JPS60258918A - Manufacture of sic-si heat equalizing tube for manufacturing gas impermeable semiconductor - Google Patents

Manufacture of sic-si heat equalizing tube for manufacturing gas impermeable semiconductor

Info

Publication number
JPS60258918A
JPS60258918A JP60056908A JP5690885A JPS60258918A JP S60258918 A JPS60258918 A JP S60258918A JP 60056908 A JP60056908 A JP 60056908A JP 5690885 A JP5690885 A JP 5690885A JP S60258918 A JPS60258918 A JP S60258918A
Authority
JP
Japan
Prior art keywords
copper
ppm
alkali metal
powder
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60056908A
Other languages
Japanese (ja)
Other versions
JPS6220687B2 (en
Inventor
Isao Sakashita
坂下 伊佐男
Nobuo Kimura
信夫 木村
Teruyasu Tamamizu
玉水 照康
Hidekazu Taji
田路 英一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP60056908A priority Critical patent/JPS60258918A/en
Publication of JPS60258918A publication Critical patent/JPS60258918A/en
Publication of JPS6220687B2 publication Critical patent/JPS6220687B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To reduce the contents of copper and an alkali metal in a heat equalizing tube to an allowable concentration by selectively removing the copper and the alkali metal treating silicon compounds with a mixed acid containing nitric acid and fluoric acid. CONSTITUTION:Silicon nitride powder is treated with a mixed acid of equal quantity nitric acid, fluoric acid and water, impurities of copper and an alkali metal are removed and high purity silicon nitride is made. Silicon carbide is also treated with the mixed acid in the same way, the copper and the alkali metal are selectively removed and high purity silicon carbide powder is made. Powder mainly consisting of high purity silicon carbide is added with a caking agent such as tar pitch and mixed, made to a shape of pipe and a burned product is made by means of caking agent being burnt and carbonized. The burnt product is buried in packed powder consisting of high purity silicon nitride and heated at a high temperature of approx. 2,000 deg.C. An SiC-Si heat equalizing tube for manufacturing a gas impermeable semiconductor with the content of copper 20ppm or less and the content of alkali metal 100ppm or less can be obtained.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、半導体材料の汚染を生じないようKしたガ
ス不透過性半導体製造用5iC−8i系均熱管の製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a gas-impermeable 5iC-8i soaking tube for semiconductor manufacturing, which is designed to prevent contamination of semiconductor materials.

〔発明の技術的背景およびその問題点〕一般に半導体製
造用均熱管は、半導体製造用の拡散炉内に設置され、拡
散炉内の熱をこの均熱管内側に装填された裸管としての
石英管へ均一に放射し、その石英管内の半導体材料を均
一に焼成する部材である。
[Technical background of the invention and its problems] In general, a soaking tube for semiconductor manufacturing is installed in a diffusion furnace for semiconductor manufacturing, and the heat in the diffusion furnace is transferred to a quartz tube as a bare tube loaded inside the soaking tube. This is a member that uniformly irradiates the semiconductor material inside the quartz tube and uniformly fires the semiconductor material inside the quartz tube.

ところで従来の均熱管としては、アルミナやムライト等
の酸化物焼結管が使用されていたが、これらの均熱管は
、熱伝導性や耐スポーリング性が低いだめ、昇温および
降温速度が遅く半導体の製造能率を阻害するものであっ
た。また、これらの均熱管は気孔率が高いため、操業時
、高温度になって炉壁から蒸発したアルカリ物質がこの
均熱管を容易に通過してその内側の石英管を失透させる
ばかりか、一部石英をも通過して半導体材料を汚染する
という欠点があった。
By the way, oxide sintered tubes made of alumina, mullite, etc. have been used as conventional heat soaking tubes, but these heat soaking tubes have low thermal conductivity and spalling resistance, so the temperature rise and fall rates are slow. This hindered semiconductor manufacturing efficiency. In addition, since these soaking tubes have a high porosity, during operation, alkaline substances that evaporate from the furnace wall at high temperatures easily pass through the soaking tubes and devitrify the quartz tube inside. It has the disadvantage that it partially passes through quartz and contaminates semiconductor materials.

