JPS62167457A - Method and apparatus for measuring concentration of salt component of water - Google Patents

Method and apparatus for measuring concentration of salt component of water

Info

Publication number
JPS62167457A
JPS62167457A JP61315048A JP31504886A JPS62167457A JP S62167457 A JPS62167457 A JP S62167457A JP 61315048 A JP61315048 A JP 61315048A JP 31504886 A JP31504886 A JP 31504886A JP S62167457 A JPS62167457 A JP S62167457A
Authority
JP
Japan
Prior art keywords
circuit
water
concentration
constant voltage
concn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61315048A
Other languages
Japanese (ja)
Inventor
Yukinori Kumamaru
熊丸 幸規
Yasuo Fujisaki
藤崎 安男
Masaaki Mori
正昭 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Togami Electric Mfg Co Ltd
Original Assignee
Togami Electric Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Togami Electric Mfg Co Ltd filed Critical Togami Electric Mfg Co Ltd
Priority to JP61315048A priority Critical patent/JPS62167457A/en
Publication of JPS62167457A publication Critical patent/JPS62167457A/en
Pending legal-status Critical Current

Links

Landscapes

  • Edible Seaweed (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To make it possible to accurately and rapidly adjust and hold the concn. of the salt component of a laver forming stock material, by detecting the concn. of the salt component of the water mixture in a water mixture conditioning tank by a concn. sensor using a constant voltage oscillation modulation signal. CONSTITUTION:A power source circuit 8 receives the current of a commercial frequency to supply the same not only to the AC power source of each circuit but also to a DC constant voltage power source through a rectifier circuit 8a and a constant voltage circuit 8b. An oscillation/modulation circuit 9 receives DC constant voltage and obtains predetermined high frequency output by an oscillation circuit 9a such as a monostable multivibrator. In this case, frequency is fixed or made variable. A standard level is adjusted by a standard level adjusting circuit 9b having a resistor and a condenser etc. so as to obtain high frequency output equilibrated positively and negatively. This frequency output is applied to the electrodes 24, 25 of a concn. sensor 5 and a concn. sensor 5 is operated to input said output to a concn. control circuit 10 through a temp. correcting thermistor 26 operated by a water temp., is necessary.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、海苔抄機に供給される海苔抄き原料の海苔濃
度調整の際等に用いられる水の塩分濃度を検出するため
の塩分濃度測定方法及びその方法を実施するための装置
に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a method for detecting the salinity concentration of water used for adjusting the seaweed concentration of raw material for seaweed cutting supplied to a seaweed cutting machine. The present invention relates to a measuring method and an apparatus for carrying out the method.

〔従来技術とその問題点〕[Prior art and its problems]

従来から海苔抄製の際に、海苔抄き原料に僅かな塩分を
含ませることにより、歩止りが向上し、色、光沢も良く
なるが、塩分が多すぎると海苔保存時に吸湿したり、2
次加工時に塩分が析出して品質を害するおそれがあるこ
とが知られている。
Traditionally, when making nori sheets, adding a small amount of salt to the raw materials for nori sheets improves yield, color, and gloss, but if there is too much salt, the seaweed may absorb moisture during storage, or
It is known that salt may precipitate during subsequent processing and impair quality.

また、海苔抄機には常時大量の海苔抄き原料を連続供給
しなければならず、その塩分濃度を規定範囲に維持する
には、海苔抄き原料に混合し濃度調整するための水の塩
分濃度を正確にかつ大量供給しつつ常時測定することが
要求される。
In addition, a large amount of seaweed raw material must be continuously supplied to the seaweed machine at all times, and in order to maintain the salinity within the specified range, the salinity of the water that is mixed with the seaweed raw material and adjusted to the concentration must be It is required to constantly measure the concentration while supplying it accurately and in large quantities.

従来水の塩分濃度測定には電極間の電気伝導度の変化を
直流電流を用いて測定する方法が一般的であったが、塩
分の測定の場合、時間縦通と共に電気分解による気泡が
付着したり、あるいは水温の変化によって誤差を生じ、
正確な測定を期し難かった。また、これを改善するのに
非常に微小な直流電流を用いて精密計測する装置もある
が、非常に高価になっていた。
Conventionally, the common method for measuring the salinity concentration of water was to measure the change in electrical conductivity between electrodes using a direct current, but when measuring salinity, air bubbles due to electrolysis adhere as time passes. or errors may occur due to changes in water temperature.
It was difficult to make accurate measurements. In order to improve this problem, there is a device that uses a very small direct current to perform precise measurements, but it is extremely expensive.

〔発明の目的〕[Purpose of the invention]

本発明は、上記の点に鑑み、塩分の濃度を正確に、しか
も連続的に測定可能にし、海苔抄き原料の塩分を規定範
囲に維持しつつ大量供給に支障を来さないよう、海苔抄
き原料の塩分濃度を適正にかつ迅速に調整維持すること
を可能ならしめ、かつそのための経済的な装置を得るこ
とをその目的としている。
In view of the above-mentioned points, the present invention enables accurate and continuous measurement of salt concentration, maintains the salinity of seaweed raw material within a specified range, and does not interfere with large-scale supply. The purpose is to make it possible to properly and quickly adjust and maintain the salt concentration of raw materials, and to obtain an economical device for this purpose.

