JPS6336744B2 - - Google Patents
Info
- Publication number
- JPS6336744B2 JPS6336744B2 JP61164269A JP16426986A JPS6336744B2 JP S6336744 B2 JPS6336744 B2 JP S6336744B2 JP 61164269 A JP61164269 A JP 61164269A JP 16426986 A JP16426986 A JP 16426986A JP S6336744 B2 JPS6336744 B2 JP S6336744B2
- Authority
- JP
- Japan
- Prior art keywords
- concentration
- water
- seaweed
- circuit
- water level
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 122
- 241001474374 Blennius Species 0.000 claims description 64
- 239000013535 sea water Substances 0.000 claims description 40
- 150000003839 salts Chemical class 0.000 claims description 38
- 239000013505 freshwater Substances 0.000 claims description 34
- 239000000203 mixture Substances 0.000 claims description 25
- 230000010355 oscillation Effects 0.000 claims description 10
- 238000012937 correction Methods 0.000 claims description 4
- 238000005406 washing Methods 0.000 description 13
- 239000002994 raw material Substances 0.000 description 11
- 238000002156 mixing Methods 0.000 description 10
- 238000005259 measurement Methods 0.000 description 9
- 238000003756 stirring Methods 0.000 description 9
- 239000000047 product Substances 0.000 description 6
- 238000001514 detection method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 241000195493 Cryptophyta Species 0.000 description 3
- 230000003321 amplification Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- -1 shells Substances 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Edible Seaweed (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は海苔抄機に供給される海苔抄き原料の
塩分濃度を調整するための装置に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a device for adjusting the salt concentration of raw material for making nori that is supplied to a nori making machine.
従来海苔抄製の際に割れ、破れ等が発生し歩留
りが低下していた。また、海苔抄き原料に僅かな
塩分を含ませることにより、歩留りが向上し、
色、光沢も良くなるが、塩分が多すぎると海苔保
存時に吸湿したり、2次加工時に塩分が析出して
品質を害するおそれがあつた。また、海苔抄機に
は常時大量の海苔抄き原料を連続供給しなければ
ならず、その塩分濃度を規定範囲に維持するのに
困難性があつた。
Conventionally, when making seaweed paper, cracks, tears, etc. occurred, resulting in a decrease in yield. In addition, by adding a small amount of salt to the seaweed raw material, the yield is improved.
Although the color and gloss are improved, if the salt content is too high, there is a risk that the seaweed may absorb moisture during storage or precipitate during secondary processing, impairing its quality. In addition, a large amount of raw material for seaweed must be continuously supplied to the seaweed machine at all times, and it is difficult to maintain the salt concentration within a specified range.
これを改善したものとして例えば実公昭59−54
号公報に示すごときものがあり、同公報には洗滌
機1によつて洗滌された生海苔と水とを一定の割
合で撹拌し調合する調合タンク3に、タンク内の
生海苔と水との混合液の塩分濃度を検出する検出
器10を設け、同検出器10の塩分濃度検出信号
に応じて塩分濃度が所定の範囲の濃度値におさま
る様に、洗滌機1の生海苔の洗滌時間又は洗滌水
量を自動制御する制御器11を備えた装置が示さ
れている。 For example, as an improved version of this,
There is something like the one shown in the publication, and the publication states that in a mixing tank 3, which mixes the raw seaweed washed by the washing machine 1 and water at a certain ratio, the raw seaweed and water in the tank are mixed. A detector 10 is provided to detect the salt concentration of the mixed liquid, and the cleaning time of the raw seaweed in the washing machine 1 or A device is shown that includes a controller 11 that automatically controls the amount of washing water.
しかしながら、この装置においては、次のよう
な問題点がある。まず第一に、海苔原藻には一般
に貝殻、砂、藁屑、鉄粉等の挾雑物を含んでお
り、その洗滌に当つては海苔製品の品質を良くす
るため、前述のような理由による塩分の除去と同
時にこれら挾雑物を除去する必要があり、そのた
めには充分な洗滌を必要とし、この充分な洗滌を
した後は海苔原藻には塩分は略ゼロの状態となつ
ている。従つて塩分を残すような洗滌では洗滌が
中途半端となり、前記挾雑物の除去が完全にでき
ず、却つて海苔製品の品質の著しい低下を招くこ
とになる。 However, this device has the following problems. First of all, seaweed algae generally contain foreign substances such as shells, sand, straw waste, iron powder, etc., and cleaning them is done for the reasons mentioned above in order to improve the quality of seaweed products. It is necessary to remove these impurities at the same time as removing the salt, and for this purpose, sufficient washing is required, and after this sufficient washing, the salt content in the seaweed algae is almost zero. . Therefore, washing that leaves salt behind results in incomplete washing, and the impurities cannot be completely removed, leading to a significant deterioration in the quality of the seaweed product.
第二に調合タンク3内の生海苔と水との混合液
即ち海苔抄き原料は、海苔原品の厚さを均一にす
るため海苔濃度を適正かつ均一に保つことが必要
で、従つて、調合タンク3内の混合液は海苔濃度
を所定の値に保つため生海苔と水との供給比率を
頻繁に調整する必要があり、この調整の都度混合
液の塩分濃度が影響されて変動し、その都度検出
器10の信号に応じ制御器11が動作して洗滌時
間又は洗滌水量を制御することになるが、生海苔
の供給速度は海苔濃度を一定に保つため略一定の
速度で供給されるものであるから調合タンク内の
塩分濃度を急速に改善することは困難で、そのう
ち再び海苔濃度調整が行なわれてその影響を受
け、この状態が繰返されることになり、塩分濃度
は常に不安定な状態となる。即ち、生海苔の洗滌
時間又は洗滌水量の制御によるのみでは塩分濃度
の迅速な適正制御は不可能であつた。この場合、
一旦混合された調合タンク内混合液の塩分濃度を
修正するには、洗滌機から新に供給する生海苔と
水との混合物の塩分濃度により平均化し、その平
均化された塩分濃度を都度検出して除々に適正値
へ近づけるほかはなく、反応が非常に緩慢とな
る。そして、追加供給する生海苔と水の混合物の
塩分濃度を所定の範囲としたときは、小幅修正の
繰返しとなり塩分濃度の迅速な修正は望めず、ま
た、追加供給する混合物の塩分濃度を槽内塩分濃
度が逆の方に調整されるような値としたときは、
かなり急速に修正されるものの、塩分濃度が過調
整により逆の方に外れ、所定の範囲の両側に交互
に振れハンチングを起すおそれがあり、何れにし
ても迅速な安定した調整は望めず、常時大量の海
苔抄き原料(混合物)連続供給するには制御に時
間がかかり適応できなかつた。 Second, the mixed liquid of raw seaweed and water in the mixing tank 3, that is, the seaweed raw material, needs to maintain an appropriate and uniform concentration of seaweed in order to make the thickness of the raw seaweed product uniform. In order to maintain the seaweed concentration at a predetermined value in the mixed liquid in the mixing tank 3, it is necessary to frequently adjust the supply ratio of raw seaweed and water, and each time this adjustment is performed, the salt concentration of the mixed liquid is affected and fluctuates. Each time, the controller 11 operates according to the signal from the detector 10 to control the washing time or the amount of washing water, but the raw seaweed is fed at a substantially constant speed to keep the seaweed concentration constant. Because of this, it is difficult to rapidly improve the salt concentration in the mixing tank, and eventually the seaweed concentration will be adjusted again and this situation will be repeated, resulting in the salt concentration being constantly unstable. state. That is, it has not been possible to quickly and appropriately control the salinity concentration only by controlling the washing time of raw seaweed or the amount of washing water. in this case,
To correct the salt concentration of the mixture in the mixing tank once mixed, the salt concentration of the raw seaweed and water mixture newly supplied from the washing machine is averaged, and the averaged salt concentration is detected each time. The only way to do this is to gradually approach the appropriate value, and the reaction becomes extremely slow. When the salinity of the raw seaweed and water mixture to be additionally supplied is set within a predetermined range, small corrections will be repeated, making it impossible to quickly correct the salinity. When the value is such that the salt concentration is adjusted in the opposite direction,
Although it is corrected fairly quickly, there is a risk that the salinity concentration will deviate in the opposite direction due to over-adjustment, causing alternating fluctuations on both sides of the predetermined range and hunting, and in any case, quick and stable adjustment cannot be expected, and the Continuously supplying a large amount of seaweed raw material (mixture) required time to control and could not be adapted.