このようなことから、最近、均熱管として再結晶炭化珪
素質管が考えられている。この均熱管は、熱伝導率が大
きくかつスポーリング性に優れているため、半導体材料
への均熱が安定的に行なえ、また昇温および降温速度が
速く効率よく半導体を製造できるという利点を有してい
る。しかしその反面20%前後の見掛気孔率を有するの
で、操業時に蒸気化したアルカリ物質が通過し易い点で
上記酸化物焼結管の均熱管と同様な問題点が依然として
残っている。
For this reason, recrystallized silicon carbide tubes have recently been considered as soaking tubes. This soaking tube has high thermal conductivity and excellent spalling properties, so it can stably heat the semiconductor material, and has the advantage of being able to efficiently manufacture semiconductors with fast temperature rise and fall rates. are doing. However, on the other hand, since it has an apparent porosity of around 20%, it still has the same problem as the above-mentioned oxide sintered tube in that it is easy for alkaline substances vaporized during operation to pass through.

これに対し、かかる欠点を改善するため、再結晶炭化珪
素管に溶融した金属シリコンを含浸して通気性を低くし
たSIC−Si系均熱管が提案されている。しかしなが
ら、この均熱管は炭化珪素の焼結体を再結晶化する過程
および金属シリコンを含浸処理する工程とくに金属シリ
コンの含浸工程で不純物の銅などが混入するため、操業
時、高温度になった均熱管自体から銅が揮散し、その銅
が均熱管の内側の石英管を通過して半導体材料を汚染し
、ライフタイムが短くかつエッチピット結晶転位が多数
発生した半導体しか得ることができなかった。そしてこ
のエッチピットの発生が特にノぐイポーラー、リニアー
等の接合半導体の製造において致命的な欠点となってい
た。
In order to improve this drawback, a SIC-Si soaking tube has been proposed in which a recrystallized silicon carbide tube is impregnated with molten metal silicon to reduce air permeability. However, this soaking tube has high temperatures during operation because impurities such as copper are mixed in during the process of recrystallizing the sintered silicon carbide and impregnating the metal silicon, especially during the process of impregnating the metal silicon. Copper evaporates from the soaking tube itself, passes through the quartz tube inside the soaking tube, contaminates the semiconductor material, and only semiconductors with a short lifetime and many etch pit crystal dislocations can be obtained. . The occurrence of these etch pits has been a fatal drawback particularly in the production of junction semiconductors such as polar and linear semiconductors.

これを防止する方法として、再結晶化した炭化珪素体に
金属シリコンを含浸する工程において高純度の金属シリ
コンを用いることが考えられ、このような金属シリコン
を使用するとコスト高となるけれども成形体の純度の向
上が認められる。しかしながら、これではまだ充分要求
に合致するものは得られない。
One possible way to prevent this is to use high-purity metallic silicon in the process of impregnating the recrystallized silicon carbide body with metallic silicon. Although using such metallic silicon increases the cost, it is An improvement in purity is observed. However, this still does not fully meet the requirements.

本発明者はこのような種々の問題を鑑み、操業時の高温
度下でも5IC−8i系均熱管から銅が揮散して半導体
材料が汚染されることのない81C−81系均熱管を製
造しようと鋭意研究を重ねた。その結果、5iC−8i
系均熱管からの銅の揮散化は、その均熱管中の銅の含有
量に関与するととは勿論であるが、その含有量が微量で
あっても条件によっては揮散化が進行することがわかシ
、均熱管中の他の不純物の介在が銅の揮散化に関与する
ことを推定した。そして、均熱管中の他の不純物につい
て種々調べたところ、銅の揮散化を促進するのは混入し
たアルカリ金属であることを究明した。
In view of these various problems, the present inventor has attempted to manufacture an 81C-81 type soaking tube that will not cause copper to volatilize from the 5IC-8i type soaking tube and contaminate semiconductor materials even under high temperatures during operation. and conducted extensive research. As a result, 5iC-8i
It goes without saying that the volatilization of copper from the system heat soaking tubes is related to the copper content in the heat soaking tubes, but it is also clear that volatilization progresses depending on the conditions even if the content is minute. It was assumed that the presence of other impurities in the soaking tube was involved in the volatilization of copper. After various investigations into other impurities in the soaking tube, it was determined that it was the alkali metals mixed in that promoted the volatilization of copper.

