)にはセンサ出力
に対するサーミスタ等の温度補正回路(26)を組込む
。Figure 3 shows an embodiment of the concentration sensor, in which the insulating cylinder (23)
Electrodes (24) and (25) are placed inside the tube at a predetermined interval, the tips of which protrude into the cylinder (23), and the bases embedded in the cylinder to lead out signal lines (24a) and (25a), respectively. do. One of the electrodes, for example (25), incorporates a temperature correction circuit (26) such as a thermistor for sensor output.
第4図は電源回路(8)1発振変調回路(9)の実施例
を示す。電源回路(8)は制御装ぼ各回路に交流電源を
供給すると共に整流回路(8a)、定電圧回路(8b)
を介し、直流電源、定電圧電源を供給する。FIG. 4 shows an embodiment of a power supply circuit (8) and a single oscillation modulation circuit (9). The power supply circuit (8) supplies AC power to each circuit of the control device, and also includes a rectifier circuit (8a) and a constant voltage circuit (8b).
DC power and constant voltage power are supplied through the
電源回路(8)は商用周波交流で受電し、整流し4゜て
一旦直流とするがこの過程で定電圧回路を組込んでおり
、その後段で高周波発生時には一定電圧の交流が得られ
るようにしており、電源測の電圧変動が±20%の範囲
では2次側へ影響がなく濃度測定を安定せしめている。The power supply circuit (8) receives power as a commercial frequency alternating current, rectifies it by 4 degrees, and then converts it to direct current. In this process, a constant voltage circuit is incorporated, and in the subsequent stage, when high frequency is generated, a constant voltage alternating current is obtained. Therefore, within the range of ±20% voltage fluctuation during power supply measurement, there is no effect on the secondary side and concentration measurement is stabilized.
発振変調回路(9)は、直流定電圧を受け、無安定マル
チバイブレータ等の発振回路(9a)により所定の高周
波出力を得る。この出力端A点における出力波形を第5
図(a)に示す。この場合周波数は固定あるいは可変と
する。また、抵抗、コンデンサ等による基準レベル調整
回路(9b)により基準レベルを調整し正負平衡した高
周波出力を得るようにする。この出力端B点における出
方波形を第5図(b)に示す。この高周波出力を濃度セ
ンサの電極(24)、 (25)へ印加し、濃度センサ
(5)を作動せしめる。濃度センサ(5)の出力は濃度
制御回路(1o)へ入力される。The oscillation modulation circuit (9) receives a DC constant voltage and obtains a predetermined high frequency output using an oscillation circuit (9a) such as an astable multivibrator. The output waveform at this output end point A is the fifth
Shown in Figure (a). In this case, the frequency may be fixed or variable. Further, the reference level is adjusted by a reference level adjustment circuit (9b) including a resistor, a capacitor, etc., so as to obtain a high frequency output with positive and negative balance. The output waveform at this output end point B is shown in FIG. 5(b). This high frequency output is applied to the electrodes (24) and (25) of the concentration sensor to activate the concentration sensor (5). The output of the concentration sensor (5) is input to the concentration control circuit (1o).
センサ電源として正負平衡した高周波を使用する理由を
述べると、直流分が含まれると混合水が電気分解し発生
したガスが電極に付着する等により測定誤差を生ずるこ
とと、高周波測定では商用周波測定に比し温度−濃度(
水抵抗値)特性が安定し温度変化による測定誤差を小さ
くできることである。温度−水抵抗値特性の一例を第6
図に示す。塩分濃度0.05%〜3%の場合について高
周波測定、商用周波測定による水抵抗値の特性を示した
が何れの場合も高周波測定の方が抵抗測定値の変化度合
が小さく安定していることが分る。この高周波電源の周
波数としては1kHz程度又はそれ以上のとき好結果が
得られることを確認しており、またそれ以下でも変化度
合の程度の差があるものの少くとも測定は可能である。The reason for using a balanced high frequency wave as a sensor power source is that if a direct current component is included, the mixed water will electrolyze and the generated gas will adhere to the electrodes, causing measurement errors, and that high frequency measurements require commercial frequency measurements. Temperature-concentration (
The characteristics (water resistance value) are stable and measurement errors due to temperature changes can be reduced. An example of temperature-water resistance value characteristics is shown in the sixth section.