〔発明の構成〕[Structure of the invention]

本発明は、直流定電圧電源を受けて発振変調回路より所
定の高周波信号を発生せしめ、その出力高周波信号の基
準レベルを調整して正負平衡した高周波出力信号とし、
この出力信号を水中の濃度センサの電極に与えること、
あるいは、その濃度センサの出力信号を水温によって作
動する温度補正回路を経て出力することを特徴とする水
の塩分濃度測定方法であり、また、直流定電圧電源を与
える電源回路、該電源回路より直流定電圧を受け発振回
路により所定の高周波信号を発生する発振変調回路、該
発振変調回路の出力信号の基準レベルを調整する基準レ
ベル調整回路、被測定水中に浸漬され前記調整回路を経
た高周波信号を受ける1対の電極を有する濃度センサを
備え、あるいは、濃度センサに水温を感知する温度補正
素子を組込んだことを特徴とする水の塩分濃度測定装置
である。
The present invention generates a predetermined high frequency signal from an oscillation modulation circuit in response to a DC constant voltage power supply, adjusts the reference level of the output high frequency signal to produce a high frequency output signal with positive and negative balance,
applying this output signal to an electrode of a concentration sensor in water;
Alternatively, there is a method for measuring the salinity concentration of water, which is characterized in that the output signal of the concentration sensor is outputted through a temperature correction circuit that operates depending on the water temperature, and a power supply circuit that provides a DC constant voltage power supply; An oscillation modulation circuit that receives a constant voltage and generates a predetermined high-frequency signal using an oscillation circuit, a reference level adjustment circuit that adjusts the reference level of the output signal of the oscillation modulation circuit, and a high-frequency signal that is immersed in water to be measured and passes through the adjustment circuit. This water salinity measuring device is characterized in that it is equipped with a concentration sensor having a pair of electrodes that receive water, or in which a temperature correction element that senses water temperature is incorporated into the concentration sensor.

〔実施例〕〔Example〕

以下、本発明を図面に示す実施例に基いて説明する。 Hereinafter, the present invention will be explained based on embodiments shown in the drawings.

第7図は海苔抄き原料の海苔濃度調整方法及び装置のフ
ローシートを示すものであって、海苔原藻をミンチ機に
より細小片に裁断することによってミンチ化し、この海
苔を充分に水洗して塩分や挾雑物を取除いた後、このミ
ンチ化した海苔を調合機において海苔と水との混合物、
即ち海苔混合物を作り、この海苔混合物は海苔混合物攪
拌槽内に攪拌しながら一旦貯溜する。攪拌槽内では必要
に応じて濃度調整することもできる。この場合の水は、
僅かな塩分を加えた所定濃度の混合水とし。
Figure 7 shows a flow sheet of the method and apparatus for adjusting the concentration of seaweed as raw material for seaweed cutting, in which raw seaweed is minced by cutting it into small pieces using a mincing machine, and the seaweed is thoroughly washed with water. After removing salt and impurities, the minced seaweed is processed into a blender to create a mixture of seaweed and water.
That is, a seaweed mixture is prepared, and this seaweed mixture is temporarily stored in a seaweed mixture stirring tank while being stirred. The concentration can also be adjusted in the stirring tank as needed. In this case, the water is
Mixed water with a certain concentration added with a slight amount of salt.

混合水を貯溜し調整する混合水調整槽よりポンプ(P3
)により調合機へ、また濃度調整の際に必要な水はポン
プ(P4)により供給する。混合水調整槽へは淡水タン
クより淡水、海水タンクより海水がそれぞれポンプ(P
、)、(P、)により供給される。
A pump (P3) is installed from the mixed water adjustment tank that stores and adjusts the mixed water.
) to the blender, and water required for concentration adjustment is supplied by a pump (P4). Fresh water is pumped from the freshwater tank and seawater is pumped from the seawater tank to the mixed water adjustment tank (P.
, ), (P, ).

混合水調整槽内には塩分濃度を検知する濃度センサと槽
内水位を検知する水位センサを備え、混合水制御装置に
は濃度センサ出力を受けて作動する濃度制御回路、水位
センサの出力を受けて作動する水位制御回路、これら濃
度制御回路、水位制御回路の出力を受けて作動する駆動
回路を有する6濃度センサおよび水位センサの出力を受
けて作動する混合水制御装置の駆動回路出力信号により
ポンプ(P□)、(P、)が作動され、淡水及び海水の
供給量、従って混合水の供給量と塩分濃度が制御される
。調合機の海苔混合物は海苔混合物攪拌槽に給送され、
この攪拌槽内で攪拌、調整された海苔混合物は海苔抄機
へ供給される。
The mixed water adjustment tank is equipped with a concentration sensor that detects the salinity concentration and a water level sensor that detects the water level in the tank.The mixed water control device has a concentration control circuit that operates in response to the concentration sensor output, and a concentration control circuit that operates in response to the output of the water level sensor. A water level control circuit that operates based on the concentration control circuit, a drive circuit that operates in response to the output of the concentration control circuit, and a drive circuit of the mixed water control device that operates in response to the output of the concentration sensor and the water level sensor. (P□) and (P,) are operated to control the supply amount of fresh water and seawater, and therefore the supply amount and salinity of mixed water. The seaweed mixture from the blender is fed to the seaweed mixture stirring tank,
The seaweed mixture stirred and adjusted in this stirring tank is supplied to a seaweed machine.

第8図は海苔抄き原料に調合される混合水の塩分濃度調
整装置の一実施例を示すもので、混合水調整槽(1)は
、淡水タンク(2)より淡水、海水タンク(3)より海
水がそれぞれポンプ(P工)、(P2)により送られ貯
溜するよう設置されている。
Figure 8 shows an embodiment of the salinity adjustment device for mixed water mixed with seaweed raw material, in which the mixed water adjustment tank (1) has fresh water from the fresh water tank (2), fresh water from the seawater tank (3) They are installed so that seawater is sent and stored by pumps (P) and (P2), respectively.