そこでさらに銅とアルカリ金属との含有割合の関係を種
々模索した結果、銅の含有量が20ppmを越えると、
アルカリ金属の混入に関係力く均熱管からの銅の揮散化
が進行するが、銅の含有量を20 ppm以下にしても
アルカリ金属の含有量が100 ppmを越えると銅の
揮散化が進行することを見い出した。なお銅イオンの移
動を助長するのはアルカリ金属の影響がもっとも大きく
、鉄、アルミニウム等の場合は比較的小さいから銅含有
量の少ない場合ICはその存在を考慮する必要はない。
Therefore, we further explored various relationships between the content ratios of copper and alkali metals, and found that when the copper content exceeds 20 ppm,
The volatilization of copper from the soaking tube is related to the mixing of alkali metals, but even if the copper content is 20 ppm or less, if the alkali metal content exceeds 100 ppm, the volatilization of copper will proceed. I discovered that. Note that the influence of alkali metals is the greatest in promoting the movement of copper ions, and in the case of iron, aluminum, etc., the influence is relatively small, so when the copper content is low, there is no need for the IC to consider their presence.

まだ、銅の含有量のみを限定しても銅の揮散化を防止す
ることはでき々い。す女わち、上記のようにアルカリ金
属が銅イオンの移動を助長するので、アルカリ金属が過
剰の場合には銅の含有量が少なくても均熱管からの銅の
揮散化が進行する。したがって、銅とアルカリ金属との
両方を限定することにより、始めて均熱管からの銅の揮
散化を阻止することができる。
However, it is still not possible to prevent copper volatilization even if only the copper content is limited. In other words, as mentioned above, the alkali metal promotes the movement of copper ions, so when the alkali metal is in excess, the volatilization of copper from the soaking tube progresses even if the copper content is small. Therefore, by limiting both copper and alkali metal, volatilization of copper from the soaking tube can be prevented for the first time.

5− こうして、ガス不透過性の5iC−8i系均熱管におい
て、銅の含有量を20 ppm以下に限定し、かつアル
カリ金属の含有量を100 ppm以下に限定すること
によって、その均熱管からの銅の揮散化が阻止され、極
めてライフタイムが長くかつエッチピットの発生が全く
ない半導体を製造できるとともに、その均熱管の内側の
石英管の失透、亀裂も防止できることができることがわ
かった。
5- Thus, by limiting the copper content to 20 ppm or less and the alkali metal content to 100 ppm or less in the gas-impermeable 5iC-8i soaking tube, the It has been found that volatilization of copper is prevented, and it is possible to produce a semiconductor with an extremely long lifetime and no etch pits, and it is also possible to prevent devitrification and cracking of the quartz tube inside the soaking tube.

しかし従来の製造方法によると前述のように金属シリコ
ンの炭化珪素再結晶体への含浸工程において銅などが混
入するため、このような高純度の5IC−81系均熱管
を製造することは困難である。
However, according to the conventional manufacturing method, it is difficult to manufacture such high-purity 5IC-81 soaking tubes because copper and other substances are mixed in during the impregnation process of metal silicon into recrystallized silicon carbide as mentioned above. be.

〔発明の目的〕[Purpose of the invention]

したがって本発明の目的は、銅とアルカリ金属がそれぞ
れ上記の許容濃度まで減少され九SiC−81系均熱管
が得られるように精製工程を改良した5IC−81系均
熱管の製造方法を提供することである。
Therefore, an object of the present invention is to provide a method for producing a 5IC-81 soaked tube in which the refining process is improved so that copper and alkali metals are reduced to the above-mentioned allowable concentrations and a 9SiC-81 soaked tube is obtained. It is.

6一 〔発明の概要〕 すhわち本発明に係るガス不透過性半導体製造用5iC
−81系均熱管の製造方法は、珪素化合物を硝酸と弗酸
とを含む混酸で処理するととKより銅およびアルカリ金
属を選択的に除去して、均熱管中の銅の含有量を20 
ppm以下にし、かつアルカリ金属の含有量を100 
ppm以下とするものである。
61 [Summary of the invention] That is, 5iC for gas impermeable semiconductor manufacturing according to the present invention
-81 series soaking tubes are manufactured by treating a silicon compound with a mixed acid containing nitric acid and hydrofluoric acid, selectively removing copper and alkali metals from K, and reducing the copper content in the soaking tube by 20%.
ppm or less, and the alkali metal content is 100 ppm or less.
ppm or less.