本発明は、上記の点に鑑み、海苔抄き原料の塩
分を規定範囲に維持しつつ大量供給に支障を来さ
ないよう、海苔抄き原料の塩分濃度を適正にかつ
迅速に調整することを可能ならしめ、以て海苔抄
製の際の歩留りや製品海苔の色、光沢等の品質を
向上すると共に、保存時の吸湿や2次加工時の塩
分析出等のトラブルを解消せしめることをその目
的としている。
In view of the above points, the present invention aims to appropriately and quickly adjust the salt concentration of the raw material for making nori paste so as to maintain the salinity of the raw material for making nori paste within a specified range and not to cause problems in large-scale supply. Our aim is to improve the quality of seaweed paper production, such as the yield rate and the color and gloss of the product, as well as eliminate problems such as moisture absorption during storage and salt analysis during secondary processing. The purpose is
本発明は、海苔原藻をミンチ化して水洗した
後、このミンチ化した海苔を調合機あるいは海苔
濃度調整槽において水と混合して海苔と水との混
合物を作る際に、この混合物の海苔抄機に供給す
るに適した適正濃度基準値あるいはこの基準値に
管理幅を考慮した適正濃度範囲を定め、前記水と
して予め前記適正濃度範囲の塩分濃度に調整され
た水を用い、また、この水の塩分濃度を調整する
に当つて、適正濃度範囲の塩分濃度の混合水が得
られるような比率で淡水と海水を同時に混合水調
整槽に供給し、高水位に上昇したとき同時供給を
止め、この混合水調整槽内の混合水の塩分濃度を
定電圧発振変調信号を用いた濃度センサにより検
出し、この検出塩分濃度が前記適正濃度範囲より
高いときは淡水を供給し、検出塩分濃度が適正濃
度範囲より低いときは海水を供給し、何れの場合
も濃度が適正濃度範囲に入れば供給停止し、混合
水を次段へ供給するのに伴つて水位が低水位に降
下したとき再度淡水、海水の同時供給を開始し高
水位に達するまで継続するようにしたもので、そ
の装置は塩分と水の混合水調整槽に淡水を供給す
る手段、海水を供給する手段、各供給手段の時間
当り供給量をそれぞれ調節する手段、調整槽内塩
分濃度を検出するセンサ、当該センサに定電圧高
周波電源を与える発振変調回路、調整槽内の低水
位および高水位を検出する水位センサ、低水位セ
ンサ信号により淡水、海水両供給手段を同時に駆
動する出力信号を出し、高水位センサ信号により
当該出力信号を停止する水位制御回路、塩分適正
濃度範囲と調整槽内塩分濃度測定値を比較し測定
値が塩分適正濃度範囲より大なる時に淡水供給手
段を駆動する出力信号を出し、測定値が適正濃度
範囲より小なる時は海水供給手段を駆動する出力
信号を出す塩分濃度制御回路より成ることを特徴
とするものである。
The present invention involves mincing raw seaweed, washing it with water, and then mixing the minced seaweed with water in a blender or seaweed concentration adjustment tank to create a mixture of seaweed and water. An appropriate concentration standard value suitable for supplying to the machine or an appropriate concentration range that takes into account the control width is determined based on this standard value, and water that has been adjusted in advance to have a salinity within the appropriate concentration range is used as the water. To adjust the salinity of water, freshwater and seawater are simultaneously supplied to the mixed water adjustment tank at a ratio that will yield mixed water with a salinity within the appropriate concentration range, and when the water level rises to a high level, the simultaneous supply is stopped. The salt concentration of the mixed water in this mixed water adjustment tank is detected by a concentration sensor using a constant voltage oscillation modulation signal, and when the detected salt concentration is higher than the appropriate concentration range, fresh water is supplied, and the detected salt concentration is adjusted to the appropriate level. When the concentration is lower than the range, seawater is supplied, and in either case, when the concentration falls within the appropriate concentration range, the supply is stopped, and when the water level drops to a low level as the mixed water is supplied to the next stage, fresh water is supplied again. This device starts the simultaneous supply of seawater and continues until it reaches a high water level, and the device consists of a means for supplying freshwater to a mixed water adjustment tank of salt and water, a means for supplying seawater, and a means for supplying seawater per hour of each supply means. Means for adjusting each supply amount, a sensor that detects the salt concentration in the adjustment tank, an oscillation modulation circuit that supplies constant voltage high frequency power to the sensor, a water level sensor that detects low and high water levels in the adjustment tank, and a low water level sensor signal A water level control circuit that outputs an output signal that simultaneously drives both freshwater and seawater supply means, and stops the output signal based on a high water level sensor signal, compares the appropriate salinity concentration range with the measured value of salinity in the adjustment tank, and determines whether the measured value is salinity. It is characterized by comprising a salinity concentration control circuit that outputs an output signal to drive the freshwater supply means when the measured value is greater than the appropriate concentration range, and outputs an output signal to drive the seawater supply means when the measured value is smaller than the appropriate concentration range. It is something.