混合水調整槽(1)には、槽内に貯溜された混合水を攪
拌する攪拌機(4)と混合水の塩分濃度を検出するため
の濃度センサ(5)と、槽内の水位が予め設定された高
水位(Hレベル)および低水位(Lレベル)に達したと
きにそれぞれ作動して信号を発する水位センサ(6)と
が取付けられている。混合水制御袋rR(7)には電源
回路(8)、発振変調回路(9)、濃度制御回路(10
)、水位制御回路(14)、第1の駆動回路(15)、
第2の駆動回路(16)、表示回路(17)、表示灯(
18)、警報回路(19)、警報ブザ−(20)を有し
ている。濃度制御回路(10)は整流器(11)、増幅
回路(12)、信号弁別器(13)より成る。第1、第
2の駆動回路(15)、(16)の出力により淡水およ
び海水の供給手段であるポンプ(pzL (Pi)が駆
動され、淡水タンク(2)、海水タンク(3)よりそれ
ぞれ淡水、海水が混合水調整槽(1)に供給される。淡
水、海水の供給路にはそれぞれの供給量を調節する手段
としてバルブ(V□)、(V2)がおかれ時間当り供給
量の調節を可能にしている。調合機(21)へ海苔と水
が供給されるが、その水は混合水調整槽よりポンプ(P
、)によって供給される。
The mixed water adjustment tank (1) includes a stirrer (4) for stirring the mixed water stored in the tank, a concentration sensor (5) for detecting the salt concentration of the mixed water, and a preset water level in the tank. A water level sensor (6) is installed which operates and issues a signal when the high water level (H level) and low water level (L level) are reached. The mixed water control bag rR (7) includes a power supply circuit (8), an oscillation modulation circuit (9), and a concentration control circuit (10).
), water level control circuit (14), first drive circuit (15),
Second drive circuit (16), display circuit (17), indicator light (
18), an alarm circuit (19), and an alarm buzzer (20). The concentration control circuit (10) consists of a rectifier (11), an amplifier circuit (12), and a signal discriminator (13). The outputs of the first and second drive circuits (15) and (16) drive a pump (pzL (Pi)) which is a means of supplying fresh water and sea water, and fresh water is supplied from the fresh water tank (2) and the sea water tank (3), respectively. , seawater is supplied to the mixed water adjustment tank (1).Valves (V□) and (V2) are placed in the supply channels of freshwater and seawater as means to adjust the supply amount of each, and the supply amount per hour is adjusted. Seaweed and water are supplied to the mixing machine (21), but the water is pumped from the mixing water adjustment tank to the pump (P
,) powered by.

海苔混合物攪拌槽(22)には調合機(21)より海苔
混合物が供給され、ここで海苔濃度調整の必要がある場
合、調整用の水は混合水調整槽(1)よりポンプ(P4
)により供給される。海苔混合物攪拌槽(22)内にて
攪拌調整された海苔混合物は海苔抄き原料として海苔抄
機へ供給される。
The seaweed mixture is supplied from the mixer (21) to the seaweed mixture stirring tank (22), and if it is necessary to adjust the seaweed concentration here, water for adjustment is supplied from the mixing water adjustment tank (1) to the pump (P4).
) powered by The seaweed mixture stirred and adjusted in the seaweed mixture stirring tank (22) is supplied to the seaweed machine as a raw material for seaweed cutting.

第1図は本発明における濃度センサの実施例を示し、絶
縁筒体(23)内に所定の間隔を隔てて電極(24)、
 (25)を置き、その先端は筒体(23)内に突出せ
しめ、基部は筒体に埋込みそれぞれ信号線(24a)、
 (25a)を導出する。電極の一方、例えば(25)
にはセンサ出力に対するサーミスタ等の温度補正回路(
26)を組込む。
FIG. 1 shows an embodiment of the concentration sensor according to the present invention, in which electrodes (24) are arranged at a predetermined interval within an insulating cylinder (23).
(25), its tip protrudes into the cylindrical body (23), and its base is embedded in the cylindrical body, with a signal line (24a),
(25a) is derived. One of the electrodes, e.g. (25)
is a temperature compensation circuit (such as a thermistor) for the sensor output.
26).

第2図は本発明における濃度測定回路の実施例を示す。FIG. 2 shows an embodiment of the concentration measuring circuit according to the present invention.

電源回路(8)は制御装置各回路に交流電源を供給する
と共に整流回路(8a)、定電圧回路(8b)を介し、
直流定電圧電源を供給する。
The power supply circuit (8) supplies AC power to each circuit of the control device, and also supplies AC power to each circuit of the control device through a rectifier circuit (8a) and a constant voltage circuit (8b).
Supplies DC constant voltage power.

電源回路(8)は商用周波交流で受電し、整流して一旦
直流とするがこの過程で定電圧回路を組込んでおり、そ
の後段で高周波発生時には一定電圧の交流が得られるよ
うにしており、電源側の電圧変動が±20%の範囲では
2次側へ影響がなく濃度測定を安定せしめている。
The power supply circuit (8) receives commercial frequency alternating current, rectifies it, and once converts it to direct current, but a constant voltage circuit is incorporated in this process, so that a constant voltage alternating current can be obtained when high frequency is generated in the subsequent stage. In the range of ±20% voltage fluctuation on the power supply side, there is no effect on the secondary side and concentration measurement is stabilized.

発振変調回路(9)は、直流定電圧を受け、無安定マル
チバイブレータ等の発振回路(9a)により所定の高周
波出力を得る。この出力端A点における出力波形を第3
図(a)に示す。この場合周波数は固定あるいは可変と
する。また、抵抗、コンデンサ等による基準レベル調整
回路(9b)により基準レベルを調整し正負平衡した高
周波出力を得るようにする。この出力端B点における出
力波形を第3図(b)に示す。この周波数出力を濃度セ
ンサの電極(24)、 (25)へ印加し、濃度センサ
(5)を作動せしめる。濃度センサ(5)の出力は濃度
制御回路(10)へ入力される。
The oscillation modulation circuit (9) receives a DC constant voltage and obtains a predetermined high frequency output using an oscillation circuit (9a) such as an astable multivibrator. The output waveform at this output end point A is the third
Shown in Figure (a). In this case, the frequency may be fixed or variable. Further, the reference level is adjusted by a reference level adjustment circuit (9b) including a resistor, a capacitor, etc., so as to obtain a high frequency output with positive and negative balance. The output waveform at this output end point B is shown in FIG. 3(b). This frequency output is applied to the electrodes (24) and (25) of the concentration sensor to activate the concentration sensor (5). The output of the concentration sensor (5) is input to the concentration control circuit (10).

濃度センサ電源として正負平衡した高周波を使用する理
由を述べると、直流分が含まれると混合水が電気分解し
発生したガスが電極に付着する等により測定誤差を生ず
ることと、高周波測定では商用周波測定に比し温度−濃
度(水抵抗値)特性が安定し温度変化による測定誤差を
小さくできるためである。
The reasons for using a balanced high frequency wave as a power source for the concentration sensor are that if a direct current component is included, the mixed water will electrolyze and the generated gas will adhere to the electrodes, causing measurement errors. This is because the temperature-concentration (water resistance value) characteristics are more stable than in measurements, and measurement errors due to temperature changes can be reduced.

第4図は温度−水抵抗値特性の一例を示す。塩分濃度0
.05〜3%の場合について高周波測定、商用周波測定
による水抵抗値の特性を示したが何れの場合も高周波測
定の方が抵抗測定値の変化度合が小さく安定しているこ
とが分る。この高周波電源の周波数としては1kHz程
度又はそれ以上のとき好結果が得られることを確認して
お1ノ、またそれ以下でも変化度合の程度の差があるも
のの少なくとも測定は可能である。また、電源電圧が変
動すると同じ抵抗値に対して電流値従って見掛けの検出
塩分濃度値が変動して正確な検出ができず、適正な制御
が不可能になるので、塩分濃度の正確な検出をし適正な
制御をするために電源の定電圧回路が必要である。
FIG. 4 shows an example of temperature-water resistance value characteristics. Salinity concentration 0
.. The characteristics of the water resistance value measured by high frequency measurement and commercial frequency measurement are shown for the case of 0.05 to 3%, and it can be seen that in both cases, the degree of change in the resistance measurement value is smaller and more stable with high frequency measurement. It has been confirmed that good results can be obtained when the frequency of this high-frequency power source is about 1 kHz or higher, and even if it is lower than that, at least measurement is possible, although there are differences in the degree of change. Additionally, if the power supply voltage fluctuates, the current value and therefore the apparent detected salinity concentration value will fluctuate for the same resistance value, making accurate detection impossible and making proper control impossible. A constant voltage circuit for the power supply is required for proper control.

濃度制御回路(10)への入力信号は整流器(11)、
増幅回路(12)により処理され信号弁別器(13)に
おいて予め設定された濃度基準値と比較され、その濃度
が基準値域へ入っているかどうかが弁別される。この場
合例えば5段階の信号(S工)、 (S2)・・(S、
)を発するものとし、基準値域に入っている場合は[良
J(S3)、基準値域より「濃」側は濃度差の程度に応
じ「濃J (S2)、 r濃過J (sl)とし、「薄
」側は濃度差の程度に応じ「薄」(S4)、「薄遇」(
S、)とする。
The input signal to the concentration control circuit (10) is a rectifier (11),
The signal is processed by the amplifier circuit (12) and compared with a preset concentration reference value in the signal discriminator (13) to determine whether the concentration is within the reference value range. In this case, for example, 5-level signals (S), (S2)...(S,
), and if it is within the standard value range, it is called [good J (S3), and if it is on the "dark" side of the standard value range, it is called "dark J (S2)", or "dark J (sl)" depending on the degree of the concentration difference. , the "light" side is "thin" (S4), "light" (
S, ).

これら5段階の信号はそれぞれ表示回路(17)に供給
され、弁別によってそのいずれかが表示されることにな
る。この信号(Sl)〜(Ss)に応じて表示灯り、〜
L、のいずれかを点灯させ検出された混合水濃度の状態
を表示する。即ち、Ll、 L、・・Lsはそれぞれ「
濃過」、「濃」、「良」、「薄」、「薄遇」を表示する
。また、「濃過」信号(S工)または「薄遇」信号(S
5)が発せられたときはいずれも警報回路(19)を作
動せしめ警報ブザ−(20)を鳴らして混合水濃度が「
濃過」または「薄遇」であることを知らせる。
These five levels of signals are each supplied to a display circuit (17), and one of them is displayed by discrimination. Depending on this signal (Sl) ~ (Ss), the indicator light, ~
The status of the detected concentration of mixed water is displayed by lighting either of L and L. That is, Ll, L,...Ls are each "
Displays ``excessive'', ``dense'', ``good'', ``light'', and ``poorly treated''. In addition, there is also a ``dense'' signal (S) or a ``low treatment'' signal (S).
5) is activated, the alarm circuit (19) is activated and the alarm buzzer (20) is sounded, indicating that the mixed water concentration is
Let them know that they are being treated poorly or poorly.

「濃過」信号(Sl)および「濃」信号(S2)は第1
の駆動回路(15)を作動せしめ、また「薄」信号(S
4)および「薄遇」信号(S5)は、第2の駆動回路(
16)を作動せしめる。第1の駆動回路(15)は、「
濃」信号(S2)および「濃過」信号(Sl)を受けて
出力し、ポンプ(Pl)を駆動して淡水タンク(2)よ
り淡水を供給する。また、第2の駆動回路(16)は、
「薄」信号(S4)および「薄遇」信号(S、)を受け
て出力し、ポンプ(Pl)を駆動して海水タンク(3)
より海水を供給する。これら淡水、海水の供給は上記信
号が失くなるまで継続する。「良」信号(S、)では、
両駆動回路(15)、 (16)は停止し、ポンプ(P
l)、(Pl)共停止する。
The "dark" signal (Sl) and the "dark" signal (S2) are the first
The drive circuit (15) is activated, and the "thin" signal (S
4) and the “low treatment” signal (S5) are sent to the second drive circuit (
16) is activated. The first drive circuit (15)
It receives and outputs the "concentration" signal (S2) and the "concentration" signal (Sl), drives the pump (Pl), and supplies fresh water from the fresh water tank (2). Moreover, the second drive circuit (16)
It receives and outputs the "thin" signal (S4) and the "thin" signal (S,), and drives the pump (Pl) to move the seawater tank (3)
Supply more seawater. The supply of fresh water and seawater continues until the above signal is lost. At a “good” signal (S,),
Both drive circuits (15) and (16) stop, and the pump (P
l) and (Pl) both stop.

