JPH0116790B2 - - Google Patents

Info

Publication number
JPH0116790B2
JPH0116790B2 JP56161540A JP16154081A JPH0116790B2 JP H0116790 B2 JPH0116790 B2 JP H0116790B2 JP 56161540 A JP56161540 A JP 56161540A JP 16154081 A JP16154081 A JP 16154081A JP H0116790 B2 JPH0116790 B2 JP H0116790B2
Authority
JP
Japan
Prior art keywords
silicon
silicon carbide
sintered body
metal
metallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56161540A
Other languages
Japanese (ja)
Other versions
JPS5864284A (en
Inventor
Shigeru Takahata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP56161540A priority Critical patent/JPS5864284A/en
Publication of JPS5864284A publication Critical patent/JPS5864284A/en
Publication of JPH0116790B2 publication Critical patent/JPH0116790B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 本発明は炭化けい素焼結体、特にはその表面層
が炭化けい素と窒化けい素とからなる炭化けい素
焼結体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a silicon carbide sintered body, particularly a silicon carbide sintered body whose surface layer is composed of silicon carbide and silicon nitride.

炭化けい素焼結体については、炭化けい素と炭
素とを有機系結合剤と混合して成形し、仮焼した
のち必要に応じて機械加工を行ない、ついでこれ
に溶融状またはガス状の金属けい素を接触させて
仮焼体中の炭素を炭化けい素とし、炭化けい素−
けい素焼結体とする方法が知られている(米国特
許第2938807号、同3495939号参照)。そして、こ
の方法はこの種の炭化けい素焼結体の製造がホツ
トプレス法によるか、あるいは1μm以下の微粒
子状炭化けい素を1900〜2300℃で加熱するという
方法にくらべると、反応温度が金属けい素の融点
である1400℃から1700℃の範囲でよく、この方法
で得られる焼結体はその成形、焼結時の寸法変化
が1〜2%以下で焼結時のひずみもなく、したが
つて均質な焼結体が得られるという利点がある。
For silicon carbide sintered bodies, silicon carbide and carbon are mixed with an organic binder, molded, calcined, machined as necessary, and then molten or gaseous metal silicon is added to the sintered body. The carbon in the calcined body is made into silicon carbide by contacting the
A method of forming a silicon sintered body is known (see US Pat. Nos. 2,938,807 and 3,495,939). This method requires a hot pressing method to produce this type of silicon carbide sintered body, or a method in which fine particulate silicon carbide of 1 μm or less is heated at 1,900 to 2,300°C, the reaction temperature is lower than that of metal silicon. The melting point of 1400℃ to 1700℃ is sufficient, and the sintered body obtained by this method has a dimensional change of 1 to 2% or less during shaping and sintering, and there is no distortion during sintering. It has the advantage that a homogeneous sintered body can be obtained.

しかし、この方法には炭化けい素仮焼体に金属
けい素を接触反応させるものであるため、目的物
としての炭化けい素焼結体中に未反応物としての
金属けい素が残留するほか、この金属けい素がそ
の表面に付着し、この付着は焼結体中に残留した
金属けい素が固化するときの体積膨張による表面
吹出しによつても生じるので、この焼結体につい
てはその表面からこの金属けい素を取り除く必要
がある。そして、この金属けい素の除去は一般に
はサンドブラスト法などの機械的方法によつて行
なわれているが、この方法はそれを小物の大量生
産に適用するとコスト高を招くし、これにはまた
本体の寸法精度を損なうおそれがあるという不利
があるため、この金属けい素の除去については、
炭化けい素を侵さず金属けい素だけを溶解する薬
剤、例えばフツ酸−硝酸混液、または50℃以上の
苛性ソーダ温水液でこの焼結体を処理するという
方法も試みられているが、この場合には焼結体の
表面が黄緑色に変色すると共に、その硬度が大巾
に低下するという重大な欠点が生じ、これには、
さらにこの黄緑色となつた表面層をサンドブラス
ト法、バレルなどで機械加工する必要があるとい
う不利があつた。
However, since this method involves contacting and reacting metallic silicon with a calcined silicon carbide body, in addition to remaining unreacted metallic silicon in the target silicon carbide sintered body, this method Metallic silicon adheres to the surface of the sintered body, and this adhesion is also caused by surface blowing due to volume expansion when the metallic silicon remaining in the sintered body solidifies. Metallic silicon must be removed. Removal of this metal silicon is generally carried out by mechanical methods such as sandblasting, but this method leads to high costs when applied to mass production of small items, and this also has the disadvantage of Removal of this metallic silicon has the disadvantage that it may impair the dimensional accuracy of the metal.
Attempts have also been made to treat the sintered body with a chemical that dissolves only silicon metal without attacking silicon carbide, such as a mixed solution of fluoric acid and nitric acid, or a warm solution of caustic soda at a temperature of 50°C or higher. This has the serious disadvantage that the surface of the sintered body changes color to yellow-green and its hardness drastically decreases.
Another disadvantage was that this yellow-green surface layer had to be machined by sandblasting, barreling, or the like.

なお、この炭化けい素焼結体については、これ
を高純度金属の溶融るつぼとして使用すると、こ
の金属けい素が溶け出して目的物を汚染するとい
うことから、この焼結体を予じめ空気中で高温処
理して金属けい素をSiO2とするということも提
案されているが、このSiO2が還元性雰囲気では
還元されて金属けい素になり、高温真空下ではこ
のSiO2が蒸気化して雰囲気を汚染し、このるつ
ぼ処理がフエライト酸化物溶融のときにはSiO2
が溶融物中にとけ込むので、この酸化処理は必ず
しも有用なものとはされていない。
Note that if this silicon carbide sintered body is used as a crucible for melting high-purity metal, the metallic silicon will melt and contaminate the target object, so it should be kept in the air beforehand. It has also been proposed to convert silicon metal into SiO 2 through high-temperature treatment, but this SiO 2 is reduced to metal silicon in a reducing atmosphere, and under high-temperature vacuum, this SiO 2 vaporizes. It pollutes the atmosphere, and when this crucible treatment melts ferrite oxide, SiO 2
This oxidation treatment is not always considered to be useful, since it dissolves into the melt.

本発明はこのような不利を解決した炭化けい素
焼結体の製造方法に関するもので、これは炭化け
い素と金属けい素とからなる炭化けい素焼結体の
表面層にある金属けい素を、900℃以上の温度で
窒素ガスと反応させて窒化けい素とすることを特
徴とするものである。
The present invention relates to a method for manufacturing a silicon carbide sintered body that solves these disadvantages, and is a method for manufacturing a silicon carbide sintered body consisting of silicon carbide and metal silicon by reducing the amount of silicon metal present in the surface layer of the silicon carbide sintered body to 900% It is characterized by reacting with nitrogen gas at a temperature of 0.degree. C. or higher to form silicon nitride.

これを説明すると、本発明者らは炭化けい素と
金属けい素とからなる反応焼結型炭化けい素の改
質について種々検討の結果、この炭化けい素焼結
体の表面に存在する金属けい素を窒化して窒化け
い素とすれば、この耐熱性が金属けい素の融点で
ある1400℃から窒化けい素の分解温度である1900
℃となるので、このものはそれを金属溶融るつぼ
として使用しても窒化けい素の分解によつて目的
物である金属が汚染されることがなく、これはま
た還元性雰囲気あるいはフエライトの酸化物処理
などにおいても窒化けい素が還元されたり、蒸発
することもないということを見出すと共に、この
窒化けい素の形成はその表層部だけで、この内部
層はSiC−Si焼結体として変化がなく、したがつ
て、これが非酸化物セラミツクスとして各種用途
に広く使用し得るものであることを確認して、本
発明を完成させた。
To explain this, the present inventors have conducted various studies on the modification of reactive sintered silicon carbide consisting of silicon carbide and metal silicon, and found that the metal silicon carbide present on the surface of this silicon carbide sintered body If silicon nitride is obtained by nitriding, the heat resistance will increase from 1400℃, the melting point of metal silicon, to 1900℃, the decomposition temperature of silicon nitride.
℃, so even if this crucible is used as a metal melting crucible, the target metal will not be contaminated by the decomposition of silicon nitride. We discovered that silicon nitride is neither reduced nor evaporated during processing, and that silicon nitride is formed only on the surface layer, with the inner layer remaining unchanged as a SiC-Si sintered body. Therefore, the present invention was completed after confirming that this can be widely used as a non-oxide ceramic for various purposes.

本発明の方法に始発材として使用される反応焼
結型炭化けい素焼結体は従来公知のものでよく、
これは炭化けい素と炭素粉とを例えばメチルセル
ロース、フエノール樹脂、シリコーン樹脂、また
はタールピツチなどの結合剤と混合し、これをラ
バープレスあるいは押出し成形などで所望の形状
に成形したのち、窒素、アルゴン、ネオンなどの
不活性ガス中で500〜1000℃に加熱して仮焼体と
し、ついでこれを不活性ガス中または真空中で
1400℃以上に加熱し、溶融状またはガス状の金属
けい素と接触させることによつて得ることができ
る。この場合、金属けい素はその大部分が炭素と
の反応で炭化けい素となり、残余のものがそのま
ま炭化けい素仮焼体の内部に残留するが、その一
部は前記したように冷時の体積膨張で外層部に吹
き出ることになる。
The reactive sintered silicon carbide sintered body used as the starting material in the method of the present invention may be any conventionally known one,
This is done by mixing silicon carbide and carbon powder with a binder such as methylcellulose, phenolic resin, silicone resin, or tarpitz, molding this into a desired shape using a rubber press or extrusion molding, and then using nitrogen, argon, It is heated to 500-1000℃ in an inert gas such as neon to form a calcined body, and then this is heated in an inert gas or vacuum.
It can be obtained by heating to 1400°C or higher and contacting it with molten or gaseous metal silicon. In this case, most of the metallic silicon reacts with carbon to become silicon carbide, and the remainder remains inside the calcined silicon carbide body, but some of it remains when cooled as described above. It will blow out to the outer layer due to volumetric expansion.

本発明の方法はこの炭化けい素焼結体の外層部
に存在する金属けい素を窒化するものであるが、
これは上述した方法で得られた炭化けい素焼結体
を窒素ガス雰囲気で900℃以上、好ましくは1250
℃〜1450℃に加熱するという方法で行えばよく、
この反応は炭化けい素焼結体の組織がち密である
ためその内層部にまでは及ばないので、これによ
ればその表層部の金属けい素だけが窒化される。
この窒化反応の実施に当つては、予じめこの炭化
けい素焼結体の表層部に付着している金属けい素
のうち、その成形体の形状ないし寸法安定性を損
なうおそれのあるものを除去しておくことがよ
く、これは例えばサンドブラスト法などの機械的
手段によるか、あるいは金属けい素を溶解するフ
ツ酸−硝酸混液、苛性ソーダ温水などで処理すれ
ばよい。しかし、このフツ酸−硝酸混液、苛性ソ
ーダ混液で処理すると前記したようにその表面が
黄緑化し、硬度も低下するので、この場合には金
属けい素と反応する前の炭化けい素仮焼体を予じ
めフエノール樹脂などの合成樹脂、各種油脂、パ
ラフインあるいはポリカルボシランを含有する溶
理で処理しておくことがよく、これによればかか
る不利を防ぐことができる。なお、この窒化反応
の実施に当つて、これを窒化触媒として公知のフ
ツ化物、鉄粉などの存在下で行なうこと、さらに
はこの窒素ガス中に0.01〜20%の水素を混合する
ことは任意とされ、これによればその窒化をより
有効に進めることができる。
The method of the present invention is for nitriding the metallic silicon present in the outer layer of this silicon carbide sintered body,
This is done by heating the silicon carbide sintered body obtained by the above method in a nitrogen gas atmosphere at a temperature of 900°C or higher, preferably 1250°C.
This can be done by heating the temperature between ℃ and 1450℃.
Since this reaction does not extend to the inner layer of the silicon carbide sintered body due to its dense structure, only the metallic silicon in the surface layer is nitrided.
Before carrying out this nitriding reaction, of the metallic silicon adhering to the surface layer of this silicon carbide sintered body, those that may impair the shape or dimensional stability of the molded body are removed in advance. This may be done by mechanical means such as sandblasting, or by treatment with a hydrofluoric acid-nitric acid mixture that dissolves silicon metal, hot caustic soda water, or the like. However, when treated with this hydrofluoric acid-nitric acid mixture or caustic soda mixture, the surface becomes yellowish-green and the hardness decreases as described above, so in this case, the calcined silicon carbide body before reacting with metal silicon is It is preferable to treat the material in advance with a solution containing a synthetic resin such as a phenolic resin, various oils and fats, paraffin, or polycarbosilane, thereby avoiding such disadvantages. Note that when carrying out this nitriding reaction, it is optional to carry out this in the presence of known fluorides, iron powder, etc. as a nitriding catalyst, and furthermore to mix 0.01 to 20% hydrogen into this nitrogen gas. According to this, the nitriding can proceed more effectively.

本発明の方法で得られる炭化けい素焼結体はそ
の表層部が炭化けい素と窒化けい素とから成るも
のであり、この表層部には金属けい素が存在しな
いので、これは窒化けい素の分解温度である1900
℃以下ではその分解による事故もなく、これはま
たフツ酸−硝酸混液にも侵されない化学的に安定
したものとなるので、このものはセラミツク剤と
しての広い用途をもつものとなる。
The silicon carbide sintered body obtained by the method of the present invention has a surface layer composed of silicon carbide and silicon nitride, and since metallic silicon is not present in this surface layer, this is made up of silicon nitride. 1900 which is the decomposition temperature
There are no accidents due to its decomposition at temperatures below 0.degree. C., and it is chemically stable and unaffected by a mixture of hydrofluoric acid and nitric acid, so it has a wide range of uses as a ceramic agent.

つぎに、本発明の実施例をあげる。 Next, examples of the present invention will be given.

実施例 1 平均粒径9.5μmの市販の炭化けい素粉末200g、
平均粒径が1.0μmの人造黒鉛120gおよびシリコ
ーン樹脂KR−260(信越化学工業製、商品名)
160gをトルエン200mlに加え、ボールミル中で混
合したのちトルエンを除去して100メツシユ以下
の粉末混合物とした。
Example 1 200 g of commercially available silicon carbide powder with an average particle size of 9.5 μm,
120g of artificial graphite with an average particle size of 1.0μm and silicone resin KR-260 (manufactured by Shin-Etsu Chemical Co., Ltd., trade name)
160 g was added to 200 ml of toluene, mixed in a ball mill, and the toluene was removed to obtain a powder mixture of 100 mesh or less.

つぎにこれを静水圧プレスを用いて直径50mm、
長さ70mmの円柱状体に成形し、窒素ガス雰囲気中
800℃で仮焼してから施盤加工で外径45mm、内径
35mm、長さ60mm、底の厚さ5〜6mmのルツボ状に
成形し、1600℃の真空炉中で金属けい素と反応さ
せ、表面をサンドブラストで処理して炭化けい素
−けい素焼結体からなるルツボを作つた。
Next, use a hydrostatic press to create a diameter of 50 mm.
Formed into a cylindrical body with a length of 70 mm and placed in a nitrogen gas atmosphere.
After calcining at 800℃, the outer diameter is 45mm and the inner diameter is lathe-processed.
It is formed into a crucible shape of 35mm long, 60mm long, and 5-6mm thick at the bottom, reacted with metal silicon in a vacuum furnace at 1600℃, and the surface is sandblasted to produce a silicon carbide-silicon sintered body. I created a crucible.

ついで、このルツボを1100℃に保持された窒素
ガスと水素ガスの4:1の混合ガス雰囲気炉中に
入れ、炉内を50℃/時間で1400℃まで昇温させ、
この温度に4時間保持してから室温にまで放冷
し、その表面の組成をX線分析でしらべたとこ
ろ、ここには金属けい素は存在せず、表面は炭化
けい素と窒化けい素であることが確認された。
Next, this crucible was placed in a 4:1 mixed gas atmosphere furnace of nitrogen gas and hydrogen gas maintained at 1100°C, and the temperature inside the furnace was raised to 1400°C at a rate of 50°C/hour.
After keeping it at this temperature for 4 hours and then cooling it to room temperature, the composition of its surface was examined by X-ray analysis, and it was found that there was no metallic silicon, and the surface was composed of silicon carbide and silicon nitride. It was confirmed that there is.

なお、このルツボ中に金属アルミニウム30gを
入れて真空炉で850℃に加熱して溶融したところ、
このアルミニウム中に存在する金属けい素は
10ppmであつたが、上記した窒化処理をしないル
ツボを使用した場合の金属けい素含有量は200〜
400ppmであつた。
In addition, when 30g of metal aluminum was placed in this crucible and heated to 850℃ in a vacuum furnace to melt it,
The metallic silicon present in this aluminum is
The metal silicon content was 10 ppm, but when using a crucible without the above nitriding treatment, the metal silicon content is 200~
It was 400ppm.

実施例 2 実施例1と同様の原料物質から金型プレスを用
いて外径76mm、内径65mm、長さ6mmのリングを作
り、これを窒素ガス雰囲気中で850℃に加熱して
仮焼体としたのち、これにポリカルボシランの50
%トルエン溶液を含浸させ、ついでこれを1600℃
の真空炉中で金属けい素と反応させて炭化けい素
−けい素焼結体からなるリングとした。
Example 2 A ring with an outer diameter of 76 mm, an inner diameter of 65 mm, and a length of 6 mm was made from the same raw materials as in Example 1 using a mold press, and this was heated to 850°C in a nitrogen gas atmosphere to form a calcined body. After that, 50% of polycarbosilane was added to this.
% toluene solution and then heated to 1600℃.
This was reacted with metallic silicon in a vacuum furnace to form a ring made of silicon carbide-silicon sintered body.

つぎにこれを70℃に加温した30%苛性ソーダ溶
液中に8時間浸漬して、その外表面に存在するけ
い素を除去し、ついでこれを1300℃に保持した窒
素ガスと水素ガスの4:1の混合ガス雰囲気炉に
入れ、1時間毎に真空排気−ガス充填を行ないつ
つ8時間、保持してから室温にまで放冷し、この
ようにして得たリング端面を鏡面仕上げたものに
ついて、その表面をX線分析したところ、これに
は金属けい素は全く検出されなかつた。
Next, this was immersed in a 30% caustic soda solution heated to 70°C for 8 hours to remove the silicon present on its outer surface, and then it was heated to 1300°C and soaked in nitrogen gas and hydrogen gas for 8 hours. The rings were placed in a mixed gas atmosphere furnace (No. 1), held for 8 hours while being evacuated and filled with gas every hour, and then allowed to cool to room temperature. When the surface was subjected to X-ray analysis, no metallic silicon was detected at all.

なお、この製品を3%のフツ酸−硝酸(1:
1)の水溶液に浸漬したところ、これには重量変
化が全く見られなかつたが、この窒化処理をしな
いものは減量が続き200時間で金属けい素の85%
が溶解してしまつた。
Please note that this product is mixed with 3% hydrofluoric acid-nitric acid (1:
When immersed in the aqueous solution of 1), there was no change in weight at all, but the weight of the material without nitriding continued to decrease, and 85% of the metallic silicon weight was lost in 200 hours.
has dissolved.

Claims (1)

【特許請求の範囲】 1 炭化けい素と金属けい素とからなる炭化けい
素焼結体の表面層にある金属けい素を、900℃以
上の温度で窒素ガスと反応させて窒化けい素とす
ることを特徴とする炭化けい素焼結体の製造方
法。 2 炭化けい素焼結体を金属けい素を溶解する薬
剤でエツチング処理したのち、900℃以上の温度
で窒素ガスと反応させることを特徴とする特許請
求の範囲第1項記載の炭化けい素焼結体の製造方
法。
[Claims] 1. Metallic silicon in the surface layer of a silicon carbide sintered body consisting of silicon carbide and metallic silicon is reacted with nitrogen gas at a temperature of 900°C or higher to form silicon nitride. A method for producing a silicon carbide sintered body, characterized by: 2. The silicon carbide sintered body according to claim 1, wherein the silicon carbide sintered body is etched with a chemical that dissolves silicon metal, and then reacted with nitrogen gas at a temperature of 900°C or higher. manufacturing method.
JP56161540A 1981-10-09 1981-10-09 Manufacture of silicon carbide sintered body Granted JPS5864284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56161540A JPS5864284A (en) 1981-10-09 1981-10-09 Manufacture of silicon carbide sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56161540A JPS5864284A (en) 1981-10-09 1981-10-09 Manufacture of silicon carbide sintered body

Publications (2)

Publication Number Publication Date
JPS5864284A JPS5864284A (en) 1983-04-16
JPH0116790B2 true JPH0116790B2 (en) 1989-03-27

Family

ID=15737035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56161540A Granted JPS5864284A (en) 1981-10-09 1981-10-09 Manufacture of silicon carbide sintered body

Country Status (1)

Country Link
JP (1) JPS5864284A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61197483A (en) * 1985-02-27 1986-09-01 株式会社リケン Ceramic sliding member
JPS61295289A (en) * 1985-06-20 1986-12-26 バブコツク日立株式会社 Silicon carbide sintered body and manufacture
JPH0770494B2 (en) * 1986-10-15 1995-07-31 東海高熱工業株式会社 Wafer boat manufacturing method for semiconductor manufacturing

Also Published As

Publication number Publication date
JPS5864284A (en) 1983-04-16

Similar Documents

Publication Publication Date Title
US4040849A (en) Polycrystalline silicon articles by sintering
JP2542402B2 (en) Materials resistant to metal and salt melts, their production and their use
JPH0139989B2 (en)
JPS6047225B2 (en) Manufacturing method for densified silicon products
JPS5844630B2 (en) silicone carbide material
US3011982A (en) Refractory and method of making the same
JPH0116790B2 (en)
JPH0532458A (en) Heat-treating apparatus for semiconductor, high-purity silicon carbide part for semiconductor heat-treating apparatus and its production
JP4068825B2 (en) Method for producing sintered silicon carbide
JPH031271B2 (en)
JP4166350B2 (en) Oxidation-resistant boron carbide-silicon carbide composite carbon material, sintering crucible using the same, vacuum evaporation crucible, and high-temperature firing jig
JPH03146470A (en) Silicon carbide-based material
JP2002338366A (en) High purity silicon carbide heating element and method of producing the same
JP2000351679A (en) Production of silicon carbide-based porous form and the resultant silicon carbide-based porous form
JPS6058190B2 (en) Method for manufacturing silicon nitride-silicon carbide molded body
JP3482480B2 (en) Graphite-silicon carbide composite having excellent oxidation resistance and method for producing the same
JPS589882A (en) Super hard heat-resistant ceramics and manufacture
JPS5915112B2 (en) Method for manufacturing high-density silicon carbide sintered body
KR19990018885A (en) Method for producing alumina / aluminum composite
JPH0345034B2 (en)
JPS6236067A (en) Manufacture of high purity recrystallized silicon carbide base sintered body
JPS61136963A (en) Manufacture of silicon nitride base sintered body
JPS624351B2 (en)
US3056685A (en) Ceramic product and method of
JP2588278B2 (en) Method for producing porous silicon carbide sintered body