〔実施例〕
以下、本発明を図面に示す実施例に基いて説明
する。[Example] The present invention will be described below based on an example shown in the drawings.
第1図は本発明のフローシートを示すものであ
つて、海苔原藻をミンチ機により細小片に裁断す
ることによつてミンチ化し、この海苔を充分に水
洗して塩分や挾雑物を取除いた後、このミンチ化
した海苔を調合機において海苔と水との混合物、
即ち海苔混合物を作り、この海苔混合物は海苔混
合物撹拌槽内に撹拌しながら一旦貯溜する。撹拌
槽内では必要に応じて濃度調整することもでき
る。この場合の水は、僅かな塩分を加えた所定濃
度の混合水とし、混合水を貯溜し調整する混合水
調整槽よりポンプP3により調合機へ、また濃度
調整の際に必要な水はポンプP4により供給する。
混合水調整槽へは淡水タンクより淡水、海水タン
クより海水がそれぞれポンプP1,P2により供給
される。混合水調整槽内には塩分濃度を検知する
濃度センサと槽内水位を検知する水位センサを備
え、混合水制御装置には濃度センサ出力を受けて
作動する濃度制御回路、水位センサの出力を受け
て作動する水位制御回路、これら濃度制御回路、
水位制御回路の出力を受けて作動する駆動回路を
有する。濃度センサおよび水位センサの出力を受
けて作動する混合水制御装置の駆動回路出力信号
によりポンプP1,P2が作動され、淡水及び海水
の供給量、従つて混合水の供給量と塩分濃度が制
御される。調合機の海苔混合物は海苔混合物撹拌
槽に給送され、この撹拌槽内で撹拌、調整された
海苔混合物は海苔抄機へ供給される。 Figure 1 shows the flow sheet of the present invention, in which the seaweed is minced by cutting it into small pieces using a mincing machine, and the seaweed is thoroughly washed with water to remove salt and foreign substances. After removing the minced seaweed, a mixture of seaweed and water is prepared in a blending machine.
That is, a seaweed mixture is prepared, and this seaweed mixture is temporarily stored in a seaweed mixture stirring tank while being stirred. The concentration can also be adjusted in the stirring tank as necessary. In this case, the water is mixed water with a predetermined concentration with a small amount of salt added, and the mixed water is stored and adjusted from the mixed water adjustment tank to the blender by pump P 3 , and the water necessary for concentration adjustment is pumped. Supplied by P 4 .
Fresh water is supplied from the freshwater tank and seawater is supplied from the seawater tank to the mixed water adjustment tank by pumps P 1 and P 2 , respectively. The mixed water adjustment tank is equipped with a concentration sensor that detects the salinity concentration and a water level sensor that detects the water level in the tank.The mixed water control device has a concentration control circuit that operates in response to the concentration sensor output, and a concentration control circuit that operates in response to the output of the water level sensor. These concentration control circuits,
It has a drive circuit that operates in response to the output of the water level control circuit. Pumps P 1 and P 2 are operated by the drive circuit output signal of the mixed water control device that operates in response to the outputs of the concentration sensor and water level sensor, and the supply amount of fresh water and seawater, and therefore the supply amount and salinity of mixed water are controlled. controlled. The seaweed mixture from the mixer is fed to a seaweed mixture stirring tank, and the seaweed mixture stirred and adjusted in this stirring tank is supplied to a seaweed machine.
第2図は本発明を実施するための混合水の塩分
濃度調整装置の一実施例を示すもので、混合水調
整槽1は、淡水タンク2より淡水、淡水タンク3
より海水がそれぞれポンプP1,P2により送られ
貯溜するよう設置されている。 FIG. 2 shows an embodiment of a mixed water salinity adjusting device for carrying out the present invention.
The pumps P 1 and P 2 are configured to send seawater to the pumps and store them therein.
混合水調整槽1には、槽内に貯溜された混合水
を撹拌する撹拌機4と混合水の塩分濃度を検出す
るための濃度センサ5と、槽内の水位が予め設定
された高水位(Hレベル)および低水位(Lレベ
ル)に達したときにそれぞれ作動して信号を発す
る水位センサ6とが取付けられている。混合水制
御装置7には電源回路8、発振変調回路9、濃度
制御回路10、水位制御回路14、第1の駆動回
路15、第2の駆動回路16、表示回路17、表
示灯18、警報回路19、警報ブザー20を有し
ている。濃度制御回路10は整流器11、増幅回
路12、信号弁別器13より成る。第1、第2の
駆動回路15,16の出力により淡水および海水
の供給手段であるポンプP1,P2が駆動され、淡
水タンク2、海水タンク3よりそれぞれ淡水、海
水が混合水調整槽1に供給される。淡水、海水の
供給路にはそれぞれの供給量を調整する手段とし
てバルブV1,V2がおかれ時間当り供給量の調節
を可能にしている。調合機21へ海苔と水が供給
されるが、その水は混合水調整槽よりポンプP3
によつて供給される。海苔混合物撹拌槽22には
調合機21より海苔混合物が供給され、ここで海
苔濃度調整の必要がある場合、調整用の水は混合
水調整槽1よりポンプP4により供給される。海
苔混合物撹拌槽22内にて撹拌調整された海苔混
合物は海苔抄き原料として海苔抄機へ供給され
る。 The mixed water adjustment tank 1 includes a stirrer 4 that stirs the mixed water stored in the tank, a concentration sensor 5 that detects the salt concentration of the mixed water, and a high water level (the water level in the tank is set in advance). A water level sensor 6 is installed which operates and issues a signal when the water level reaches the H level) and the low water level (L level). The mixed water control device 7 includes a power supply circuit 8, an oscillation modulation circuit 9, a concentration control circuit 10, a water level control circuit 14, a first drive circuit 15, a second drive circuit 16, a display circuit 17, an indicator light 18, and an alarm circuit. 19, it has an alarm buzzer 20. The concentration control circuit 10 includes a rectifier 11, an amplifier circuit 12, and a signal discriminator 13. The outputs of the first and second drive circuits 15 and 16 drive pumps P 1 and P 2 which are freshwater and seawater supply means, and freshwater and seawater are supplied to the mixed water adjustment tank 1 from the freshwater tank 2 and the seawater tank 3, respectively. supplied to Valves V 1 and V 2 are placed in the freshwater and seawater supply channels as means for adjusting the respective supply amounts, making it possible to adjust the supply amounts per hour. Seaweed and water are supplied to the blender 21, but the water is pumped from the mixing water adjustment tank to pump P3.