As shown in the figure. The characteristics of water resistance values measured by high frequency measurement and commercial frequency measurement were shown for the case of salinity concentration of 0.05% to 3%, but in both cases, it was found that the degree of change in resistance measurement value is smaller and more stable with high frequency measurement. I understand. It has been confirmed that good results can be obtained when the frequency of this high-frequency power source is about 1 kHz or higher, and even if the frequency is lower than that, at least measurement is possible, although there are differences in the degree of change.
濃度制御回路(10)への入力信号は整流器(11)、
増幅回路(12)により処理され信号弁別器(13)に
おいて予め設定された濃度基準値と比較され、その濃度
が基準値域へ入っているかどうがが弁別される。この場
合例えば5段階の信号(Sl)、 (S、)・・(S5
)を発するものとし、基準値域に入っている場合は「良
」(S3)、基準値域より「濃」側は濃度差の程度に応
じ「濃J (S2)、 r濃過J(S□)とし、「薄」
側は濃度差の程度に応じ「薄J(Sl)、’薄遇」(S
5)とする。The input signal to the concentration control circuit (10) is a rectifier (11),
The signal is processed by the amplifier circuit (12) and compared with a preset concentration reference value in the signal discriminator (13) to determine whether the concentration is within the reference value range. In this case, for example, there are five levels of signals (Sl), (S,)...(S5
), and if it is within the standard value range, it is "good" (S3), and if it is "dark" from the standard value range, it is "dark J (S2), r excessive J (S□)" depending on the degree of concentration difference. Toshi, "thin"
Depending on the degree of concentration difference, side
5).
これら5段階の信号はそれぞれ表示回路(17)に供給
され、弁別によってそのいずれかが表示されることにな
る。この信号(Sl)〜(S5)に応じて表示灯L1〜
L、のいずれかを点灯させ検出された混合水濃度の状態
を表示する。即ち、 Ll、 L2・・L5はそれぞれ
「濃過」、「濃」、「良」、r薄」、「薄遇」を表示す
る。また、「濃過」信号(S□)または「薄遇」信号(
S、)が発せられたときはいずれも警報回路(19)を
作動せしめ警報ブザ−(20)を鳴らして混合水濃度が
「濃過」または「薄遇jであることを知らせる。These five levels of signals are each supplied to a display circuit (17), and one of them is displayed by discrimination. Indicator lights L1 to (S5) correspond to signals (Sl) to (S5).
The status of the detected concentration of mixed water is displayed by lighting either of L and L. That is, Ll, L2, . In addition, there is also a “concentration” signal (S□) or a “undertreatment” signal (
When S,) is issued, the alarm circuit (19) is activated and the alarm buzzer (20) is sounded to notify that the mixed water concentration is "too concentrated" or "not good".
「濃過」信号(Sl)および[濃J信号(8つ)は第1
の駆動回路(15)を作動せしめ、また「薄」信号(S
l)および「薄遇」信号(S5)は、第2の駆動回路(
16)を作動せしめる。第1の駆動回路(15)は、「
aj倍信号S2)および「濃過」信号(Sl)を受けて
出力し、ポンプ(Pl)を駆動して淡水タンク(2)よ
り淡水を供給する。また、第2の駆動回路(16)は、
「薄」信号(Sl)および「薄遇」信号(5S)を受け
て出力し、ポンプ(P2)を駆動して海水タンク(3)
より海水を供給する。「良」信号(S3)では、面駆動
回路(15)、 (16)は停止し、ポンプ< p x
> 、< p −)共停止する。“Darkness” signal (Sl) and [Darkness J signal (8) are the first
The drive circuit (15) is activated, and the "thin" signal (S
l) and the “low treatment” signal (S5) are sent to the second drive circuit (
16) is activated. The first drive circuit (15)
It receives and outputs the aj multiplication signal S2) and the "concentration" signal (Sl), drives the pump (Pl), and supplies fresh water from the fresh water tank (2). Moreover, the second drive circuit (16)
It receives and outputs the "thin" signal (Sl) and the "thin" signal (5S), and drives the pump (P2) to move the seawater tank (3)
Supply more seawater. With a "good" signal (S3), the surface drive circuits (15), (16) are stopped and the pump < p x
> , < p −) co-stop.