〔発明の実施例〕[Embodiments of the invention]

以下本発明に係るガス不透過性5iC−8i系均熱管の
製造方法について、−例を示して説明するが、この方法
に限定されるものではないことは勿論である。
The method for manufacturing the gas-impermeable 5iC-8i soaking tube according to the present invention will be described below by way of example, but it is needless to say that the method is not limited to this method.

まず、市販の窒化珪素粉を硝酸と弗酸と水とを等容量で
混合した混酸にて60℃の温度下で処理し、不純物の銅
およびアルカリ金属をそれぞれ 除去せしめ、詰粉とし
て の高純度の窒化珪素を造る。
First, commercially available silicon nitride powder is treated with a mixed acid mixture of equal volumes of nitric acid, hydrofluoric acid, and water at a temperature of 60°C to remove impurities such as copper and alkali metals, resulting in high purity powder that can be used as a filling powder. of silicon nitride.

次いで市販の炭化珪素も上記窒化珪素の場合と同様に混
酸処理して、銅およびアルカリ金属を選択的に除去し、
高純度の炭化珪素粉とする。
Commercially available silicon carbide was then treated with a mixed acid in the same manner as the silicon nitride described above to selectively remove copper and alkali metals.
High purity silicon carbide powder.

そしてこの高純度の炭化珪素を主成分とする粉体にター
ルピッチ等の粘結剤を添加混合し、通常の成形機によ)
ノやイブ状に成形した後、この成形体中の粘結剤を約8
00℃の温度下で焼成炭化して焼成体を造る。
Then, a binder such as tar pitch is added to and mixed with this powder whose main component is high-purity silicon carbide.
After molding into a shape, the binder in this molded product is
A fired body is produced by firing and carbonizing at a temperature of 00°C.

それからこの焼成体を、上記の主として高純度の窒化珪
素よシ々る詰粉の中に埋め込み、2000℃程度の高温
度下において加熱処理する。この高温加熱処理工程にお
いて、窒化珪素は分解して珪素ガスを発生する。この珪
素ガスにより、焼成体中の炭素を珪素化せしめて炭化珪
素を生成するとともに、その焼成体中の気孔に珪素ガス
を浸透、沈着せしめる。こうして銅の含有量が20 p
ptn以下で、かつアルカリ金属の含有量が100 p
pm以下のガス不透過性の半導体製造用81C−Si均
熱管を造る。
Then, this fired body is embedded in the above-mentioned powder mainly made of high-purity silicon nitride and heat-treated at a high temperature of about 2000°C. In this high-temperature heat treatment step, silicon nitride decomposes and generates silicon gas. This silicon gas silicifies the carbon in the fired body to produce silicon carbide, and the silicon gas permeates and deposits into the pores in the fired body. Thus the copper content is 20 p.
ptn or less and the alkali metal content is 100p
To manufacture an 81C-Si soaking tube for semiconductor manufacturing that is impermeable to gases below pm.

なお、本発明の均熱管の組成は通常、炭化珪素70〜9
5重量%、遊離珪素30〜5重量%からなるもので、そ
の気孔率は炭化珪素体の製造時における気孔状態によっ
て一概に限定できないが、非連通気孔の場合、その気孔
率を3チ以下にすればガス不透過性を十分保持できるも
のである。
Note that the composition of the soaking tube of the present invention is usually silicon carbide 70 to 9
5% by weight and 30 to 5% by weight of free silicon, and its porosity cannot be unconditionally determined depending on the state of the pores at the time of manufacturing the silicon carbide body, but in the case of non-connected pores, the porosity should be 3 or less. If this is done, gas impermeability can be maintained sufficiently.

まえ、均熱管中の銅、アルカリ金属以外の不純物たとえ
ば鉄、マンガン、クロム等が多量混入し半導体材料に悪
影響を及ぼす場合は、これら不純物の混入を抑制するこ
とが望ましく、とくに他の不純物中の鉄の混入量を20
00 ppm以下に抑えることが望ましい。
First, if a large amount of impurities other than copper and alkali metals such as iron, manganese, chromium, etc. are mixed into the soaking tube and have a negative effect on semiconductor materials, it is desirable to suppress the mixing of these impurities. The amount of iron mixed in is 20
It is desirable to suppress it to 0.00 ppm or less.

次にこの発明の一実施例を説明する。Next, one embodiment of this invention will be described.