Powered by. The seaweed mixture is supplied from the mixer 21 to the seaweed mixture stirring tank 22, and if it is necessary to adjust the concentration of seaweed, water for adjustment is supplied from the mixing water adjustment tank 1 by the pump P4 . The seaweed mixture stirred and adjusted in the seaweed mixture stirring tank 22 is supplied to a seaweed machine as a raw material for seaweed papermaking.
第3図は濃度センサの実施例を示し、絶縁筒体
23内に所定の間隔を隔てて電極24,25を置
き、その先端は筒体23内に突出せしめ、基部は
筒体に埋込みそれぞれ信号線24a,25aを導
出する。電極の一方、例えば25にはセンサ出力
に対するサーミスタ等の温度補正回路26を組込
む。 FIG. 3 shows an embodiment of the concentration sensor, in which electrodes 24 and 25 are placed at a predetermined interval in an insulating cylinder 23, the tips of which protrude into the cylinder 23, and the bases of which are embedded in the cylinder and provide signals respectively. Lines 24a and 25a are derived. One of the electrodes, for example 25, incorporates a temperature correction circuit 26 such as a thermistor for the sensor output.
第4図は電源回路8、発振変調回路9の実施例
を示す。電源回路8は制御装置各回路に交流電源
を供給すると共に整流回路8a、定電圧回路8b
を介し、直流電源、定電圧電源を供給する。 FIG. 4 shows an embodiment of the power supply circuit 8 and the oscillation modulation circuit 9. In FIG. The power supply circuit 8 supplies AC power to each circuit of the control device, and also includes a rectifier circuit 8a and a constant voltage circuit 8b.
DC power and constant voltage power are supplied through the
電源回路8は商用周波交流で受電し、整流して
一旦直流とするがこの過程で定電圧回路を組込ん
でおり、その後段で高周波発生時には一定電圧の
交流が得られるようにしており、電源側の電圧変
動が±20%の範囲では2次側へ影響がなく濃度測
定を安定せしめている。 The power supply circuit 8 receives power in the form of commercial frequency alternating current, rectifies it, and once converts it into direct current. In this process, a constant voltage circuit is built in, so that when a high frequency is generated in the subsequent stage, a constant voltage alternating current is obtained. If the side voltage fluctuation is within ±20%, there is no effect on the secondary side, making concentration measurement stable.
発振変調回路9は、直流定電圧を受け、無安定
マルチバイブレータ等の発振回路9aにより所定
の高周波出力を得る。この出力端A点における出
力波形を第5図aに示す。この場合周波数は固定
あるいは可変とする。また、抵抗、コンデンサ等
による基準レベル調整回路9bにより基準レベル
を調整し正負平衡した高周波出力を得るようにす
る。この出力端B点における出力波形を第5図b
に示す。この周波数出力を濃度センサの電極2
4,25へ印加し、濃度センサ5を作動せしめ
る。濃度センサ5の出力は濃度制御回路10へ入
力される。 The oscillation modulation circuit 9 receives a DC constant voltage and obtains a predetermined high frequency output using an oscillation circuit 9a such as an astable multivibrator. The output waveform at this output end point A is shown in FIG. 5a. In this case, the frequency may be fixed or variable. Further, the reference level is adjusted by a reference level adjustment circuit 9b including a resistor, a capacitor, etc., so as to obtain a high frequency output with positive and negative balance. The output waveform at this output end point B is shown in Figure 5b.
Shown below. This frequency output is applied to the electrode 2 of the concentration sensor.
4 and 25 to activate the concentration sensor 5. The output of the concentration sensor 5 is input to the concentration control circuit 10.
濃度センサ電源として正負平衡した高周波を使
用する理由を述べると、直流分が含まれると混合
水が電気分解し発生したガスが電極に付着する等
により測定誤差を生ずることと、高周波測定では
商用周波測定に比し温度−濃度(水抵抗値)特性
が安定し温度変化による測定誤差を小さくできる
ためである。温度−水抵抗値特性の一例を第6図
に示す。塩分濃度0.05〜3%の場合について高周
波測定、商用周波測定による水抵抗値の特性を示
したが何れの場合も高周波測定の方が抵抗測定値
の変化度合が小さく安定していることが分る。こ
の高周波電源の周波数としては1kHz程度又はそ
れ以上のとき好結果が得られることを確認してお
り、またそれ以下でも変化度合の程度の差がある
ものの少なくとも測定は可能である。また、電源
電圧が変動すると同じ抵抗値に対して電流値従つ
て見掛けの検出塩分濃度値が変動して正確な検出
ができず、適正な制御が不可能になるので、塩分
濃度の正確な検出をし適正な制御をするために電
源の定電圧回路が必要である。 The reasons for using a balanced high frequency wave as a power source for the concentration sensor are that if a direct current component is included, the mixed water will electrolyze and the generated gas will adhere to the electrodes, causing measurement errors. This is because the temperature-concentration (water resistance value) characteristics are more stable than in measurements, and measurement errors due to temperature changes can be reduced. An example of temperature-water resistance value characteristics is shown in FIG. The characteristics of water resistance values measured by high frequency measurement and commercial frequency measurement were shown for the case of salinity concentration of 0.05 to 3%, and it can be seen that in both cases, the degree of change in the resistance measurement value is smaller and more stable with high frequency measurement. . It has been confirmed that good results can be obtained when the frequency of this high-frequency power source is about 1 kHz or higher, and at least measurement is possible even below that, although there are differences in the degree of change. Additionally, if the power supply voltage fluctuates, the current value and therefore the apparent detected salinity concentration value will fluctuate for the same resistance value, making accurate detection impossible and making proper control impossible. A constant voltage circuit for the power supply is required for proper control.
濃度制御回路10への入力信号は整流器11、
増幅回路12により処理され信号弁別器13にお
いて予め設定された濃度基準値と比較され、その
濃度が基準値域へ入つているかどうかが弁別され
る。この場合例えば5段階の信号S1,S2……S5を
発するものとし、基準値域に入つている場合は
「良」S3、基準値域より「濃」側は濃度差の程度
に応じ「濃」S2、「濃過」S1とし、「薄」側は濃度
差の程度に応じ「薄」S4、「薄過」S5とする。 The input signal to the concentration control circuit 10 is a rectifier 11,
The signal is processed by the amplifier circuit 12 and compared with a preset concentration reference value in the signal discriminator 13 to determine whether the concentration is within the reference value range. In this case , for example, 5-level signals S 1 , S 2 . . . "Dark" S 2 and "Too dark" S 1 , and "Light" side is designated as "Light" S 4 and "Too thin" S 5 depending on the degree of density difference.