水位センサ(6)には高水位(Hレベル)を検出する高
水位電極(6a)と低水位(Lレベル)を検出する低水
位電極(6b)とを有量る。水位がLレベル以下となっ
たとき、面駆動回路(16)、 (17)を動作せしめ
ポンプ(P□)、(P、)を同時に駆動し淡水、海水を
同時供給する。この間濃度センサの信号は無関係とし、
ただ淡水と海水の供給比率を基準濃度に合致するよう、
バルブ(VX)、 (V、)を調節し濃度の粗調整をす
る。The water level sensor (6) includes a high water level electrode (6a) for detecting a high water level (H level) and a low water level electrode (6b) for detecting a low water level (L level). When the water level falls below the L level, the surface drive circuits (16) and (17) are activated to simultaneously drive the pumps (P□) and (P,) to simultaneously supply fresh water and seawater. During this time, the concentration sensor signal is irrelevant.
However, in order to match the supply ratio of freshwater and seawater to the standard concentration,
Adjust the valves (VX) and (V,) to roughly adjust the concentration.
バルブ(V□)、 (V2)の調節は一般的には手動で
行なうが、動力式として制御することも可能であ水位が
Hレベルに達すると淡水、海水共供給停止し、この時点
から濃度センサ(5)の信号により濃度制御回路(lO
)で弁別し、前述の方法で濃度の微調整を行なう。The valves (V The concentration control circuit (lO
) and finely adjust the density using the method described above.
この間、混合水は調合機(21)あるいは海苔混合物攪
拌槽(22)へ、それぞれポンプ(Pl)、 (Pl)
により供給され、水位は漸次低下する。水位がLレベル
以下に下った途端、面駆動回路(1s)、 (16)が
動作し、淡水、海水の同時供給に入り、以下前記工程を
繰返す。上記の動作から見て濃度センサ(5)の取付は
位置はLレベルより下方がよい。During this time, the mixed water is pumped (Pl) and (Pl) to the blender (21) or seaweed mixture stirring tank (22), respectively.
The water level is gradually lowered. As soon as the water level falls below the L level, the surface drive circuit (1s), (16) is activated to simultaneously supply fresh water and seawater, and the above steps are repeated. In view of the above operation, the concentration sensor (5) should be installed at a position below the L level.
第7図は、混合水制御装置における濃度、水位の制御、
駆動回路の一例を示す。Figure 7 shows concentration and water level control in the mixing water control device;
An example of a drive circuit is shown.
(101)、 (102)は制御電源端子、(103)
は水位検出信号で低水位検出信号(103a)(常閉接
点)、高水位検出信号(103b)(常閉接点)の直列
回路として補助リレー(m)と直列に電源端子(101
)、 (102)間に接続する。また補助リレー(m)
の自己保持接点(ma□)を信号(103a)と並列に
接続する。補助リレー(m)は水位制御回路(104)
内に設けられ、その補助常閉接点(m、2)、 (ma
、)はそれぞれ淡水ポンプ(Pl)、海水ポンプ(P2
)と直列にし電源端子(101)、 (102)間に接
続する。(105) 、 (106)は塩分濃度検出信
号j(105)は濃側か、(106)は薄側が検出され
た時の作〜動信号で、この場合作動時閉路する接点とし
て表わし、′それぞれ前記接点(ma2)、(ma3)
と並列に接続されている。ミれらの回路は有接点回路と
して構成しているが、無接点回路として構成、すること
も当然可能である。(101), (102) are control power supply terminals, (103)
is a water level detection signal, which is connected to the power terminal (101) in series with the auxiliary relay (m) as a series circuit of the low water level detection signal (103a) (normally closed contact) and the high water level detection signal (103b) (normally closed contact).
), (102). Also auxiliary relay (m)
The self-holding contact (ma□) of is connected in parallel with the signal (103a). Auxiliary relay (m) is water level control circuit (104)
Its auxiliary normally closed contact (m, 2), (ma
) are the freshwater pump (Pl) and the seawater pump (P2), respectively.
) in series and connect between power terminals (101) and (102). (105) and (106) are operating signals when the salt concentration detection signal j (105) is detected as being on the rich side, and (106) as being on the thin side. In this case, they are expressed as contacts that close when activated, and ' The contact points (ma2), (ma3)
are connected in parallel. Although Mira et al.'s circuit is configured as a contact circuit, it is of course possible to configure it as a non-contact circuit.
上記回路の動作について説明すると、低水位信号(10
3a)が作動すると補助リレー(m)が動作しポンプ(
P工)、(P、)が駆動され、高水位信号(103b)
が作動すると補助リレー(m)が開放し、ポンプ(PL
)、 (P2)の駆動を停止する。To explain the operation of the above circuit, the low water level signal (10
When 3a) is activated, the auxiliary relay (m) is activated and the pump (
P engineering), (P,) are driven, and the high water level signal (103b)
When activated, the auxiliary relay (m) opens and the pump (PL
) and (P2) are stopped.