水位センサ(6)には高水位(Hレベル)を検出する高
水位電極(6a)と低水位(Lレベル)を検出する低水
位電極(6b)とを有する。水位がLレベル以下となっ
たとき、両駆動回路(15)、 (16)を動作せしめ
ポンプ(p 1) 、(p z )を同時に駆動し淡水
、海水を同時供給する。この間濃度センサの信号は無関
係とし、ただ淡水と海水の供給比率を基準濃度に合致す
るよう、バルブ(Vi)、 (vz)を調節し濃度の粗
調整をする。
The water level sensor (6) has a high water level electrode (6a) for detecting a high water level (H level) and a low water level electrode (6b) for detecting a low water level (L level). When the water level falls below the L level, both drive circuits (15) and (16) are operated to simultaneously drive the pumps (p 1 ) and (p z ) to simultaneously supply fresh water and seawater. During this time, the signal from the concentration sensor is ignored, and the concentration is roughly adjusted by adjusting the valves (Vi) and (vz) so that the supply ratio of freshwater and seawater matches the standard concentration.

バルブ(V□L(Va)の調節は一般的には手動で行な
うが、動力方式として電気信号等により制御することも
可能である。
The valve (V□L (Va)) is generally adjusted manually, but it can also be controlled by an electric signal or the like as a power method.

水位がHレベルに達すると淡水、海水共供給停止し、こ
の時点から濃度センサ(5)の信号により濃度制御回路
(10)で弁別し、前述の方法で濃度の微調整を行なう
When the water level reaches the H level, both freshwater and seawater are stopped being supplied, and from this point on, the concentration control circuit (10) makes a distinction based on the signal from the concentration sensor (5), and finely adjusts the concentration using the method described above.

この間、混合水は調合機(21)あるいは海苔混合物攪
拌槽(22)へ、それぞれポンプ(P3)、 (P、)
により供給され、水位は漸次低下する。水位がLレベル
以下に下った途端、両駆動回路(15)、 (16)が
動作し、淡水、海水の同時供給に入り、以下前記工程を
繰返す。上記の動作から見て濃度センサ(5)の取付は
位置はLレベルより下方がよい。
During this time, the mixed water is pumped (P3), (P,) to the blender (21) or the seaweed mixture stirring tank (22), respectively.
The water level is gradually lowered. As soon as the water level falls below the L level, both drive circuits (15) and (16) are activated to simultaneously supply fresh water and seawater, and the above steps are repeated. In view of the above operation, the concentration sensor (5) should be installed at a position below the L level.

第8図は、混合水制御装置における濃度、水位の制御、
駆動回路の一例を示す。
Figure 8 shows concentration and water level control in the mixing water control device;
An example of a drive circuit is shown.

(101) 、 (102)は制御電源端子、(103
)は水位検出信号で低水位検出信号(103a) (常
閉接点)、高水位検出信号(103b) (常閉接点)
の直列回路として補助リレー(m)と直列に電源端子(
101) 、 (102)間に接続する。また補助リレ
ー(m)の自己保持接点(mal)を信号(103a)
と並列に接続する。補助リレー(m)は水位制御回路(
104)内に設けられ、その補助常閉接点(maz)+
 (ma□)はそれぞれ淡水ポンプ(P□)、海水ポン
プ(Pl)と直列にし電源端子(101) 。
(101) and (102) are control power supply terminals, (103
) are water level detection signals, low water level detection signal (103a) (normally closed contact), high water level detection signal (103b) (normally closed contact)
Connect the power terminal (
101) and (102). In addition, the self-holding contact (mal) of the auxiliary relay (m) is signaled (103a).
Connect in parallel with The auxiliary relay (m) is the water level control circuit (
104) and its auxiliary normally closed contact (maz)+
(ma□) are connected in series with a freshwater pump (P□) and a seawater pump (Pl), respectively, and are connected to power terminals (101).

(102)間に接続する。(105)、 (106)は
塩分濃度検出信号で(tOS)は濃側か、(106)は
薄側が検出された時の作動信号で、この場合作動時閉路
する接点として表わし、それぞれ前記接点(ma、)、
 (ma、)と並列に接続さ九ている。これらの回路は
有接点回路として構成しているが、無接点回路として構
成することも当然可能である。
(102) Connect between. (105) and (106) are the salt concentration detection signals, (tOS) is the operating signal when the rich side is detected, and (106) is the operating signal when the thin side is detected. ma, ),
(ma,) is connected in parallel with nine. Although these circuits are configured as contact circuits, it is of course possible to configure them as non-contact circuits.

上記回路の動作について説明すると、低水位信号(10
3a)が作動すると補助リレー(m)が動作しポンプ(
Pi)、 (Pl)が駆動され、高水位信号(103b
)が作動すると補助リレー(m)が開放し、ポンプ(P
工L (P、)の駆動を停止する。
To explain the operation of the above circuit, the low water level signal (10
When 3a) is activated, the auxiliary relay (m) is activated and the pump (
Pi) and (Pl) are driven, and the high water level signal (103b
) operates, the auxiliary relay (m) opens and the pump (P
Stop driving of the engineering L (P,).

一方で、「濃」、「濃過」の信号が作動するとポンプ(
P工)が駆動され同信号が失くなれば停止する。また、
「濃」、「濃過」の信号が作動するとポンプ(Pl)が
駆動され同信号が失くなれば停止する。
On the other hand, when the “concentration” or “concentration” signal is activated, the pump (
P) is driven and if the same signal is lost, it will stop. Also,
When the "concentration" and "overconcentration" signals are activated, the pump (Pl) is driven, and when the signal is lost, the pump (Pl) is stopped.

次に、サーミスタの動作について説明する。第8図は増
幅回路(12)の内部詳細を示したもので、(111)
、 (112)は電源端子で直流電源が印加され、(1
12)側をアース側としている。(113)は増幅器で
入力端子(H3a)、基準電圧入力端子(113b)、
出力端子(113c)を有する。入力端子(113a)
に濃度センサ出力を整流器(11)を経て入力する。端
子(111)。
Next, the operation of the thermistor will be explained. Figure 8 shows the internal details of the amplifier circuit (12), (111)
, (112) is a power supply terminal to which DC power is applied, and (1
12) side is the ground side. (113) is an amplifier with an input terminal (H3a), a reference voltage input terminal (113b),
It has an output terminal (113c). Input terminal (113a)
The concentration sensor output is input to the rectifier (11). Terminal (111).

(112)間に調整抵抗(114)、基準電圧分圧抵抗
(115)、基準電圧微調整抵抗(116)を直列にし
て接続し、調整抵抗(114)に並列にサーミスタ(2
6)を接続する。サーミスタ(26)は濃度センサ(5
)に取付けられており、その端子(26a)、 (26
b)を増幅回路(12)に引込み接続する。分圧抵抗(
115)両端子の中間にある分圧端子(115a)より
増幅率調整回路を経て増幅器の基準電圧入力端子(11
3b)に接続する。増幅率調整回路は前記分圧端子(1
15a)と基準電圧入力端子(113b)の間に接続さ
れた微調整抵抗(118)、基準電圧入力端子(113
b)と増幅器出力端子(113c)との間に並列に挿入
された抵抗(119)およびコンデンサ(120)より
成っている。出力端子(113c)と端子(112)と
の間に浮遊電圧抑制抵抗(121)を接続する。
(112), an adjustment resistor (114), a reference voltage dividing resistor (115), and a reference voltage fine adjustment resistor (116) are connected in series, and a thermistor (2
6) Connect. The thermistor (26) is connected to the concentration sensor (5
), and its terminals (26a), (26
b) is lead-connected to the amplifier circuit (12). Voltage dividing resistor (
115) The amplifier's reference voltage input terminal (11
3b). The amplification factor adjustment circuit connects the voltage dividing terminal (1
A fine adjustment resistor (118) connected between the reference voltage input terminal (113b) and the reference voltage input terminal (113b)
It consists of a resistor (119) and a capacitor (120) inserted in parallel between the amplifier output terminal (113c) and the amplifier output terminal (113c). A floating voltage suppression resistor (121) is connected between the output terminal (113c) and the terminal (112).

そこでサーミスタの作用について説明する。混合水の濃
度は濃度センサ(5)によりその電極間の抵抗値を測定
して濃度値を求めているが、水温が上昇すると抵抗値が
下り、増幅器入力端子(113a)に与えられる信号電
圧値が上る。従って増幅器(113)の出力信号電圧値
が上ることになり、水温の上昇によって濃度値が見掛は
上「濃」側へ移動する。
Therefore, the action of the thermistor will be explained. The concentration of the mixed water is determined by measuring the resistance value between the electrodes using the concentration sensor (5), but as the water temperature rises, the resistance value decreases and the signal voltage value given to the amplifier input terminal (113a) increases. rises. Therefore, the output signal voltage value of the amplifier (113) increases, and the concentration value apparently moves upward toward the "dense" side due to the rise in water temperature.

サーミスタの抵抗は水温の上昇に伴って低下し。The resistance of the thermistor decreases as the water temperature rises.

基準電圧分圧点(115a)の電位が上昇し、増幅器基
準電圧入力端子(113b)の電位が上昇する。この基
準電圧入力の電位上昇により入力端子(113a)の基
準電圧入力端子(113b)に対する電位差が縮まり上
記水温上昇による増幅器入力電圧の上昇分が補償される
The potential at the reference voltage dividing point (115a) increases, and the potential at the amplifier reference voltage input terminal (113b) increases. This increase in the potential of the reference voltage input reduces the potential difference between the input terminal (113a) and the reference voltage input terminal (113b), thereby compensating for the increase in the amplifier input voltage due to the water temperature rise.

水温が下降した場合についても同様にして補償すること
ができる6以上のようにして水温の変化によって増幅器
の出力信号電圧が変動しないようにしている。
Even when the water temperature decreases, compensation can be made in the same way.As described above, the output signal voltage of the amplifier is prevented from fluctuating due to changes in the water temperature.

塩分濃度は前述のように濃過ぎると海苔製品の品質を害
するので許容限界を超えないよう管理の必要があり、例
えば、設定基準値Nαは許容値Nmの95%とし、プラ
スマイナスの管理幅(良とする基準値域幅)ΔNは5%
とし、管理幅上限Nα+ΔN=100%としている。
As mentioned above, if the salt concentration is too high, it will harm the quality of the seaweed product, so it must be managed so as not to exceed the permissible limit.For example, the set standard value Nα is set to 95% of the permissible value Nm, and a control range of plus or minus ( Standard value range width) ΔN is 5%
The upper limit of the management width is Nα+ΔN=100%.

以上のように管理幅を定め濃度が下限管理値以下になれ
ば海水の供給指令を出し、濃度が増して下限管理値に至
れば停止指令を出す。また、濃度が上限管理値を超える
と淡水の供給指令を出し。
As described above, the control range is determined, and when the concentration falls below the lower limit control value, a seawater supply command is issued, and when the concentration increases and reaches the lower limit control value, a stop command is issued. Additionally, if the concentration exceeds the upper limit control value, a command is issued to supply fresh water.

濃度が下って上限管理値に至れば停止指令を出すように
している。
When the concentration drops to the upper limit control value, a stop command is issued.

なお、設定基準値Nαの設定は装置内蔵の固定インピー
ダンスまたは可変インピーダンスで行なうが、妄に調整
できないようにしている。
Note that the setting reference value Nα is set using a fixed impedance or a variable impedance built into the device, but it is made so that it cannot be adjusted arbitrarily.

設定基準値をどのようにするかは業界の合意により定め
られるが、一般には許容値Nmが0.2%程度と考えら
れ、その場合、基準値Nαは0.19%となり、淡水と
海水の同時供給の際の供給量の比率を海水の塩分を例え
ば3%として求めると、A+B 即ち、淡水二′S水=14 : 1となる。
How to set the standard value is determined by industry consensus, but generally the allowable value Nm is considered to be around 0.2%, in which case the standard value Nα will be 0.19%, which is the difference between freshwater and seawater. If the ratio of the supply amount in simultaneous supply is determined assuming that the salt content of seawater is 3%, for example, it will be A+B, that is, fresh water and 2'S water = 14:1.

〔発明の効果〕〔Effect of the invention〕

上述したように本発明によれば、混合水調整槽内の混合
水の塩分濃度を定電圧発振変調信号を用いた濃度センサ
により検出するようにし、あるいはこの混合水の温度に
よる温度補正回路を介して検出するようにしたので、濃
度センサの信号電源を定電圧とすることにより、電源電
圧の変動に起因する測定誤差を防止でき、濃度センサ電
源として正負平衡した高周波等の発振変調信号を使用す
ることにより、濃度センサの電極における電気分解ガス
の影響による測定誤差を防止でき、また、温度補正回路
により混合水の水温変動による測定誤差を防止でき、よ
って正確にかつ連続的に塩分濃度検出値を検出すること
ができる。
As described above, according to the present invention, the salt concentration of the mixed water in the mixed water adjustment tank is detected by a concentration sensor using a constant voltage oscillation modulation signal, or via a temperature correction circuit based on the temperature of this mixed water. By using a constant voltage as the signal power source for the concentration sensor, it is possible to prevent measurement errors caused by fluctuations in the power supply voltage, and it is possible to use an oscillation modulation signal such as a high frequency signal with balanced polarity as the concentration sensor power source. This prevents measurement errors due to the influence of electrolyzed gas on the electrodes of the concentration sensor, and the temperature correction circuit prevents measurement errors due to temperature fluctuations in the mixed water, making it possible to accurately and continuously measure detected salinity values. can be detected.

本発明を適用すれば、混合水調整槽(1)に供給される
淡水と海水の混合水の塩分濃度を調整するに当って、検
出値と適正値との濃度差検出信号に応じて淡水又は海水
を継続的に供給して迅速に塩分濃度を調整することがで
き、混合水の使用量が大量になっても適正塩分濃度の混
合水を連続供給でき、このようにして得られた適正塩分
濃度の混合水を、調合機(21)における海苔との調合
用に、また海苔混合物攪拌槽(22)における海苔混合
物の海苔濃度調整用にそれぞれ使用すれば、海苔抄き原
料である海苔混合物の塩分濃度を常時適正範囲に維持し
、しかも大量に連続供給することができる。
If the present invention is applied, when adjusting the salinity concentration of the mixed water of freshwater and seawater supplied to the mixed water adjustment tank (1), it is possible to The salinity can be adjusted quickly by continuously supplying seawater, and even if a large amount of mixed water is used, mixed water with the appropriate salinity can be continuously supplied, and the appropriate salinity obtained in this way can be adjusted continuously. If mixed water with a certain concentration is used for blending with seaweed in the blender (21) and for adjusting the concentration of seaweed in the seaweed mixture in the seaweed mixture stirring tank (22), It can maintain the salt concentration within an appropriate range at all times and can continuously supply a large amount.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す濃度センサの断面図、第
2図は本発明における濃度測定回路図、第3図(a)は
第2図のA点における出力波形、第3図(b)は第2図
の8点における出力波形、第4図は温度(水温)−水抵
抗値特性図、第5図は混合水制御装置における濃度、水
位の制御、駆動回路図、第6図は増幅回路の内部詳細図
、第7図は海苔混合物の塩分濃度調整方法及び装置のフ
ローシート、第8図は同じく海苔混合物の塩分濃度調整
装置の例を示すブロック図である。 (1);混合水調整槽  (2):淡水タンク(3):
海水タンク   (4):攪拌機(5):濃度センサ 
  (6):水位センサ(7):混合水制御装置 (8
):電源回路(9):発振変調回路  (10) : 
if!!を度制御回路(11) :整流器     (
12) :増幅回路(13) :信号弁別器   (1
4) :水位制御回路(15) :第1の駆動回路 (
16) :第2の駆動回路(17) :表示回路   
 (18) :表示灯(19) : ’1報回路   
 (20) : ff報ブザー(21) :調合機  
   (22) :海苔混合物攪拌槽(23) :絶縁
筒体    (24) 、 (25) :電極(26)
 :温度補正回路 (pz)、(p2)、(pa)、(p、) :ポンプ(
vz)、(vz) :バルブ L工〜L、:表示灯
FIG. 1 is a sectional view of a concentration sensor showing an embodiment of the present invention, FIG. 2 is a concentration measurement circuit diagram according to the present invention, FIG. 3(a) is an output waveform at point A in FIG. 2, and FIG. b) is the output waveform at 8 points in Figure 2, Figure 4 is the temperature (water temperature) - water resistance value characteristic diagram, Figure 5 is the concentration, water level control and drive circuit diagram in the mixing water control device, and Figure 6 is the diagram. 7 is a flow sheet of a method and apparatus for adjusting the salinity concentration of a seaweed mixture, and FIG. 8 is a block diagram showing an example of the apparatus for adjusting the salinity concentration of a seaweed mixture. (1); Mixed water adjustment tank (2): Fresh water tank (3):
Seawater tank (4): Stirrer (5): Concentration sensor
(6): Water level sensor (7): Mixed water control device (8
): Power supply circuit (9): Oscillation modulation circuit (10):
If! ! Degree control circuit (11): Rectifier (
12) : Amplifier circuit (13) : Signal discriminator (1
4): Water level control circuit (15): First drive circuit (
16): Second drive circuit (17): Display circuit
(18): Indicator light (19): '1 signal circuit
(20) : FF alarm buzzer (21) : Compounding machine
(22): Seaweed mixture stirring tank (23): Insulating cylinder (24), (25): Electrode (26)
: Temperature correction circuit (pz), (p2), (pa), (p,) : Pump (
vz), (vz): Valve L-L,: Indicator light