これら5段階の信号はそれぞれ表示回路17に
供給され、弁別によつてそのいずれかが表示され
ることになる。この信号S1〜S5に応じて表示灯
L1〜L5のいずれかを点灯させ検出された混含水
濃度の状態を表示する。即ち、L1,L2……L5は
それぞれ「濃過」、「濃」、「良」、「薄」、「薄過」
を
表示する。また、「濃過」信号S1または「薄過」
信号S5が発せられたときはいずれも警報回路19
を作動せしめ警報ブザー20を鳴らして混合水濃
度が「濃過」または「薄過」であることを知らせ
る。 These five levels of signals are each supplied to the display circuit 17, and one of them is displayed by discrimination. Indicator light according to this signal S 1 ~ S 5
Lights up any one of L1 to L5 to display the detected mixed water concentration state. That is, L 1 , L 2 ...L 5 are "too thick", "dark", "good", "light", "too light", respectively.
Display. Also, the "concentration" signal S 1 or the "light" signal
When the signal S5 is issued, the alarm circuit 19
is activated and the alarm buzzer 20 sounds to notify that the mixed water concentration is "too concentrated" or "too thin".
「濃過」信号S1および「濃」信号S2は第1の駆
動回路15を作動せしめ、また「薄」信号S4およ
び「薄過」信号S5は、第2の駆動回路16を作動
せしめる。第1の駆動回路15は、「濃」信号S2
および「濃過」信号S1を受けて出力し、ポンプ
P1を駆動して淡水タンク2より淡水を供給する。
また、第2の駆動回路16は、「薄」信号(S4)
および「薄過」信号S5を受けて出力し、ポンプ
P2を駆動して海水タンク3より海水を供給する。
これら淡水、海水の供給は上記信号が失くなるま
で継続する。「良」信号S3では、両駆動回路15,
16は停止し、ポンプP1,P2共停止する。 The "too dark" signal S 1 and the "too dark" signal S 2 actuate the first drive circuit 15 , and the "light" signal S 4 and the "too light" signal S 5 actuate the second drive circuit 16 . urge The first drive circuit 15 receives a “dark” signal S 2
and “concentration” signal S 1 is received and output, and the pump
P1 is driven to supply fresh water from the fresh water tank 2.
The second drive circuit 16 also outputs a “thin” signal (S 4 ).
and “too thin” signal S 5 is received and output, and the pump
P2 is driven to supply seawater from seawater tank 3.
The supply of fresh water and seawater continues until the above signal is lost. For the "good" signal S3 , both drive circuits 15,
16 is stopped, and both pumps P 1 and P 2 are stopped.
水位センサ6には高水位(Hレベル)を検出す
る高水位電極6aと低水位(Lレベル)を検出す
る低水位電極6bとを有する。水位がLレベル以
下となつたとき、両駆動回路15,16を動作せ
しめポンプP1,P2を同時に駆動し淡水、海水を
同時供給する。この間濃度センサの信号は無関係
とし、ただ淡水と海水の供給比率を基準濃度に合
致するよう、バルブV1,V2を調節し濃度の粗調
整をする。 The water level sensor 6 has a high water level electrode 6a for detecting a high water level (H level) and a low water level electrode 6b for detecting a low water level (L level). When the water level falls below L level, both drive circuits 15 and 16 are activated to simultaneously drive pumps P 1 and P 2 to simultaneously supply fresh water and sea water. During this time, the signal from the concentration sensor is ignored, and the concentration is roughly adjusted by adjusting the valves V 1 and V 2 so that the supply ratio of freshwater and seawater matches the reference concentration.
バルブV1,V2の調節は一般的には手動で行な
うが、動力方式として電気信号等により制御する
ことも可能である。 The valves V 1 and V 2 are generally adjusted manually, but they can also be controlled by electric signals or the like as a power method.
水位がHレベルに達すると淡水、海水共供給停
止し、この時点から濃度センサ5の信号により濃
度制御回路10で弁別し、前述の方法で濃度の微
調整を行なう。 When the water level reaches the H level, the supply of both fresh water and sea water is stopped, and from this point on, discrimination is made by the concentration control circuit 10 based on the signal from the concentration sensor 5, and the concentration is finely adjusted using the method described above.
この間、混合水は調合機21あるいは海苔混合
物撹拌槽22へ、それぞれポンプP3,P4により
供給され、水位は漸次低下する。水位がLレベル
以下に下つた途端、両駆動回路15,16が動作
し、淡水、海水の同時供給に入り、以下前記工程
を繰返す。上記の動作から見て濃度センサ5の取
付け位置はLレベルより下方がよい。 During this time, the mixed water is supplied to the blender 21 or the seaweed mixture stirring tank 22 by pumps P 3 and P 4 , respectively, and the water level gradually decreases. As soon as the water level falls below the L level, both drive circuits 15 and 16 are activated to simultaneously supply fresh water and seawater, and the above steps are repeated. In view of the above operation, the mounting position of the concentration sensor 5 is preferably below the L level.
第7図は、混合水制御装置における濃度、水位
の制御、駆動回路の一例を示す。 FIG. 7 shows an example of the concentration and water level control and drive circuit in the mixed water control device.
101,102は制御電源端子、103は水位
検出信号で低水位検出信号103a(常開接点)、
高水位検出信号103b(常閉接点)の直列回路
として補助リレーmと直列に電源端子101,1
02間に接続する。また補助リレーmの自己保持
接点ma1を信号103aと並列に接続する。補助
リレーmは水位制御回路104内に設けられ、そ
の補助常開接点ma2,ma3はそれぞれ淡水ポンプ
P1、海水ポンプP2と直列にし電源端子101,
102間に接続する。105,106は塩分濃度
検出信号で105は濃側が、106は薄側が検出
された時の作動信号で、この場合作動時閉路する
接点として表わし、それぞれ前記接点ma2,ma3
と並列に接続されている。これらの回路は有接点
回路として構成しているが、無接点回路として構
成することも当然可能である。 101 and 102 are control power supply terminals, 103 is a water level detection signal and a low water level detection signal 103a (normally open contact);
Power terminals 101 and 1 are connected in series with the auxiliary relay m as a series circuit for the high water level detection signal 103b (normally closed contact).
Connect between 02 and 02. Also, the self-holding contact ma 1 of the auxiliary relay m is connected in parallel with the signal 103a. The auxiliary relay m is provided in the water level control circuit 104, and its auxiliary normally open contacts ma 2 and ma 3 are connected to the fresh water pump, respectively.
P 1 , connected in series with seawater pump P 2 and power terminal 101,
Connect between 102 and 102. 105 and 106 are salt concentration detection signals, and 105 and 106 are operation signals when the rich side is detected, and 106 is an operation signal when the thin side is detected, and in this case, they are represented as contacts that close when activated, and the contacts ma 2 and ma 3 respectively
are connected in parallel. Although these circuits are configured as contact circuits, it is of course possible to configure them as non-contact circuits.
上記回路の動作について説明すると、低水位信
号103aが作動すると補助リレーmが動作しポ
ンプP1,P2が駆動され、高水位信号103bが
作動すると補助リレーmが開放し、ポンプP1,
P2の駆動を停止する。 To explain the operation of the above circuit, when the low water level signal 103a is activated, the auxiliary relay m is activated and the pumps P 1 and P 2 are driven, and when the high water level signal 103b is activated, the auxiliary relay m is opened and the pumps P 1 and P 2 are activated.
Stop driving P2 .
一方で、「濃」、「濃過」の信号が作動するとポ
ンプP1が駆動され同信号が失くなれば停止する。
また、「濃」、「濃過」の信号が作動するとポンプ
P2が駆動され同信号が失くなれば停止する。 On the other hand, when the "concentration" and "overconcentration" signals are activated, the pump P1 is driven, and when the signal is lost, the pump P1 is stopped.
Also, when the “concentration” or “concentration” signal is activated, the pump
If P2 is driven and the same signal is lost, it will stop.
次に、サーミスタの動作について説明する。第
8図は増幅回路12の内部詳細を示したもので、
111,112は電源端子で直流電源が印加さ
れ、112側をアース側としている。113は増
幅器で入力端子113a、基準電圧入力端子11
3b、出力端子113cを有する。入力端子11
3aに濃度センサ出力を整流器11を経て入力す
る。端子111,112間に調整抵抗114、基
準電圧分圧抵抗115、基準電圧微調整抵抗11
6を直列にして接続し、調整抵抗114に並列に
サーミスタ26を接続する。サーミスタ26は濃
度センサ5に取付けられており、その端子26
a,26bを増幅回路12に引込み接続する。分
圧抵抗115両端子の中間にある分圧端子115
aより増幅率調整回路を経て増幅器の基準電圧入
力端子113bに接続する。増幅率調整回路は前
記分圧端子115aと基準電圧入力端子113b
間に接続された微調整抵抗118、基準電圧入力
端子113bと増幅器出力端子113cとの間に
並列に挿入された抵抗119およびコンデンサ1
20より成つている。出力端子113cと端子1
12との間に浮遊電圧抑制抵抗121を接続す
る。 Next, the operation of the thermistor will be explained. FIG. 8 shows the internal details of the amplifier circuit 12.
Reference numerals 111 and 112 are power terminals to which DC power is applied, and the 112 side is the ground side. 113 is an amplifier with an input terminal 113a and a reference voltage input terminal 11
3b and an output terminal 113c. Input terminal 11
The concentration sensor output is input to 3a via a rectifier 11. An adjustment resistor 114, a reference voltage dividing resistor 115, and a reference voltage fine adjustment resistor 11 are installed between the terminals 111 and 112.
6 are connected in series, and the thermistor 26 is connected in parallel to the adjustment resistor 114. The thermistor 26 is attached to the concentration sensor 5, and its terminal 26
a, 26b are lead-connected to the amplifier circuit 12. Voltage dividing terminal 115 located between both terminals of voltage dividing resistor 115
A is connected to the reference voltage input terminal 113b of the amplifier via the amplification factor adjustment circuit. The amplification factor adjustment circuit includes the voltage dividing terminal 115a and the reference voltage input terminal 113b.
Fine adjustment resistor 118 connected between, resistor 119 and capacitor 1 inserted in parallel between reference voltage input terminal 113b and amplifier output terminal 113c.
It consists of 20 pieces. Output terminal 113c and terminal 1
A floating voltage suppressing resistor 121 is connected between the floating voltage suppressing resistor 121 and the floating voltage suppressing resistor 121.
ここでサーミスタの作用について説明する。混
合水の濃度は濃度センサ5によりその電極間の抵
抗値を測定して濃度値を求めているが、水温が上
昇すると抵抗値が下り、増幅器入力端子113a
に与えられる信号電圧値が上る。従つて増幅器1
13の出力信号電圧値が上ることになり、水温の
上昇によつて濃度値が見掛け上「濃」側へ移動す
る。 Here, the action of the thermistor will be explained. The concentration of the mixed water is determined by measuring the resistance value between the electrodes using the concentration sensor 5, but as the water temperature rises, the resistance value decreases and the amplifier input terminal 113a
The signal voltage value given to increases. Therefore amplifier 1
The output signal voltage value of No. 13 increases, and the concentration value apparently moves toward the "dense" side due to the rise in water temperature.
サーミスタの抵抗は水温の上昇に伴つて低下
し、基準電圧分圧点115aの電位が上昇し、増
幅器基準電圧入力端子113bの電位が上昇す
る。この基準電圧入力の電位上昇により入力端子
113aの基準電圧入力端子113bに対する電
位差が縮まり上記水温上昇による増幅器入力電圧
の上昇分が補償される。 The resistance of the thermistor decreases as the water temperature rises, the potential at the reference voltage dividing point 115a increases, and the potential at the amplifier reference voltage input terminal 113b increases. This increase in the potential of the reference voltage input reduces the potential difference between the input terminal 113a and the reference voltage input terminal 113b, thereby compensating for the increase in the amplifier input voltage due to the water temperature rise.
水温が下降した場合についても同様にして補償
することができる。以上のようにして水温の変化
によつて増幅器の出力信号電圧が変動しないよう
にしている。 Compensation can be made in the same manner even if the water temperature drops. In this manner, the output signal voltage of the amplifier is prevented from varying due to changes in water temperature.
塩分濃度は前述のように濃過ぎると海苔製品の
品質を害するので許容限界を越えないよう管理の
必要があり、例えば、設定基準値Noは許容値
Nmの95%とし、プラスマイナスの管理幅(良と
する基準値域幅)ΔNは5%とし、管理幅上限
No+ΔN=100%としている。 As mentioned above, if the salt concentration is too high, it will harm the quality of the seaweed product, so it must be managed so that it does not exceed the permissible limit.For example, the set standard value No.
Nm is set at 95%, plus or minus control range (standard value range width for good) ΔN is set at 5%, and the upper limit of the control range is set as 95% of Nm.
No+ΔN=100%.
以上のように管理幅を定め濃度が下限管理値以
下になれば海水の供給指令を出し、濃度が増して
下限管理値に至れば停止指令を出す、また、濃度
が上限管理値を超えると淡水の供給指令を出し、
濃度が下つて上限管理値に至れば停止指令を出す
ようにしている。 As mentioned above, the control range is determined, and when the concentration falls below the lower limit control value, a seawater supply command is issued, and when the concentration increases and reaches the lower limit control value, a stop command is issued, and when the concentration exceeds the upper limit control value, a command to stop the supply of seawater is issued. issue a supply order for
When the concentration drops to the upper limit control value, a stop command is issued.