一方で、「濃」、「濃過」の信号が作動するとポンプ(
Pl)が駆動され同信号が失くなれば停止する。また、
「薄」、「薄遇」の信号が作動するとポンプ(P2)が
駆動され同信号が失くなれば停止する。On the other hand, when the “concentration” or “concentration” signal is activated, the pump (
When Pl) is driven and the same signal is lost, it stops. Also,
The pump (P2) is driven when the "low" or "low service" signal is activated, and stops when the signal is lost.
次に、サーミスタの動作について説明する。第8図は増
幅回路(12)の内部詳細を示したもので(111)、
(112)は電源端子で直流電源が印加され、(11
2)側をアース側としている。(1,13)は増幅器で
入力端子(113a)、基準電圧入力端子(113b)
、出力端子(113c)を有する。入力端子(113a
)に濃度センサ出力を整流器(II)を経て入力する。Next, the operation of the thermistor will be explained. Figure 8 shows the internal details of the amplifier circuit (12) (111),
(112) is a power supply terminal to which DC power is applied, and (11
2) side is the ground side. (1, 13) are amplifier input terminals (113a) and reference voltage input terminals (113b)
, and has an output terminal (113c). Input terminal (113a
), the concentration sensor output is input through the rectifier (II).
端子(111)。Terminal (111).
(112)間に調整抵抗(114)、基準電圧分圧抵抗
(,115)、基準電圧微調整抵抗(116)を直列に
して接続し、調整抵抗(114)に並列にサーミスタ(
26)を接続する。サーミスタ(26)は濃度センサ(
5)に取付けられており、その端子(26a)、 (2
6b)を増幅回路(12)に引込み接続する。分圧抵抗
(115)両端子の中間にある分圧端子(115a)よ
り増幅率調整回路を経て増幅器の基準電圧入力端子(l
I3b)に接続する。増幅率調整回路は前記分圧端子(
115a)と基準電圧入力端子(113b)の間に接続
された微調整抵抗(118)、基準電圧入力端子(11
3b)と増幅器出力端子(113c)との間に並列に挿
入された抵抗(119)およびコンデンサ(120)よ
り成っている。出力端子(113c)と端子(112)
との間に浮遊電圧抑制抵抗(121)を接続する。(112), an adjustment resistor (114), a reference voltage dividing resistor (, 115), and a reference voltage fine adjustment resistor (116) are connected in series, and a thermistor (116) is connected in parallel to the adjustment resistor (114).
26). The thermistor (26) is a concentration sensor (
5), and its terminals (26a), (2
6b) is lead-connected to the amplifier circuit (12). The voltage dividing resistor (115) is connected to the amplifier reference voltage input terminal (l
I3b). The amplification factor adjustment circuit connects the voltage dividing terminal (
A fine adjustment resistor (118) connected between the reference voltage input terminal (115a) and the reference voltage input terminal (113b),
It consists of a resistor (119) and a capacitor (120) inserted in parallel between the amplifier output terminal (113c) and the amplifier output terminal (113c). Output terminal (113c) and terminal (112)
A floating voltage suppression resistor (121) is connected between the terminal and the terminal.
ここでサーミスタの作用について説明する。混合水の濃
度は濃度センサ(5)によりその電極間の抵抗値を測定
して濃度値をめているが、水温が上昇すると抵抗値が下
り、増幅器入力端子(113a)に与えられる信号電圧
値が上る。従って増幅器(113)の出力信号電圧値が
上ることになり、水温の上昇によって濃度値が見掛は上
「濃」側へ移動する。Here, the action of the thermistor will be explained. The concentration of the mixed water is determined by measuring the resistance value between the electrodes using the concentration sensor (5), but as the water temperature rises, the resistance value decreases and the signal voltage value given to the amplifier input terminal (113a) increases. rises. Therefore, the output signal voltage value of the amplifier (113) increases, and the concentration value apparently moves upward toward the "dense" side due to the rise in water temperature.