Claims (1)

【特許請求の範囲】 1、直流定電圧電源を受けて発振変調回路より所定の高
周波信号を発生せしめ、その出力高周波信号の基準レベ
ルを調整して正負平衡した高周波出力信号とし、この出
力信号を水中の濃度センサの電極に与えることを特徴と
する水の塩分濃度測定方法。 2、濃度センサの出力信号を水温によって作動する温度
補正回路を経て出力することを特徴とする特許請求の範
囲第1項記載の水の塩分濃度測定方法。 3、直流定電圧電源を与える電源回路、該電源回路より
直流定電圧を受け発振回路により所定の高周波信号を発
明する発振変調回路、該発振変調回路の出力信号の基準
レベルを調整する基準レベル調整回路、被測定水中に浸
漬され前記調整回路を経た高周波信号を受ける1対の電
極を有する濃度センサを備えたことを特徴とする水の塩
分濃度測定装置。 4、濃度センサに水温を感知する温度補正素子を組込ん
だことを特徴とする特許請求の範囲第3項記載の水の塩
分濃度測定装置。
[Claims] 1. Generate a predetermined high frequency signal from an oscillation modulation circuit by receiving a DC constant voltage power supply, adjust the reference level of the output high frequency signal to make a high frequency output signal with positive and negative balance, and convert this output signal into A method for measuring the salinity concentration of water, characterized in that the salt concentration is applied to an electrode of a concentration sensor in water. 2. The method for measuring the salinity concentration of water according to claim 1, characterized in that the output signal of the concentration sensor is outputted through a temperature correction circuit that is operated depending on the water temperature. 3. A power supply circuit that provides a DC constant voltage power supply, an oscillation modulation circuit that receives a DC constant voltage from the power supply circuit and generates a predetermined high frequency signal using an oscillation circuit, and a reference level adjustment that adjusts the reference level of the output signal of the oscillation modulation circuit. 1. An apparatus for measuring salinity of water, comprising: a circuit; and a concentration sensor having a pair of electrodes that are immersed in water to be measured and receive a high-frequency signal that has passed through the adjustment circuit. 4. The water salinity concentration measuring device according to claim 3, wherein the concentration sensor incorporates a temperature correction element for sensing water temperature.
JP61315048A 1986-12-26 1986-12-26 Method and apparatus for measuring concentration of salt component of water Pending JPS62167457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61315048A JPS62167457A (en) 1986-12-26 1986-12-26 Method and apparatus for measuring concentration of salt component of water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61315048A JPS62167457A (en) 1986-12-26 1986-12-26 Method and apparatus for measuring concentration of salt component of water

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59116301A Division JPS60259165A (en) 1984-06-05 1984-06-05 Method of control of salt concentration of laver mixture and its device

Publications (1)

Publication Number Publication Date
JPS62167457A true JPS62167457A (en) 1987-07-23

Family

ID=18060802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61315048A Pending JPS62167457A (en) 1986-12-26 1986-12-26 Method and apparatus for measuring concentration of salt component of water

Country Status (1)

Country Link
JP (1) JPS62167457A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100760127B1 (en) 2006-06-02 2007-09-18 엘지전자 주식회사 Apparatus for detecting salinity
WO2011040244A1 (en) * 2009-10-01 2011-04-07 国立大学法人豊橋技術科学大学 Multimodal sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55146032A (en) * 1979-05-01 1980-11-14 Sumitomo Electric Ind Ltd Water content meter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55146032A (en) * 1979-05-01 1980-11-14 Sumitomo Electric Ind Ltd Water content meter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100760127B1 (en) 2006-06-02 2007-09-18 엘지전자 주식회사 Apparatus for detecting salinity
WO2011040244A1 (en) * 2009-10-01 2011-04-07 国立大学法人豊橋技術科学大学 Multimodal sensor
JPWO2011040244A1 (en) * 2009-10-01 2013-02-28 国立大学法人豊橋技術科学大学 Multimodal sensor

Similar Documents

Publication Publication Date Title
US6168692B1 (en) Apparatus for generating alkali ion water
WO1988001740A1 (en) Improved technique for the measurement of high purity water
JP2810262B2 (en) Control device for continuous electrolytic ionized water generator
JPS62167457A (en) Method and apparatus for measuring concentration of salt component of water
EP2233441A1 (en) Electrolysis water generator
JPS60259165A (en) Method of control of salt concentration of laver mixture and its device
US3844913A (en) Method for regulating anode-cathode spacing in an electrolytic cell to prevent current overloads and underloads
JPS6336744B2 (en)
JPH0542910B2 (en)
JPS6225958A (en) Adjusting of salt concentration of laver and apparatus therefor
US6856916B2 (en) Locating system of oxidation/reduction potential of electrolysis water and the constant output method of calibration and compensation thereof
JPH0158947B2 (en)
JPH06246269A (en) Device for producing electrolyte
KR100706073B1 (en) A constant output method of calibration and compensation of a locating system of oxidation/reduction potential of an electrolysis water
JPH0857448A (en) Control device of garbage treatment device
JP7422444B1 (en) Electrolyzed water generation device and electrolyzed water generation method
JP3192182B2 (en) Control device for continuous electrolytic ionized water generator
JPS62112693A (en) Production of coal-water slurry
JPS61170815A (en) Adjusting device for viscosity
JPH09138207A (en) Apparatus and method for detection of conductivity
JPH08294603A (en) Coagulation treating apparatus
JPH08117511A (en) Chemical injection control apparatus
JPH08178893A (en) Method for measuring concentration of additive in electrolyte, and method for controlling concentration of additive
JPH07290059A (en) Ionized water producer
SU861355A1 (en) Method of automatic control of synthetic rubber latex coagulation process