実施例1 まず市販の粒径1〜3mの窒化珪素粉を、硝酸と弗酸と
水とを等容量で混合した温度60℃の混酸にて処理し、
詰粉としての窒化珪素粉(銅1 ppm以下、ナトリウ
ム5 ppm含有)を用意した。次いで、炭化珪素粉を
上記混酸で同様に処理して銅1 ppm以下、ナトリウ
ム4 Ppnl含有の炭化珪素粉を得た。そしてこの炭
化珪素粉とランゾプラ、り(銅5pPmb ナトリウム
4゜9− ppm含有)とにフェノールレジンを加えて混練した後
、造粒および乾燥し、次いでこれをラバープレスにて成
形し、外径120簡、内径105■、長さ1500+m
の成形体を造った。つづいて、この成形体を800℃で
焼成した後、さらに上記窒化珪素の詰粉に埋め込んで1
500〜2100℃の温度下で加熱し再結晶化して5i
C−81系均熱管を得だ。この均熱管は遊離珪素を16
.4重量%含有し、かつ気孔率は0.7チでガス不透過
性であった。またこの均熱管中の銅の含有量は3ppm
、ナトリウムは10ppm、鉄200 ppmであった
Example 1 First, commercially available silicon nitride powder with a particle size of 1 to 3 m was treated with a mixed acid mixture of equal volumes of nitric acid, hydrofluoric acid, and water at a temperature of 60°C.
Silicon nitride powder (containing 1 ppm or less of copper and 5 ppm of sodium) was prepared as a stuffing powder. Next, the silicon carbide powder was treated in the same manner with the above mixed acid to obtain a silicon carbide powder containing 1 ppm or less of copper and 4 Ppnl of sodium. After adding phenol resin to this silicon carbide powder and Lanzopra resin (containing 5 ppm of copper and 4.9 ppm of sodium) and kneading them, they were granulated and dried, and then molded using a rubber press to form an outer diameter of 120 mm. Simple, inner diameter 105cm, length 1500+m
A molded body was made. Next, this molded body was fired at 800°C, and then embedded in the silicon nitride powder.
5i by heating at a temperature of 500 to 2100℃ and recrystallizing
A C-81 type soaking tube was obtained. This soaking tube contains 16 free silicon
.. It contained 4% by weight, had a porosity of 0.7cm, and was gas impermeable. In addition, the copper content in this soaking tube is 3 ppm.
, sodium was 10 ppm, and iron was 200 ppm.

実施例2 前記実施例1で用いた焼成体を、実施例1と同様の方法
により混酸処理した高純度の珪石粉および戻粉からなる
混合粉(銅2Ppm% ナトリウム10 ppm含有)
に埋め込んで1500〜2050℃の温度に加熱し、再
結晶化するととKよシ遊離珪素を4.2重量%含有する
気孔率11.6%のガス透過性5iC−191系再結晶
体(銅10− 3ppm%ナトリウム55 ppm含有)を得た。つづ
いてこの再結晶体を粒径1〜5mの珪素粉(銅42pp
m、ナトリウム400 ppm含有)に埋めて2000
〜2100℃に加熱し、その気孔中に珪素を含浸させて
5tc−ss系均熱管を得だ。この均熱管は遊離珪素を
12,1重量%含有し、かつその気孔率が0.5係でガ
ス不透過性であった。また、この均熱管中の銅の含有量
は7pp”% ナトリウムは95ppm、鉄1000 
ppmであった。
Example 2 A mixed powder consisting of high purity silica powder and returned powder obtained by treating the fired body used in Example 1 with a mixed acid in the same manner as in Example 1 (containing 2 Ppm% copper and 10 ppm sodium)
5iC-191-based recrystallized material (Cu 10-3 ppm% (containing 55 ppm of sodium) was obtained. Next, this recrystallized product was mixed with silicon powder (copper 42pp) with a particle size of 1 to 5m.
2000 m, containing 400 ppm of sodium)
It was heated to ~2100°C to impregnate silicon into its pores to obtain a 5tc-ss soaking tube. This soaking tube contained 12.1% by weight of free silicon, had a porosity of 0.5, and was gas impermeable. In addition, the content of copper in this soaking tube is 7pp"%, sodium is 95ppm, and iron is 1000%.
It was ppm.