サーミスタの抵抗は水温の上昇に伴って低下し、基準電
圧分圧点(115a)の電位が上昇し、増幅器基準電圧
入力端子(113b)の電位が上昇する。この基準電圧
入力の電位上昇により入力端子(113a)の基準電圧
入力端子(II:Th)に対する電位差が縮まり上記水
温上昇による増幅器入力電圧の上昇分が補償される。The resistance of the thermistor decreases as the water temperature rises, the potential at the reference voltage dividing point (115a) increases, and the potential at the amplifier reference voltage input terminal (113b) increases. This increase in the potential of the reference voltage input reduces the potential difference between the input terminal (113a) and the reference voltage input terminal (II:Th), thereby compensating for the increase in the amplifier input voltage due to the water temperature rise.
水温が下降した場合についても同様にして補償可能であ
る。以上のようにして水温の変化によって増幅器の出力
信号電圧が変動しないようにしている。Compensation can be made in the same way even if the water temperature drops. In this manner, the output signal voltage of the amplifier is prevented from varying due to changes in water temperature.
塩分濃度は前述のように濃過ぎると海苔製品の品質を害
するので許容限界を超えないよう管理の必要があり、例
えば、設定基準値Noは許容値Nmの95%とし、プラ
スマイナスの管理幅(良とする基準値域幅)ΔNは5%
とし、管理幅上限NO+ΔN=100%としている。As mentioned above, if the salt concentration is too high, it will harm the quality of seaweed products, so it must be managed so as not to exceed the permissible limit.For example, the set standard value No. is set to 95% of the permissible value Nm, and the control range (plus or minus) is Standard value range width) ΔN is 5%
The upper limit of the management width is NO+ΔN=100%.
以上のように管理幅を定め濃度が下限管理値以下になれ
ば海水の供給指令を出し、濃度が増して下限管理値に至
れば停止指令を出す。また、濃度が上限管理値を超える
と淡水の供給指令を出し、濃度が下って上限管理値に至
れば停止指令を出すようにしている。As described above, the control range is determined, and when the concentration falls below the lower limit control value, a seawater supply command is issued, and when the concentration increases and reaches the lower limit control value, a stop command is issued. Additionally, if the concentration exceeds the upper limit control value, a command to supply fresh water is issued, and if the concentration decreases and reaches the upper limit control value, a stop command is issued.
なお、設定基準値Noの設定は装置内蔵の固定インピー
ダンスまたは可変インピーダンスで行なうが、妄に調整
できないようにしている。The set reference value No. is set using a fixed impedance or a variable impedance built into the device, but it is made so that it cannot be arbitrarily adjusted.
設定基準値をどのようにするかは業界の合意により定め
られるが、一般には許容値Nmが0.2%程度と考えら
れる。The standard value to be set is determined by industry consensus, but the allowable value Nm is generally considered to be about 0.2%.
その場合、基準値Noは0.19%となるから、淡水と
海水の同時供給の際の供給量の比率を海水の塩分を例え
ば3%としてめると、
即ち、
淡水:海水=15:12なる。In that case, the standard value No. will be 0.19%, so if we take the ratio of supply amount when freshwater and seawater are supplied at the same time, assuming that seawater salinity is, for example, 3%, that is, freshwater: seawater = 15:12. Become.
上述したように本発明によれば海苔抄機に供給する海苔
混合物の塩分濃度を、その濃度が高過ぎる場合もまた低
過ぎる場合も、容易にしがも自動的に適正濃度に調整し
て規定範囲に維持することができるので、海苔抄製の際
の歩留りや製品海苔の色、光沢等の品質を向上すると共
に、海苔保存時の吸湿がしにく(、加工時の塩分析出等
のトラブルを発生するおそれがなくなり、また、海苔抄
機に大量の海苔抄き原料を連続供給しても支障を来さな
い等の種々の優れた利点を有するものであス−As described above, according to the present invention, the salt concentration of the seaweed mixture supplied to the seaweed machine is easily and automatically adjusted to an appropriate concentration and kept within the specified range, whether the concentration is too high or too low. This improves the yield when making nori sheets and the quality of the product nori, such as its color and gloss, as well as prevents moisture absorption during storage (and reduces problems such as salt analysis during processing). It has various excellent advantages such as eliminating the risk of generation of seaweed, and also not causing any trouble even when a large amount of seaweed raw material is continuously supplied to the seaweed machine.
第1図は本発明の実施例を示す海苔混合物の塩分濃度調
整方法のフローシート、第2図は同じく海苔混合物の塩
分濃度調整装置の一実施例を示すブロック図、第3図は
濃度上ルすの断面図、第4図は電源回路および発振変調
回路図、第5図(a)は第4図のA点における出力波形
、第5図(b)は第4図のB点における出力波形、第6
図は温度(水温)−水抵抗値特性図、第7図は混合水制
御装置における濃度、水位の制御、駆動回路図である。
(1):混合水調整槽、C2):淡水タンク、 (3)
:海水タンク、(4):攪拌機、 (5) :濃度セ
ンサ。
(6):水位センサ、 (7) :混合水制御装置。
(8):電源回路、(9):発振変調回路、 (10)
:濃度制御回路、(11):整流器、(12):増幅
回路。
(13) :信号弁別器、 (14) :水位制御回路
。
(15) :第1の駆動回路、 (16) :第2の駆
動回路。
(17) :表示回路、(18):表示灯、 (19)
:警報回路。
(20) :警報ブザ−、(21):調合機? (22
) :海苔混合物攪拌槽、 (23) :絶縁筒体、
(24)、(25) :電極。
(26) :温度補正回路、(p−□)、(P2)、(
P2)、(P4):ポンプ、 (V、)、(Vl):バ
ルブ、L1〜L、:表示灯。
特許出願人
株式会社戸上電機製作所
代表者戸上 −
第 1 図
違答席藻
11j2 回
答3図
第4図
第5図
第 6 回
1度(7に一;U →
第7図
第8図
’It /16 +1’5
手続補正ト自発)
昭和59年 6隻日
特許庁長官 殿
2、発明の名称
海苔混合物の塩分濃度調整方法及びその装置3、 補正
をする者
事件との関係 特許出願人
明細書の「発明の詳細な説明」の欄
5、補正の内容
1、明細書中「発明の詳細な説明」の欄の第18頁第手
続補正書(方式)
%式%
1、事件の表示
昭和59年特許願 第116’301号2、考案の名称
海苔混合物の塩分濃度調整方法及びその装置
3、補正をする者
事件との関係 特許出願人
4、 補正命令の日付(発送日)
昭和59年9月25日
5、補正の対象
6、補正の内容
(1)明細書中「図面の簡単な説明」の欄の第19頁第
10行目の「濃度、水位の制御、駆動回路図」の次に下
記文を加入する。
「、第8図は増幅回路の内部詳細図」Fig. 1 is a flow sheet of a method for adjusting the salinity of a seaweed mixture according to an embodiment of the present invention, Fig. 2 is a block diagram showing an example of an apparatus for adjusting the salinity of a seaweed mixture, and Fig. 3 is a flowchart of a method for adjusting the salinity of a seaweed mixture according to an embodiment of the present invention. 4 is a power supply circuit and oscillation modulation circuit diagram, FIG. 5(a) is an output waveform at point A in FIG. 4, FIG. 5(b) is an output waveform at point B in FIG. 4, 6th
The figure is a temperature (water temperature)-water resistance value characteristic diagram, and FIG. 7 is a diagram of concentration, water level control, and drive circuit diagram in the mixed water control device. (1): Mixed water adjustment tank, C2): Fresh water tank, (3)
: Seawater tank, (4) : Stirrer, (5) : Concentration sensor. (6): Water level sensor, (7): Mixing water control device. (8): Power supply circuit, (9): Oscillation modulation circuit, (10)
: concentration control circuit, (11): rectifier, (12): amplifier circuit. (13): Signal discriminator, (14): Water level control circuit. (15): first drive circuit, (16): second drive circuit. (17): Display circuit, (18): Indicator light, (19)
: Alarm circuit. (20): Alarm buzzer, (21): Compounding machine? (22
): Nori mixture stirring tank, (23): Insulating cylinder,
(24), (25): Electrode. (26): Temperature correction circuit, (p-□), (P2), (
P2), (P4): Pump, (V,), (Vl): Valve, L1-L,: Indicator light. Patent Applicant Togami Electric Manufacturing Co., Ltd. Representative Togami - Fig. 1 Illegal Answer 11j2 Answer 3 Fig. 4 Fig. 5 Fig. 6 Once in 7 (1 in 7; U → Fig. 7 Fig. 8 'It/ 16 +1'5 Procedural amendment voluntarily) 1981 6th Director General of the Japan Patent Office 2. Name of the invention Method for adjusting salinity concentration of seaweed mixture and apparatus 3. Relationship with the case of the person making the amendment Description of the patent applicant's specification "Detailed Description of the Invention" Column 5, Contents of Amendment 1, Page 18 of the "Detailed Description of the Invention" Column in the Specification, Procedural Amendment (Method) % Formula % 1, Indication of the Case 1982 Patent Application No. 116'301 2, Name of the invention Method and device for adjusting the salinity of a seaweed mixture 3, Relationship with the case of the person making the amendment Patent applicant 4, Date of amendment order (shipment date) September 1980 25th, 5th, Subject of amendment 6, Contents of amendment (1) Next to "Concentration, water level control, drive circuit diagram" on page 19, line 10 in the "Brief explanation of drawings" column in the specification. Add the following sentence. ``Figure 8 is a detailed internal diagram of the amplifier circuit.''
Claims (1)
した海苔を調合機において水と混合して海苔と水との混
合物を作る際iこ、この水の塩分濃度を海苔抄機に供給
するに適した適正濃度基準値を定め、その値に近い濃度
の混合水が得られるような比率で淡水と海水を同時に混
合槽に供給し、高水位に上昇したとき、同時供給を止め
、この混合水攪拌槽に設けた濃度センサによって混合水
の濃度を検出し、検出濃度が前記基準値に管理幅を考慮
した適正濃度範囲より高いときは淡水を供給し、検出濃
度が適正濃度範囲より低いときは海水を供給し、何れの
場合も濃度が適正濃度範囲に入れば供給停止し、混合水
を次段へ供給するのに伴って水位が低水位に降下したと
き再度淡水、海水の同時供給を開始することを特徴とす
る海苔混合物の塩分濃度調整方法。 2、塩分と水の混合水調整槽に淡水を供給する手段およ
び海水を供給する手段、各供給手段の時間当り供給風を
それぞれ調節する手段、調整槽内塩分濃度を検出するセ
ンサ、当該センサに定電圧高周波電源を与える発振変調
回路、調整槽内の低水位および高水位を検出する水位セ
ンサ、低水位センサ信号により淡水、海水供給手段を同
時に駆動する出力信号を出し、高水位センサ信号により
当該出力信号を停止する水位制御回路、塩分適正濃度範
囲と調整槽内塩分濃度測定値を比較し測定値が塩分適正
濃度範囲より大なる時に淡水供給手段を駆動する出力信
号を出し、測定値が適正濃度範囲より小なる時は海水供
給手段を駆動する出力信号を出す塩分濃度制御回路、よ
り成ることを特徴とする海苔混合物の塩分濃度調整装置
。[Claims] 1. After mincing the seaweed raw algae and washing it with water, when mixing the minced seaweed with water in a blender to make a mixture of seaweed and water, the salinity of this water is An appropriate concentration standard value suitable for supplying to a seaweed machine is determined, and freshwater and seawater are simultaneously supplied to the mixing tank at a ratio that will yield mixed water with a concentration close to that value, and when the water level rises to a high level, The simultaneous supply is stopped, and the concentration sensor installed in this mixed water stirring tank detects the concentration of the mixed water. If the detected concentration is higher than the appropriate concentration range considering the control width in addition to the reference value, fresh water is supplied, and the detected concentration When the concentration is lower than the appropriate concentration range, seawater is supplied, and in either case, when the concentration falls within the appropriate concentration range, the supply is stopped, and when the water level drops to a low level as the mixed water is supplied to the next stage, it is restarted. A method for adjusting the salinity of a seaweed mixture, characterized by starting the simultaneous supply of freshwater and seawater. 2. A means for supplying fresh water and a means for supplying seawater to the salt and water mixed water adjustment tank, means for adjusting the supply air per hour of each supply means, a sensor for detecting the salt concentration in the adjustment tank, and a sensor for detecting the salt concentration in the adjustment tank. An oscillation modulation circuit that provides a constant-voltage high-frequency power source, a water level sensor that detects low and high water levels in the adjustment tank, output signals that simultaneously drive the fresh water and sea water supply means using the low water level sensor signal, and output signals that simultaneously drive the fresh water and sea water supply means using the high water level sensor signal. A water level control circuit that stops the output signal, compares the appropriate salinity concentration range with the measured value of the salinity concentration in the adjustment tank, and outputs an output signal that drives the fresh water supply means when the measured value exceeds the appropriate salinity concentration range, indicating that the measured value is appropriate. 1. An apparatus for adjusting the salinity of a seaweed mixture, comprising: a salinity control circuit that outputs an output signal to drive a seawater supply means when the concentration is less than a concentration range.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59116301A JPS60259165A (en) | 1984-06-05 | 1984-06-05 | Method of control of salt concentration of laver mixture and its device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59116301A JPS60259165A (en) | 1984-06-05 | 1984-06-05 | Method of control of salt concentration of laver mixture and its device |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61164269A Division JPS6225957A (en) | 1986-07-11 | 1986-07-11 | Salt concentration adjusting apparatus of laver mixture |
JP61164270A Division JPS6225958A (en) | 1986-07-11 | 1986-07-11 | Adjusting of salt concentration of laver and apparatus therefor |
JP61315048A Division JPS62167457A (en) | 1986-12-26 | 1986-12-26 | Method and apparatus for measuring concentration of salt component of water |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60259165A true JPS60259165A (en) | 1985-12-21 |
JPS6233856B2 JPS6233856B2 (en) | 1987-07-23 |
Family
ID=14683625
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59116301A Granted JPS60259165A (en) | 1984-06-05 | 1984-06-05 | Method of control of salt concentration of laver mixture and its device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60259165A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62111398U (en) * | 1985-12-27 | 1987-07-15 | ||
JP2009148223A (en) * | 2007-12-21 | 2009-07-09 | Itsuwa Kogyo:Kk | Seawater circulating system for laver storage tank |
JP2022178864A (en) * | 2021-05-21 | 2022-12-02 | 株式会社オーツボ | Laver dough liquid supply mechanism |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6266872A (en) * | 1985-09-18 | 1987-03-26 | 川原 健司 | Light/heat stimulating treatment device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6075263A (en) * | 1983-09-29 | 1985-04-27 | Watanabe Kikai Kogyo Kk | Drying pretreatment for improving quality of laver and its device |
-
1984
- 1984-06-05 JP JP59116301A patent/JPS60259165A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6075263A (en) * | 1983-09-29 | 1985-04-27 | Watanabe Kikai Kogyo Kk | Drying pretreatment for improving quality of laver and its device |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62111398U (en) * | 1985-12-27 | 1987-07-15 | ||
JP2009148223A (en) * | 2007-12-21 | 2009-07-09 | Itsuwa Kogyo:Kk | Seawater circulating system for laver storage tank |
JP4691546B2 (en) * | 2007-12-21 | 2011-06-01 | 株式会社イツワ工業 | Seawater circulation system for laver storage tank |
JP2022178864A (en) * | 2021-05-21 | 2022-12-02 | 株式会社オーツボ | Laver dough liquid supply mechanism |
Also Published As
Publication number | Publication date |
---|---|
JPS6233856B2 (en) | 1987-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3925184A (en) | Electrolytic system for recovering metal from chemical solutions with controlled plating current | |
US6168692B1 (en) | Apparatus for generating alkali ion water | |
JPS60259165A (en) | Method of control of salt concentration of laver mixture and its device | |
US3986932A (en) | Control of aerobic fermentation processes | |
JPH05115876A (en) | Controller for continuous electrolytic ionized-water producing device | |
JPS6336744B2 (en) | ||
JPS62167457A (en) | Method and apparatus for measuring concentration of salt component of water | |
JPS6225958A (en) | Adjusting of salt concentration of laver and apparatus therefor | |
US4287044A (en) | Silver recovery apparatus | |
JPH0542910B2 (en) | ||
US5627309A (en) | Method for determining presence of water | |
CN111747493A (en) | Acidic oxidation potential water production method and device for on-line monitoring compensation constant-current electrolysis | |
GB2130723A (en) | Measuring aluminium concentration in electrolysis cell using sonic resonator | |
JPH0158947B2 (en) | ||
US4362608A (en) | Silver recovery method | |
SU841597A3 (en) | Method of control of raw material supply to electrolyzer for production of aluminium | |
JPS604709B2 (en) | Method and apparatus for adjusting concentration of seaweed mixture | |
JPH0857448A (en) | Control device of garbage treatment device | |
JP7422444B1 (en) | Electrolyzed water generation device and electrolyzed water generation method | |
JP2003080257A (en) | Apparatus for producing electrolytic water | |
JPH0463576A (en) | Concentration control method of laver mixed liquid and device therefor | |
US4065348A (en) | Method and apparatus for detecting and controlling the caustic in paper pulp bleaching | |
SU861355A1 (en) | Method of automatic control of synthetic rubber latex coagulation process | |
JPS56149036A (en) | Regenerating method for developer | |
JPH07290059A (en) | Ionized water producer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |