JPH0532356B2 - - Google Patents

Info

Publication number
JPH0532356B2
JPH0532356B2 JP60155223A JP15522385A JPH0532356B2 JP H0532356 B2 JPH0532356 B2 JP H0532356B2 JP 60155223 A JP60155223 A JP 60155223A JP 15522385 A JP15522385 A JP 15522385A JP H0532356 B2 JPH0532356 B2 JP H0532356B2
Authority
JP
Japan
Prior art keywords
silicon
silicon carbide
fired
furnace
carbide body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60155223A
Other languages
Japanese (ja)
Other versions
JPS6217088A (en
Inventor
Harusuke Ono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKAI KONETSU KOGYO KK
Original Assignee
TOKAI KONETSU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKAI KONETSU KOGYO KK filed Critical TOKAI KONETSU KOGYO KK
Priority to JP60155223A priority Critical patent/JPS6217088A/en
Publication of JPS6217088A publication Critical patent/JPS6217088A/en
Publication of JPH0532356B2 publication Critical patent/JPH0532356B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は金属シリコンを含浸させることにより
ち密化された炭化珪素焼成体の製造方法に関する
ものである。特に半導体製造用拡散炉に用いられ
る均熱管や、製鋼用加熱炉に使用するラジアン
ト・チユーブ、測温用保護管の製造方法に係わ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a fired silicon carbide body which is densified by impregnating it with metallic silicon. In particular, it relates to methods of manufacturing soaking tubes used in diffusion furnaces for semiconductor manufacturing, radiant tubes used in heating furnaces for steel manufacturing, and protection tubes for temperature measurement.

〔従来の技術〕[Conventional technology]

一般に、半導体製造用拡散炉の均熱管は該拡散
炉内の熱を均熱管の内側に設置したプロセス・チ
ユーブとしての石英管へ均一に放射し、該石英管
内の半導体材料を均一に焼成するための部材であ
る。また均熱管内の石英管は高温にさらされた場
合、不純物としてナトリウムなどのアルカリ金属
が微量でも存在すると該アルカリ金属を核として
結晶化がおこり(この現象を失透という)石英管
の寿命を著しく縮めるため、均熱管は外部からの
不純物の混入を防ぐ役割も果たさなければならな
い。
In general, a soaking tube in a diffusion furnace for semiconductor manufacturing uniformly radiates the heat inside the diffusion furnace to a quartz tube that serves as a process tube installed inside the soaking tube, and uniformly bakes the semiconductor material inside the quartz tube. It is a member of Furthermore, when the quartz tube inside the soaking tube is exposed to high temperatures, if even a trace amount of alkali metal such as sodium is present as an impurity, crystallization will occur with the alkali metal as the core (this phenomenon is called devitrification), which will shorten the life of the quartz tube. Because of the significant shrinkage, the soaking tube must also play a role in preventing impurities from entering from the outside.

更に耐熱性構造材として用いられる製品に対し
て要求される特性としては、ラジアント・チユー
ブ内や保護管内を外気と遮断する必要から、やは
りガス不透過性が要求される。一般に上述の用途
には、炭化珪素焼成体が用いられることが多い。
しかし、炭化珪素焼成体は通常の製法では気孔率
が10〜30%と比較的高く、不純物やガスが透過し
やすいため、該焼成体を均熱管あるいは構造材と
して用いる場合には気孔に何らかの物質を充填さ
せて気孔率を零近くまで下げる工夫が必要であ
る。気孔へ充填させ得る物質としては種々考えら
れるが、炭化珪素との濡れ性が良好な金属シリコ
ンが用いられる場合が多い。従来、炭化珪素体中
へ金属シリコンを含浸させる方法としては大別す
ると次の5つである。
Furthermore, as a characteristic required for a product used as a heat-resistant structural material, gas impermeability is also required since the inside of the radiant tube and the inside of the protective tube must be isolated from the outside air. Generally, fired silicon carbide bodies are often used for the above-mentioned applications.
However, silicon carbide fired bodies have a relatively high porosity of 10 to 30% using normal manufacturing methods, and impurities and gases easily permeate through them. It is necessary to devise a way to lower the porosity to near zero by filling it with porosity. Various substances can be considered to fill the pores, but metallic silicon, which has good wettability with silicon carbide, is often used. Conventionally, methods for impregnating metal silicon into a silicon carbide body can be broadly classified into the following five methods.

加熱溶融した金属シリコン中に炭化珪素体を
浸漬して含浸させる方法。
A method of impregnating a silicon carbide body by immersing it in heated and molten metallic silicon.

2000℃以上の温度下のシリコン蒸気中に炭化
珪素粉末をさらしてシリコンを含浸させる方
法。
A method of impregnating silicon carbide powder by exposing it to silicon vapor at a temperature of 2000℃ or higher.

窒化珪素粉末を分解温度(1900℃)以上に加
熱し、発生したシリコン蒸気を炭化珪素体中へ
含浸させる方法。
A method in which silicon nitride powder is heated above its decomposition temperature (1900°C) and the generated silicon vapor is impregnated into the silicon carbide body.

珪石粉と炭素粉とを混合させた反応剤中へ炭
化珪素体を埋め込み、約2000℃で加熱して珪石
粉と炭素粉が反応して得られたシリコン蒸気を
炭化珪素体へ含浸させる方法。
A method of embedding a silicon carbide body in a reaction agent that is a mixture of silica powder and carbon powder, heating it at approximately 2000°C, and impregnating the silicon carbide body with silicon vapor obtained by the reaction of the silica powder and carbon powder.

炭化珪素体の内側へ黒鉛体を配し、炭化珪素
体と黒鉛体との間に粒状の金属シリコンを充填
し、これらを高周波誘導加熱炉内へ挿入して黒
鉛体を誘導加熱し金属シリコンを溶融蒸発させ
て炭化珪素体へ含浸させる方法。
A graphite body is placed inside the silicon carbide body, granular metallic silicon is filled between the silicon carbide body and the graphite body, and these are inserted into a high frequency induction heating furnace to induction heat the graphite body and form metallic silicon. A method of melting and evaporating to impregnate a silicon carbide body.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら上記の製法のうち、上記および
の方法では熱衝撃が激しく熱歪みやクラツクが
発生しやすい欠点があつた。特にの場合炭化珪
素粒界の毛細管現象を利用してシリコンを含浸さ
せるため、十分にシリコンが浸透しない悩みがあ
つた。次に上記およびの方法ではいずれも粉
末材料を扱うために作業性が悪く、かつ装置も大
型化することは避けられない。上記の方法にお
いては溶融蒸発したシリコンが発熱体としての黒
鉛を侵食するために黒鉛体の寿命は著しく短い。
However, among the above-mentioned manufacturing methods, the above-mentioned methods have the disadvantage that thermal shock is severe and thermal distortion and cracks are likely to occur. In particular, since silicon is impregnated using the capillary phenomenon of silicon carbide grain boundaries, there was a problem that silicon did not penetrate sufficiently. Next, both of the above methods have poor workability because they handle powdered materials, and inevitably require larger equipment. In the above method, the lifespan of the graphite body is extremely short because the melted and vaporized silicon corrodes the graphite serving as the heating element.

本発明は上記問題点を解決するためになされた
ものであり、炭化珪素焼成体へ安易かつ安価な方
法で必要最少限の金属シリコンを含浸させ、ち密
な炭化珪素焼成体を得るための製造方法である。
The present invention has been made to solve the above-mentioned problems, and is a manufacturing method for impregnating a silicon carbide fired body with the minimum necessary amount of metallic silicon by an easy and inexpensive method to obtain a dense silicon carbide fired body. It is.

〔問題点を解決するための手段〕[Means for solving problems]

即ち本発明の方法は中性あるいは不活性ガス中
の一酸化炭素ガス濃度が1.52%以下である雰囲気
で、理論量とほぼ同等の金属シリコンを炭化珪素
焼成体に接触させて1430℃から1600℃の温度域で
加熱することを特徴とする。
That is, the method of the present invention involves bringing metal silicon in an amount approximately equivalent to the theoretical amount into contact with a fired silicon carbide body in an atmosphere in which the concentration of carbon monoxide gas in a neutral or inert gas is 1.52% or less, and heating the fired silicon carbide body at 1430°C to 1600°C. It is characterized by heating in a temperature range of .

〔構成〕〔composition〕

以下、本発明を詳細に説明する。 The present invention will be explained in detail below.

炭化珪素粉にバインダー、可塑剤、滑剤を加え
た混練物を成形後加熱して、再結晶化させた焼成
体を得る。次に該焼成体へ塊状の金属シリコンを
接触させて置く。シリコンの置き方は焼成体の形
状によつて異なるが、焼成体がチユーブ状であれ
ばチユーーブの内径側へ置けばよく、板状であれ
ばその上へ置くだけでよい。最後に該炭化珪素焼
成体と金属シリコンを中性あるいは不活性雰囲気
中、1430℃〜1600℃の温度下で、約1時間程度キ
ープすれば粒界に金属シリコンが充填されたち密
な炭化珪素体が得られる。該炭化珪素焼成体と金
属シリコンを炉中で加熱する際に注意しなければ
ならないのは、炉内雰囲気ガス中の一酸化炭素ガ
ス濃度である。ある一定量以上の一酸化炭素ガス
が炉内に存在すると溶融した金属シリコン表面で
次式の反応が進行する。
A kneaded product made by adding a binder, a plasticizer, and a lubricant to silicon carbide powder is molded and then heated to obtain a recrystallized fired body. Next, a lump of metallic silicon is placed in contact with the fired body. The way the silicon is placed varies depending on the shape of the fired body, but if the fired body is tube-shaped, it may be placed on the inner diameter side of the tube, and if it is plate-shaped, it may be placed on top of it. Finally, if the silicon carbide fired body and metallic silicon are kept in a neutral or inert atmosphere at a temperature of 1430°C to 1600°C for about 1 hour, a dense silicon carbide body with metallic silicon filled in the grain boundaries is formed. is obtained. When heating the silicon carbide fired body and metal silicon in a furnace, attention must be paid to the carbon monoxide gas concentration in the furnace atmosphere gas. When a certain amount or more of carbon monoxide gas exists in the furnace, the following reaction proceeds on the surface of the molten metal silicon.

2Si+CO→SiC+SiO (式) この結果、焼成体内へ含浸されるはずのシリコ
ンが一酸化炭素と反応して炭化珪素となるため従
来は式の減少分を見込んで添加する金属シリコ
ン量を決定していた。種々の実験を重ねた結果
1430℃〜1600℃の温度域で炉内雰囲気ガス中の一
酸化炭素ガス濃度が1.52%以下であれば式の反
応はほとんど進行しないことが確認された。更に
式のSiOは次式に従つて炉内の残留酸素と反
応してクリストバライトとなる。
2Si+CO→SiC+SiO (formula) As a result, the silicon that would be impregnated into the fired body reacts with carbon monoxide and becomes silicon carbide. Conventionally, the amount of metallic silicon to be added was determined by taking into account the reduction in the formula. . Results of various experiments
It was confirmed that in the temperature range of 1430°C to 1600°C, the reaction of the formula hardly progresses if the concentration of carbon monoxide gas in the furnace atmosphere gas is 1.52% or less. Furthermore, SiO in the formula reacts with residual oxygen in the furnace to form cristobalite according to the following formula.

2SiO+O2→2SiO2 (式) 上記クリストバライトは金属シリコンとの濡れ
性が悪く炭化珪素体の粒界でシリコンの浸透を妨
げる働きをするため、従来の技法では十分に金属
シリコンで充填されたち密な炭化珪素体を得られ
ないでいた。
2SiO+O 2 →2SiO 2 (Formula) The above cristobalite has poor wettability with metal silicon and acts to prevent silicon from penetrating at the grain boundaries of the silicon carbide body. It was not possible to obtain a silicon carbide body.

ところで式の反応は高温であるほど進行しづ
らくなるが、1600℃以上の温度域では一酸化炭素
ガス濃度とは無関係に蒸発して飛散するシリコン
があるため、理論量だけでは十分なシリコンの充
填が得られなかつた。本発明では炉内温度は1600
℃以下に抑えられており、この温度域でのシリコ
ン蒸気圧は7×10-4atmと微小で、気体としての
シリコンの飛散はほとんど問題にならないため余
分なシリコンを添加することなく、炭化珪素焼成
体中へ十分にシリコンを含浸させることができ
る。
By the way, the reaction in the formula becomes more difficult to proceed as the temperature increases, but in the temperature range of 1600°C or higher, some silicon evaporates and scatters regardless of the carbon monoxide gas concentration, so it is not enough to fill the silicon with just the theoretical amount. was not obtained. In the present invention, the temperature inside the furnace is 1600
The silicon vapor pressure in this temperature range is as small as 7×10 -4 atm, and the scattering of silicon as a gas is hardly a problem, so silicon carbide can be produced without adding excess silicon. Silicon can be sufficiently impregnated into the fired body.

以上述べたように本発明によれば1430℃〜1600
℃の温度域で炉内雰囲気ガス中の一酸化炭素ガス
濃度を1.52%以下に制御することにより、炭化珪
素焼成体中へ全く無駄なく理論量どおりの金属シ
リコンが含浸され、ち密な炭化珪素体が得られ
る。
As described above, according to the present invention, the temperature
By controlling the carbon monoxide gas concentration in the furnace atmosphere gas to 1.52% or less in the temperature range of °C, the theoretical amount of metallic silicon is impregnated into the fired silicon carbide body without any waste, resulting in a dense silicon carbide body. is obtained.

〔実施例〕〔Example〕

以下に本発明の一実施例を説明する。 An embodiment of the present invention will be described below.

まず粒径1〜600μmの炭化珪素粉末を連続粒配
法にて配合し、これにセルローズ系バインダー、
可塑剤としてのポリエチレングリコール、滑剤と
してのワツクス系エマルジヨン、水を加えて混練
した後、外径255mm、内径240mm、長さ2000mmのチ
ユーブ状に成形した。約150℃で乾燥後、炉内で
2200℃の温度下で加熱し、炭化珪素焼成体を得
た。この時点で該焼成体は平均して23.5%の気孔
を持ち、ガス透過性であつた。次に該焼成体内径
側に接触させて魂状の金属シリコンを置く。添加
するシリコン重量は焼成体の持つ気孔体積とシリ
コン比重の積の値より決定される。内径側に金属
シリコンを炭化珪素焼成体に接触させ、再度炉内
へ送り込み、アルゴン雰囲気中1520℃の温度で1
時間加熱したが、この間炉内の雰囲気ガス中の一
酸化炭素ガス濃度は0.3〜0.5%であつた。上記の
工程を経て得られた炭化珪素体は当初考えられて
いた通りの量のシリコンが炭化珪素焼成体の気孔
に充填され、気孔率は炭化珪素体の各点で1%以
下であり、ガス不透過性であつた。
First, silicon carbide powder with a particle size of 1 to 600 μm is blended using a continuous particle distribution method, and then a cellulose-based binder and
After adding and kneading polyethylene glycol as a plasticizer, wax emulsion as a lubricant, and water, it was molded into a tube shape with an outer diameter of 255 mm, an inner diameter of 240 mm, and a length of 2000 mm. After drying at approximately 150℃, in a furnace.
It was heated at a temperature of 2200°C to obtain a fired silicon carbide body. At this point, the fired body had an average of 23.5% porosity and was gas permeable. Next, a soul-shaped metal silicon is placed in contact with the inner diameter side of the fired body. The weight of silicon to be added is determined from the product of the pore volume of the fired body and the specific gravity of silicon. Metallic silicon was brought into contact with the fired silicon carbide body on the inner diameter side, and then sent into the furnace again and heated at a temperature of 1520°C in an argon atmosphere.
During heating, the concentration of carbon monoxide gas in the atmospheric gas in the furnace was 0.3 to 0.5%. In the silicon carbide body obtained through the above process, the pores of the fired silicon carbide body are filled with the amount of silicon that was originally thought, the porosity is 1% or less at each point of the silicon carbide body, and the gas It was impermeable.

〔比較例 1〕 まず上記実施例と同様に、平均して25.0%の気
孔を持つ炭化珪素焼成体を準備する。次に該焼成
体内径側に気孔体積とシリコンの比重から計算さ
れた重量分の魂状金属シリコンを置き、これを炉
内に挿入し、アルゴン雰囲気中1520℃の温度で加
熱したが、ここで炉内の雰囲気を操作して炉内雰
囲気ガス中の一酸化炭素ガス濃度を1.60%に設定
し、この状態で1時間キープした。本実験で得ら
れた炭化珪素体は金属シリコンが一部炭化珪素と
なり、炭化珪素体内径側に残留していた。また炭
化珪素体の気孔も完全にはシリコンが充填され
ず、気孔率は平均して5.6%であつた。
[Comparative Example 1] First, a fired silicon carbide body having pores of 25.0% on average is prepared in the same manner as in the above example. Next, a weight of silicon metal calculated from the pore volume and the specific gravity of silicon was placed on the inside diameter of the fired body, and this was inserted into the furnace and heated at a temperature of 1520°C in an argon atmosphere. The atmosphere in the furnace was controlled to set the carbon monoxide gas concentration in the furnace atmosphere gas to 1.60%, and this state was maintained for 1 hour. In the silicon carbide body obtained in this experiment, some of the metal silicon turned into silicon carbide and remained on the inner diameter side of the silicon carbide body. Furthermore, the pores of the silicon carbide body were not completely filled with silicon, and the porosity was 5.6% on average.

〔比較例 2〕 上記実施例と同様に平均して21.4%の気孔を持
つ炭化珪素焼成体を準備し、実施例と同様に計算
された重量の魂状金属シリコンを置いて、これを
炉内でアルゴン雰囲気中1800℃に加熱して1時間
キープした。このとき炉内雰囲気ガス中の一酸化
炭素ガス濃度は1%以下であつたが、高温で蒸
発・飛散したシリコンがあつたため、得られた炭
化珪素体は一部でシリコンが含浸されずガス透過
性であつた。
[Comparative Example 2] A fired silicon carbide body having an average porosity of 21.4% is prepared in the same manner as in the above example, and a soul-like metallic silicon having a weight calculated in the same manner as in the example is placed and placed in a furnace. The mixture was heated to 1800°C in an argon atmosphere and kept for 1 hour. At this time, the concentration of carbon monoxide gas in the furnace atmosphere gas was less than 1%, but due to the presence of silicon that evaporated and scattered at high temperatures, some parts of the obtained silicon carbide body were not impregnated with silicon and gas permeated. It was sexual.

〔効果〕〔effect〕

以上述べたように本発明によれば、1430℃〜
1600℃の温度域で加熱中の炉内雰囲気ガス中の一
酸化炭素ガス濃度を1.52%以下に制限することに
より、炭化珪素焼成体中の気孔へ全くの無駄な
く、理論量どおりの金属シリコンを充填させるこ
とができる。
As described above, according to the present invention, from 1430°C to
By limiting the carbon monoxide gas concentration in the furnace atmosphere gas during heating in the 1600°C temperature range to 1.52% or less, the theoretical amount of metallic silicon can be deposited into the pores of the fired silicon carbide body without any waste. Can be filled.

従来のシリコン含浸方法が加熱炉内の雰囲気を
無視して技術的に複雑な手段をとり、その結果作
業性が悪く装置が大型化していたのに比べ、本発
明は炉内の雰囲気制御を達成することにより珪素
含浸方法自体の技術を簡便かつ安価としたもので
ある。本発明が半導体製造用拡散炉の均熱管や、
構造材として用いられるち密な炭化珪素体を製造
する上での産業上の効果は大きい。
Compared to the conventional silicon impregnation method, which ignores the atmosphere inside the heating furnace and takes technically complex measures, resulting in poor workability and an increase in the size of the equipment, the present invention achieves atmosphere control inside the furnace. This makes the silicon impregnation method itself simple and inexpensive. The present invention provides a soaking tube for a diffusion furnace for semiconductor manufacturing,
The industrial effects are significant in producing dense silicon carbide bodies used as structural materials.

Claims (1)

【特許請求の範囲】[Claims] 1 中性あるいは不活性ガス中の一酸化炭素ガス
濃度が1.52%以下である雰囲気で、理論量とほぼ
同等の金属シリコンを炭化珪素焼成体に接触させ
て1430℃から1600℃の温度域で加熱することを特
徴とする炭化珪素焼成体へのシリコン含浸方法。
1 In an atmosphere where the carbon monoxide gas concentration in neutral or inert gas is 1.52% or less, metal silicon in an amount almost equivalent to the theoretical amount is brought into contact with the fired silicon carbide body and heated in a temperature range of 1430°C to 1600°C. A method for impregnating a fired silicon carbide body with silicon, the method comprising:
JP60155223A 1985-07-16 1985-07-16 Silicon impregnation for silicon carbide burned body Granted JPS6217088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60155223A JPS6217088A (en) 1985-07-16 1985-07-16 Silicon impregnation for silicon carbide burned body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60155223A JPS6217088A (en) 1985-07-16 1985-07-16 Silicon impregnation for silicon carbide burned body

Publications (2)

Publication Number Publication Date
JPS6217088A JPS6217088A (en) 1987-01-26
JPH0532356B2 true JPH0532356B2 (en) 1993-05-14

Family

ID=15601215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60155223A Granted JPS6217088A (en) 1985-07-16 1985-07-16 Silicon impregnation for silicon carbide burned body

Country Status (1)

Country Link
JP (1) JPS6217088A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6461374A (en) * 1987-09-01 1989-03-08 Tokai Konetsu Kogyo Kk Silicon carbide structural material for heating furnace
JP2015047619A (en) * 2013-09-02 2015-03-16 ゼネラル・エレクトリック・カンパニイ Consumable core for manufacture of composite articles and related method

Also Published As

Publication number Publication date
JPS6217088A (en) 1987-01-26

Similar Documents

Publication Publication Date Title
KR930012001B1 (en) Method of making self-supporting ceramic materials
HU198429B (en) Process for producing shaped pieces of ceramics with self carryiong stucture
HU204239B (en) Process for producing self-carrying ceramic products of composed structure first of all for large series
CS276591B6 (en) Process for producing self-supporting ceramic body
FI93946B (en) Process for producing a self-supporting ceramic body and self-supporting ceramic body
US3682686A (en) Method of manufacturing carbonaceous refractory products
JPH0532356B2 (en)
US4853204A (en) Method for production of oxidation-resistant silicon nitride material
US4122220A (en) Method for reducing the gas permeability of a sintered porous silicon nitride body
JPH0736381B2 (en) Heat resistant jig and its manufacturing method
JP2008308373A (en) High durability silicon carbide sintered compact and its production method
JP3378608B2 (en) Method for producing silicon carbide substrate for jig for semiconductor production
JP2588276B2 (en) Silicon carbide porous sintered body and method for producing the same
RU1807981C (en) Method for production of earthenware articles
GB1023155A (en) Improvements in or relating to heat resistant and oxidation-proof bodies containing silicon carbide and molybdenum silicide
JPH0568433B2 (en)
JP2668119B2 (en) Method for producing silicon carbide-silicon metal material
JPH02192472A (en) Preparation of composite ceramic material
JPH10310474A (en) Silicon carbide-silicon composite ceramic material
RU2101266C1 (en) Method of production of glass-silicide coatings
JPH01115888A (en) Production of jig for producing semiconductor
JPS6212191B2 (en)
JPS6410930B2 (en)
Johnston et al. Oxidation and liquid aluminium degradation of a nitride-bonded silicon carbide ceramic
JPS583996B2 (en) Chimitunatanka Keiso Shitsu Keitaino Seizouhouhou