次に上記実施例に対して比較例として行なった3種の実
験例を説明する。
Next, three types of experimental examples conducted as comparative examples with respect to the above-mentioned examples will be explained.

比較例1〜3 市販の窒化珪素粉(銅18 ppm、ナ) IJウム7
0 ppm含有)とランプブラック(銅4 ppm、ナ
トリウム20 ppm含有)とにフェノールレジンを添
加混合した後、前記実施例1と同様々方法で成形、焼成
して焼結体を得た。次いで、この焼結体を珪石粉と戻粉
とからなる混合粉(銅10 ppm、ナトリウム30 
ppm含有)に埋め込み、1500〜2050℃に加熱
再結晶化して、遊離珪素を3.0重量%含有する気孔率
15チのガス透過性SiC−Si系再結晶体(銅16.
5 ppm。
Comparative Examples 1 to 3 Commercially available silicon nitride powder (copper 18 ppm, na) IJum 7
A phenol resin was added to and mixed with lamp black (containing 0 ppm of copper and 20 ppm of sodium), and then molded and fired in the same manner as in Example 1 to obtain a sintered body. Next, this sintered body was mixed with a mixed powder (copper 10 ppm, sodium 30 ppm) consisting of silica powder and returned powder.
ppm) and heated and recrystallized at 1500 to 2050°C to obtain a gas-permeable SiC-Si recrystallized body (copper 16%) with a porosity of 15mm and containing 3.0% by weight of free silicon.
5 ppm.

ナトリウム60.3 ppm含有)を得た。つづいてこ
の再結晶体を銅20ppm1ナトリウム400ppm含
有する珪素粉(比較例1)、銅40 ppm。
60.3 ppm of sodium) was obtained. Subsequently, this recrystallized product was prepared as silicon powder containing 20 ppm of copper, 400 ppm of sodium (Comparative Example 1), and 40 ppm of copper.

ナ) IJウム2 o o ppm含有する珪素粉(比
較例2)、および銅60ppm、ナトリウム600pp
m含有する珪素粉(比較例3)にそれぞれ埋め込み15
00〜2100℃で加熱し、その気孔中に珪素を含浸さ
せて遊離珪素を15.7重量%含有し、かつその気孔率
が0.7チの3種のStC−si系均熱管を得た。これ
らの均熱管中の銅およびすlllラム含有量は、比較例
1が銅19.5Pp111%ナトリウム125 ppm
含有、比較例2が銅22ppm、ナトリウム90 pp
n!有、また比較例3が銅26ppm、ナトリウム15
1 ppm含有、であった。
N) Silicon powder containing 2 o o ppm of IJum (Comparative Example 2), 60 ppm of copper, and 600 ppm of sodium
Embedded in silicon powder containing m (Comparative Example 3) 15
By heating at 00 to 2100°C to impregnate silicon into the pores, three types of StC-si soaking tubes containing 15.7% by weight of free silicon and having a porosity of 0.7cm were obtained. . The content of copper and slurry in these soaking tubes is as follows: Comparative Example 1 contains 19.5 ppm of copper, 111% sodium, and 125 ppm of sodium.
Comparative Example 2 contained 22 ppm of copper and 90 ppm of sodium.
n! Yes, and Comparative Example 3 contained 26 ppm of copper and 15 ppm of sodium.
It contained 1 ppm.

さて、こうして実施例1.2および比較例1〜3で得た
5種類のetc−si系均熱管について、次の試験を行
なった。す々わち、まず、これらの5IC−81系均熱
管を拡散炉に取付けた後、これら均熱管内に、バイポー
ラ素材を内装した石英管を挿入した。そして、1250
℃に加熱して半導体を製造する作業を1カ年続け、各石
英管の状態および製造した半導体のエッチピットの発生
を観察した。これらの結果を次表に示す。
Now, the following tests were conducted on the five types of etc-SI soaking tubes obtained in Example 1.2 and Comparative Examples 1 to 3. First, these 5IC-81 type heat soaking tubes were attached to a diffusion furnace, and then a quartz tube containing a bipolar material was inserted into these heat soaking tubes. And 1250
The operation of manufacturing semiconductors by heating them to .degree. C. was continued for one year, and the condition of each quartz tube and the occurrence of etch pits in the manufactured semiconductors were observed. These results are shown in the table below.

13− =14− 上表より明らかな如く、銅が20 ppm以下でかつア
ルカリ金属が100 ppm以下の5iC−8l系均熱
管(実施例1,2)は、1年以上使用しても石英ガラス
管が着色されることはなく、さらに製造された半導体は
ライフタイムが長く、エッチビット結晶転移が全く発生
していない極めて高品質のものであった。これに対して
銅が20 ppm以下でもアルカリ金属が100 pp
m以上の5IC−8,i系均熱管(比較例1)は、1〜
3ケ月使用すると石英ガラス管が赤色に着色し、しかも
得られた半導体には多数のエッチビットが発生しライフ
タイムも短くさらにパルス性ノイズ不良も多発した。ま
たアルカリ金属が1100pp以下でも銅が20 pp
m以上含有するSiC−81系均熱管(比較例2)は、
やはシ同様に石英ガラス管を着色し、そして得られた半
導体は低品質で゛ありた。
13- =14- As is clear from the table above, the 5iC-8L soaking tubes (Examples 1 and 2) containing 20 ppm or less of copper and 100 ppm or less of alkali metals do not retain quartz glass even after being used for more than a year. The tube was not colored, and the semiconductor produced had a long lifetime and was of extremely high quality with no etch bit crystal transition. On the other hand, even if copper is less than 20 ppm, alkali metals are less than 100 ppm.
m or more 5IC-8, i system soaking tube (comparative example 1) is 1 to
After three months of use, the quartz glass tube became colored red, and the resulting semiconductor had many etch bits, had a short lifetime, and suffered from frequent pulse noise defects. Also, even if the alkali metal content is 1100 pp or less, the copper content is 20 ppp or less.
The SiC-81-based soaking tube (comparative example 2) containing more than m
Similarly, quartz glass tubes were colored, and the semiconductors obtained were of low quality.

) 〔発明の効果〕 以上詳述したように、この発明にしたがって製造された
半導体製造用SiC−Si系均熱管は、特に銅およびア
ルカリ金属等の不純物の濃度が低いので、操業時に高温
度にならても従来のように銅が均熱管自体から揮散する
ことはない。
) [Effects of the Invention] As detailed above, the SiC-Si soaking tube for semiconductor manufacturing manufactured according to the present invention has a particularly low concentration of impurities such as copper and alkali metals, so it cannot be exposed to high temperatures during operation. Even so, copper will not volatilize from the heat soaking tube itself unlike in the conventional case.

その結果、この均熱管中に内装される石英ガラス管は失
透せず、またここで製造される半導体はライフタイムが
長くかつエッチビットの発生が全くがい極めて高品質の
ものであり、とくにバイポーラ、リニアー等の接合半導
体の製造に対して顕著な効果を示す。さらに従来の5I
C−81系均熱管と同様な高熱伝導性および高耐熱性も
確保されているので半導体の製造効率も良好である。し
かもこの発明の方法は硝酸と弗酸とを含む混酸で処理す
るだけであるから、容易に従来の工程に付加することが
できる。
As a result, the quartz glass tube contained in this soaking tube does not devitrify, and the semiconductors manufactured here have a long lifetime and are of extremely high quality with no etch bits. , shows remarkable effects on manufacturing of linear and other junction semiconductors. Furthermore, the conventional 5I
Since high thermal conductivity and high heat resistance similar to C-81 type soaking tubes are ensured, semiconductor manufacturing efficiency is also good. Furthermore, since the method of the present invention only requires treatment with a mixed acid containing nitric acid and hydrofluoric acid, it can be easily added to conventional processes.

Claims (1)

【特許請求の範囲】 珪素化合物を硝酸と弗酸とを含む混酸で処理してこの珪
素化合物中の銅およびアルカリ金属を選択的に除去する
工程と、 上記の処理を施された珪素化合物を原料として使用して
銅の含有量が20 ppm以下であってかつアルカリ金
属の含有量が100 ppm以下であるガス不透過性5
tc−st系均熱管を製造する工程とを有することを特
徴とする炭化珪素および遊離珪素からなるガス不透過性
半導体製造用81C−81系均熱管の製造方法。
[Claims] A step of treating a silicon compound with a mixed acid containing nitric acid and hydrofluoric acid to selectively remove copper and alkali metals in the silicon compound, and using the silicon compound subjected to the above treatment as a raw material. Gas impermeable 5 with a copper content of 20 ppm or less and an alkali metal content of 100 ppm or less when used as
1. A method for manufacturing an 81C-81 type soaking tube for manufacturing a gas-impermeable semiconductor made of silicon carbide and free silicon, the method comprising the step of manufacturing a tc-st type soaking tube.
JP60056908A 1985-03-20 1985-03-20 Manufacture of sic-si heat equalizing tube for manufacturing gas impermeable semiconductor Granted JPS60258918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60056908A JPS60258918A (en) 1985-03-20 1985-03-20 Manufacture of sic-si heat equalizing tube for manufacturing gas impermeable semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60056908A JPS60258918A (en) 1985-03-20 1985-03-20 Manufacture of sic-si heat equalizing tube for manufacturing gas impermeable semiconductor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP9823075A Division JPS5222477A (en) 1975-08-13 1975-08-13 Sic-si type equalizing tube for manufacturing gas impermeable semi conductors

Publications (2)

Publication Number Publication Date
JPS60258918A true JPS60258918A (en) 1985-12-20
JPS6220687B2 JPS6220687B2 (en) 1987-05-08

Family

ID=13040552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60056908A Granted JPS60258918A (en) 1985-03-20 1985-03-20 Manufacture of sic-si heat equalizing tube for manufacturing gas impermeable semiconductor

Country Status (1)

Country Link
JP (1) JPS60258918A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5075600A (en) * 1973-11-08 1975-06-20
JPS5185374A (en) * 1974-12-06 1976-07-26 Norton Co
JPS5222477A (en) * 1975-08-13 1977-02-19 Toshiba Ceramics Co Ltd Sic-si type equalizing tube for manufacturing gas impermeable semi conductors
JPS5722914A (en) * 1980-07-16 1982-02-06 Nissan Motor Co Ltd Engine mount for auto-vehicle
JPS5745708A (en) * 1980-09-03 1982-03-15 Hitachi Ltd Amplifying circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5075600A (en) * 1973-11-08 1975-06-20
JPS5185374A (en) * 1974-12-06 1976-07-26 Norton Co
JPS5222477A (en) * 1975-08-13 1977-02-19 Toshiba Ceramics Co Ltd Sic-si type equalizing tube for manufacturing gas impermeable semi conductors
JPS5722914A (en) * 1980-07-16 1982-02-06 Nissan Motor Co Ltd Engine mount for auto-vehicle
JPS5745708A (en) * 1980-09-03 1982-03-15 Hitachi Ltd Amplifying circuit

Also Published As

Publication number Publication date
JPS6220687B2 (en) 1987-05-08

Similar Documents

Publication Publication Date Title
JP2000103628A (en) Treatment of silica granule using porous graphite crucible
US5567663A (en) Cordierite honeycomb ceramics and method producing the same
EP0340802B1 (en) Silicon carbide diffusion tube for semi-conductor
RU1782229C (en) Method for making self-baring ceramic body
US2331232A (en) Method of making refractories
Pickrell et al. High temperature alkali corrosion of SiC and Si3N4
JPH0136981B2 (en)
Shimoo et al. Mechanism of oxidation of low-oxygen SiC fiber prepared by electron radiation curing method
JPS60258918A (en) Manufacture of sic-si heat equalizing tube for manufacturing gas impermeable semiconductor
CN109231972B (en) Light electric melting corundum brick
JPS60258917A (en) Manufacture of sic-si heat equalizing tube for manufacturing gas impermeable semiconductor
JP3642446B2 (en) Semiconductor wafer processing tool
KR900004489B1 (en) Process for producing aluminium nitride powder
JP3378608B2 (en) Method for producing silicon carbide substrate for jig for semiconductor production
JPS583996B2 (en) Chimitunatanka Keiso Shitsu Keitaino Seizouhouhou
US2881083A (en) Refractory brick and method of making
JPH0568433B2 (en)
DE3314221A1 (en) Process for applying a glaze to a silicon carbide article
JPH0532356B2 (en)
RU2031835C1 (en) Method of preparing of thermally expanded coal-graphite
JPS6310576B2 (en)
SU566891A1 (en) Method of treatment of carbon-graphite articles such as electrodes
CN117164386A (en) Coating for reducing carburization of graphite crucible and preparation method thereof
JPH0116790B2 (en)
JPS61111961A (en) Manufacture of hydration-resistant high fineness magnesia sintered body