なお、設定基準値Noの設定は装置内蔵の固定
インピーダンスまたは可変インピーダンスで行な
うが、妄に調整できないようにしている。 The setting reference value No. is set using a fixed impedance or a variable impedance built into the device, but it is made so that it cannot be adjusted arbitrarily.
設定基準値をどのようにするかは業界の合意に
より定められるが、一般には許容値Nmが0.2%
程度と考えられる。 The standard value to be set is determined by industry consensus, but generally the allowable value Nm is 0.2%.
It is considered to be a degree.
その場合、基準値Noは0.19%となるから、淡
水と海水の同時供給の際の供給量の比率を海水の
塩分を例えば3%として求めると、
B×3(%)/A+B=0.19(%)
A/B=14(概数)
A:淡水供給量
B:海水供給量
即ち、淡水:海水=14:1となる。 In that case, the standard value No. will be 0.19%, so if we calculate the ratio of supply amount when freshwater and seawater are supplied simultaneously, assuming that the salinity of seawater is 3%, for example, B x 3 (%) / A + B = 0.19 (%) ) A/B = 14 (approximate number) A: Freshwater supply amount B: Seawater supply amount In other words, freshwater: seawater = 14:1.
上述のように本発明による装置は、海苔抄き原
料の塩分濃度を迅速にかつ適正に調整するもの
で、第一の特徴は海苔抄機に供給する海苔抄き原
料として、海苔の水との混合物を作る際に海苔原
藻をミンチ化して水洗した後のミンチ海苔と混合
する水に所定の塩分濃度の混合水を用いて、この
混合水の塩分濃度を適正に保つことにより、海苔
抄き原料の塩分濃度を常に適正範囲に維持するこ
とにあり、第二の特徴はこの混合水を得るに当つ
て、所定の水位までは淡水と海水を所定の比率で
同時供給し、高水位に達した後は塩分濃度検出値
に応じて淡水又は海水を継続的に供給して急速に
濃度調整をし、低水位に下降したとき再び淡水と
海水を同時供給するようにして、常時大量の混合
水を供給可能にしたことにある。 As mentioned above, the device according to the present invention quickly and appropriately adjusts the salinity concentration of the raw material for making seaweed. When making the mixture, the seaweed raw algae is minced, washed, and then mixed with the minced seaweed using mixed water with a predetermined salt concentration. The salinity of the raw materials is always maintained within an appropriate range.The second feature is that in order to obtain this mixed water, freshwater and seawater are simultaneously supplied at a predetermined ratio until a predetermined water level is reached. After that, freshwater or seawater is continuously supplied according to the detected salinity value to rapidly adjust the concentration, and when the water level drops to a low level, freshwater and seawater are supplied simultaneously again, so that a large amount of mixed water is constantly maintained. The reason is that we have made it possible to supply.
上述したように本発明によれば、海苔混合物の
塩分濃度調整装置において、塩分と水の混合水調
整槽に淡水を供給する手段および海水を供給する
手段、調整槽内塩分濃度を検出する濃度センサ、
当該濃度センサに定電圧高周波電源を与える発振
変調回路、調整槽内の低水位および高水位を検出
する水位センサ、低水位センサ信号により淡水、
海水両供給手段を同時に駆動する出力信号を出
し、高水位センサ信号により当該出力信号を停止
する水位制御回路、塩分適正濃度範囲と調整槽内
塩分濃度測定値を比較し測定値が塩分適正濃度範
囲より大なる時に淡水供給手段を駆動する出力信
号を出し、測定値が適正濃度範囲より小なる時は
海水供給手段を駆動する出力信号を出す塩分濃度
制御回路を設けたので、海苔抄機に供給する海苔
混合物の塩分濃度を、その濃度が高過ぎる場合も
また低過ぎる場合も、容易にしかも自動的に迅速
に適正濃度に調整して規定範囲に維持することが
でき、従つて、海苔抄製の際の歩留りや製品海苔
の色、光沢等の品質を向上すると共に、海苔保存
時の吸湿や加工時の塩分析出等のトラブルを発生
するおそれがなくなり、また、海苔抄機に大量の
海苔抄き原料を連続供給しても支障を来たさない
等の種々の優れた利点を有するものである。
As described above, according to the present invention, in the apparatus for adjusting the salinity concentration of a seaweed mixture, there are provided a means for supplying fresh water and a means for supplying seawater to a mixed water adjustment tank of salt and water, and a concentration sensor that detects the salinity concentration in the adjustment tank. ,
An oscillation modulation circuit that provides constant voltage high frequency power to the concentration sensor, a water level sensor that detects low and high water levels in the adjustment tank, and a low water level sensor signal that detects fresh water,
A water level control circuit that outputs an output signal that simultaneously drives both seawater supply means and stops the output signal based on a high water level sensor signal, and compares the appropriate salinity concentration range with the measured value of salinity in the adjustment tank and determines whether the measured value is within the appropriate salinity concentration range. We have installed a salinity control circuit that outputs an output signal to drive the seawater supply means when the measured value is greater than the appropriate concentration range, and outputs an output signal to drive the seawater supply means when the measured value is smaller than the appropriate concentration range, so that the salt concentration is supplied to the seaweed machine. Whether the salt concentration of the seaweed mixture is too high or low, it can be easily and automatically quickly adjusted to the appropriate concentration and maintained within the specified range. In addition to improving the quality such as the yield and color and gloss of the product seaweed, there is no risk of problems such as moisture absorption during storage of seaweed and salt analysis during processing. It has various excellent advantages such as no problem even if the raw material for papermaking is continuously supplied.
第1図は本発明の実施例を示す海苔混合物の塩
分濃度調整装置のフローシート、第2図は同じく
海苔混合物の塩分濃度調整装置の一実施例を示す
ブロツク図、第3図は濃度センサの断面図、第4
図は電源回路および発振変調回路図、第5図aは
第4図のA点における出力波形、第5図bは第4
図のB点における出力波形、第6図は温度(水
温)−水抵抗値特性図、第7図は混合水制御装置
における濃度、水位の制御、駆動回路図、第8図
は増幅回路の内部詳細図である。
1:混合水調整槽、2:淡水タンク、3:海水
タンク、4:撹拌機、5:濃度センサ、6:水位
センサ、7:混合水制御装置、8:電源回路、
9:発振変調回路、10:濃度制御回路、11:
整流器、12:増幅回路、13:信号弁別器、1
4:水位制御回路、15:第1の駆動回路、1
6:第2の駆動回路、17:表示回路、18:表
示灯、19:警報回路、20:警報ブザー、2
1:調合機、22:海苔混合物撹拌槽、22:絶
縁筒体、24,25:電極、26:温度補正回
路、P1,P2,P3,P4:ポンプ、V1,V2:バル
ブ、L1〜L5:表示灯。
FIG. 1 is a flow sheet of an apparatus for adjusting the salinity of a seaweed mixture according to an embodiment of the present invention, FIG. 2 is a block diagram of an apparatus for adjusting the salinity of a seaweed mixture according to an embodiment of the invention, and FIG. Cross section, 4th
The figure shows the power supply circuit and oscillation modulation circuit diagram, Figure 5a shows the output waveform at point A in Figure 4, and Figure 5b shows the output waveform at point A in Figure 4.
The output waveform at point B in the figure, Figure 6 is a temperature (water temperature) vs. water resistance value characteristic diagram, Figure 7 is a diagram of concentration and water level control in the mixing water control device, and a drive circuit diagram, and Figure 8 is the inside of the amplifier circuit. It is a detailed view. 1: Mixed water adjustment tank, 2: Freshwater tank, 3: Seawater tank, 4: Stirrer, 5: Concentration sensor, 6: Water level sensor, 7: Mixed water control device, 8: Power supply circuit,
9: Oscillation modulation circuit, 10: Concentration control circuit, 11:
Rectifier, 12: Amplification circuit, 13: Signal discriminator, 1
4: Water level control circuit, 15: First drive circuit, 1
6: Second drive circuit, 17: Display circuit, 18: Indicator light, 19: Alarm circuit, 20: Alarm buzzer, 2
1: Blender, 22: Seaweed mixture stirring tank, 22: Insulating cylinder, 24, 25: Electrode, 26: Temperature correction circuit, P 1 , P 2 , P 3 , P 4 : Pump, V 1 , V 2 : Bulb, L 1 ~ L 5 : Indicator light.
Claims (1)
段および海水を供給する手段、調整槽内塩分濃度
を検出する濃度センサ、当該濃度センサに定電圧
高周波電源を与える発振変調回路、調整槽内の低
水位および高水位を検出する水位センサ低水位セ
ンサ信号により淡水、海水両供給手段を同時に駆
動する出力信号を出し、高水位センサ信号により
当該出力信号を停止する水位制御回路、塩分適正
濃度範囲と調整槽内塩分濃度測定値を比較し測定
値が塩分適正濃度範囲より大なる時に淡水供給手
段を駆動する出力信号を出し、測定値が適正濃度
範囲より小なる時は海水供給手段を駆動する出力
信号を出す塩分濃度制御回路より成ることを特徴
とする海苔混合物の塩分濃度調整装置。 2 濃度センサに温度補正回路を組込んだことを
特徴とする特許請求の範囲第1項記載の海苔混合
物の塩分濃度調整装置。[Scope of Claims] 1. Means for supplying fresh water and seawater to a mixed water adjustment tank of salt and water, a concentration sensor that detects the salt concentration in the adjustment tank, and an oscillation that supplies a constant voltage high-frequency power source to the concentration sensor. Modulation circuit, water level sensor that detects low and high water levels in the adjustment tank Water level control that outputs an output signal that simultaneously drives both freshwater and seawater supply means using the low water level sensor signal, and stops the output signal using the high water level sensor signal The circuit compares the proper salt concentration range with the measured value of the salt concentration in the adjustment tank, and when the measured value is greater than the proper salt concentration range, it outputs an output signal to drive the fresh water supply means, and when the measured value is smaller than the proper concentration range, it outputs an output signal to drive the fresh water supply means. A device for adjusting the salinity of a seaweed mixture, comprising a salinity control circuit that outputs an output signal to drive a seawater supply means. 2. The salt concentration adjusting device for a seaweed mixture according to claim 1, characterized in that a temperature correction circuit is incorporated in the concentration sensor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61164269A JPS6225957A (en) | 1986-07-11 | 1986-07-11 | Salt concentration adjusting apparatus of laver mixture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61164269A JPS6225957A (en) | 1986-07-11 | 1986-07-11 | Salt concentration adjusting apparatus of laver mixture |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59116301A Division JPS60259165A (en) | 1984-06-05 | 1984-06-05 | Method of control of salt concentration of laver mixture and its device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6225957A JPS6225957A (en) | 1987-02-03 |
JPS6336744B2 true JPS6336744B2 (en) | 1988-07-21 |
Family
ID=15789878
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61164269A Granted JPS6225957A (en) | 1986-07-11 | 1986-07-11 | Salt concentration adjusting apparatus of laver mixture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6225957A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5305990A (en) * | 1993-02-10 | 1994-04-26 | Sherwood William L | Metallurgical furnace vacuum slag removal |
NL1012516C2 (en) * | 1999-07-05 | 2001-01-08 | Synergie Beheer B V | Brine dosing apparatus, especially for making dough, comprises brine preparation and cooling tanks |
CN109601921A (en) * | 2019-01-28 | 2019-04-12 | 溜溜果园集团股份有限公司 | A kind of continuous cooking machine |
-
1986
- 1986-07-11 JP JP61164269A patent/JPS6225957A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6225957A (en) | 1987-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5637947A (en) | Method and apparatus for operating a generator supplying a high-frequency power to an ultrasonic transducer | |
JP2008055450A (en) | Operation control method for screw press | |
JPS6336744B2 (en) | ||
JPS6233856B2 (en) | ||
US5003814A (en) | Sampling processes for use in the controlled addition of conditioning material to suspensions, sludges and the like and apparatus thereof | |
EP2233441A1 (en) | Electrolysis water generator | |
JPS6225958A (en) | Adjusting of salt concentration of laver and apparatus therefor | |
JPS62167457A (en) | Method and apparatus for measuring concentration of salt component of water | |
JPH0542910B2 (en) | ||
GB2130723A (en) | Measuring aluminium concentration in electrolysis cell using sonic resonator | |
AU739854B2 (en) | Method and device for preparing cattle feed mixtures | |
JPH0158947B2 (en) | ||
JPH0857448A (en) | Control device of garbage treatment device | |
JPS6159719B2 (en) | ||
JPH0463576A (en) | Concentration control method of laver mixed liquid and device therefor | |
JPS58119399A (en) | Installation for dehydrating sludge | |
JPS589678A (en) | Preparing apparatus of laver | |
SU1413389A1 (en) | Method of automatic regulation of drying process | |
GB2171326A (en) | Controlling mixing of slurries by power consumption | |
JPS61170815A (en) | Adjusting device for viscosity | |
JPS622789B2 (en) | ||
JPH0159020B2 (en) | ||
JPH046971B2 (en) | ||
SU802035A1 (en) | Method of automatic regulating of clay passage process in rotary mixer-mill | |
JPS63152964A (en) | Control of concentration of laver mixture and device therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |