JPS60257579A - Module of solar cell - Google Patents

Module of solar cell

Info

Publication number
JPS60257579A
JPS60257579A JP59114962A JP11496284A JPS60257579A JP S60257579 A JPS60257579 A JP S60257579A JP 59114962 A JP59114962 A JP 59114962A JP 11496284 A JP11496284 A JP 11496284A JP S60257579 A JPS60257579 A JP S60257579A
Authority
JP
Japan
Prior art keywords
electrode
copper foil
solar cell
insulating
lead wires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59114962A
Other languages
Japanese (ja)
Other versions
JPH0469437B2 (en
Inventor
Akihiko Nakano
明彦 中野
Hitoshi Matsumoto
仁 松本
Hiroshi Uda
宇田 宏
Yasumasa Komatsu
小松 康允
Seiji Ikegami
池上 清治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59114962A priority Critical patent/JPS60257579A/en
Publication of JPS60257579A publication Critical patent/JPS60257579A/en
Publication of JPH0469437B2 publication Critical patent/JPH0469437B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To increase the strength of a terminal connecting section, and to improve reliability by connecting a plus electrode and a minus electrode to a copper foil laminated to an insulating resin board by conductive adhesives and soldering a lead wire with the plus electrode and the minus electrode. CONSTITUTION:A plus electrode 5 and a minus electrode 6 are each connected electrically to a copper foil 11 laminated to an insulating resin board 12 by conductive adhesives 14. External lead wires are connected firmly to the copper foil 11 through soldering, and lastly the lead wires and several electrode 5, 6 are connected electrically. Consequently, the external lead wires are attached powerfully to the copper foil 11 through soldering, and the insulating board 12 to which the copper foil 11 is stuck together is also bonded tightly with a solar cell element by insulating adhesives 13. The copper foil 11 and each electrode 5, 6 are connected by conductive adhesives, and action except thermal expansion and contraction does not function between both the copper foil and the electrodes. Accordingly, a module having high reliability as a whole can be manufactured easily.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は太陽電池モジュール、特に各電極と外部リード
線との接続部を改良した太陽電池モジュールに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a solar cell module, and particularly to a solar cell module in which the connection between each electrode and an external lead wire is improved.

従来例の構成とその問題点 最近エネルギー供給の一手段として太陽電池が注目され
ている。その理由は無限ともいえるクリーンな太陽エネ
ルギーから直接電気エイ・ルギーが容易に取り出せるか
らである。しかしながら現在では上記電気エネルギー製
造原価が高いため充分に普及する段階にまで至ってい々
い。しかし上記利点を応用した太陽電池モジュールが出
始め、次第に普及する兆が見えている。
Conventional configurations and their problems Recently, solar cells have been attracting attention as a means of energy supply. The reason for this is that electricity can be easily generated directly from the almost limitless clean solar energy. However, at present, due to the high cost of producing the above-mentioned electrical energy, it has not reached the stage where it is sufficiently widespread. However, solar cell modules that take advantage of the above advantages have begun to appear, and there are signs that they will gradually become popular.

太陽電池の実用化を計るに当っては、それによって作ら
れる電力の原価を下げるようにすることは勿論であるが
、作られた太陽電池モジ−ニールの可使寿命をできる限
り長くできるようにしなければならない。即ち製品の長
期にわたる信頼性が高くなければならず、このだめ従来
から太陽電池モジュールの信頼性、長期寿命の向上に関
して努力が払われているが、未だ充分とはいえない点が
あった。
In planning the practical use of solar cells, it is of course important to reduce the cost of electricity produced by them, but it is also important to extend the usable life of the solar cell modules as long as possible. There must be. That is, the product must have high long-term reliability, and although efforts have been made to improve the reliability and long-term life of solar cell modules, there are still some points that cannot be said to be sufficient.

例えば従来の太陽電池モジュールにおいて信頼性を低下
させる原因となる欠点が幾つか指摘されているが、その
一つに太陽電池素子から外部へ電気を取り出すだめの接
続部分の強度不足があげられる。
For example, several drawbacks have been pointed out that cause a decrease in reliability in conventional solar cell modules, one of which is the lack of strength at the connecting portions that extract electricity from the solar cell elements to the outside.

太陽電池素子で発電した電気はそのプラス極およびマイ
ナス極に集められるが、従来は各電極に直接薄い板状の
リード線捷だはより線のり一ト線を銀ペイントで接続し
ていた。かかる接続部は機械的強度が不足し、使用上問
題があり、このだめ信頼性を低下させる原因となってい
た。かかる従来の接続部の強度不足を改良する一手段と
して、プラス極およびマイナス極のそれぞれを、ガラス
フリット入り銀電極に一旦接続し、そのガラスフIJ7
)入り銀電極に外部端子用の薄い板状のIJ−ド線捷た
はより線のリード線を半田付けする方法が提案された。
Electricity generated by a solar cell element is collected at its positive and negative poles, and conventionally, thin plate-shaped lead wires or stranded wires were connected directly to each electrode using silver paint. Such a connection part lacks mechanical strength and is problematic in use, which causes a decrease in reliability. As a means to improve the lack of strength of such conventional connection parts, each of the positive and negative electrodes is once connected to a silver electrode containing a glass frit, and the glass frit IJ7
) A method was proposed in which a thin plate-shaped IJ-cord lead wire for an external terminal was soldered to a silver electrode containing twisted or stranded wire.

この場合ガラスフリット入り銀電極に外部端子を半田付
けができ、このため幾分その接続部の強度は改良され、
信頼性が向上し、機械化処理も可能となったが、ガラス
フリット入り銀電極形成工程が加わり、工程費用か増す
ことになるばかりでなく、少なくとも400°C以上の
加熱融着処理が必要とされるため、熱による太陽型1′
池モジ、−ルへの悪影響とそのだめのエネルギーを必要
と1〜、経済的にも不利となっている。
In this case, the external terminal can be soldered to the glass frit-filled silver electrode, which improves the strength of the connection somewhat.
Reliability has improved and mechanized processing has become possible, but the process of forming silver electrodes with glass frits is added, which not only increases process costs, but also requires heat fusing at a temperature of at least 400°C. solar type 1' due to heat.
It has a negative impact on the pond and requires a lot of energy, making it economically disadvantageous.

さらに寸だ、従来の接続部の強度不足を改良する別の手
段として、太陽電池素子のプラス電極およびマイナス電
極上の一部に導電性接着剤層を設け、その周囲に絶縁性
接着剤層を設け、上記導電性接着剤層および絶縁性接着
剤層の両層上に導電性金属板を接着せしめ、かくして上
記各電極と上記導電性金属板とを上記導電性接着剤層を
介して電気的に接続させると共に上記絶縁性接着剤層を
介して強固に接合させ、更に上記金属板上にリード線を
半田イづけることからなる太陽電池モジュールが提案さ
れた。この場合、外部リード線が、太陽電池素子のプラ
ス極およびマイナス極に導電性の接着剤および導電性金
属薄板で電気的に接続されていると同時に、絶縁性接着
剤層で導電性金属板および各電極が強固に接合せしめら
れ、しかもリード線自体は導電性金属板に半田付けされ
ているので、リード線を直接各電極にとりつけだ従来の
構造に比しすぐれた強度を有し、結果として破損等が少
なくなり、太陽電池モジュールとしての寿命も長くなり
信頼性も向上する。この構造のモジュールは一旦完成す
ると上記のようにモジュールの信頼性は高く、寿命が長
いのであるが、絶縁性接着剤層を適当々厚さに保った捷
ま導電性金属板を接着するのが難しく、時として短絡す
ることがある。つ捷り製造しにくく歩留りが低下する難
点がある。
Furthermore, as another means to improve the lack of strength of conventional connections, a conductive adhesive layer is provided on a portion of the positive and negative electrodes of the solar cell element, and an insulating adhesive layer is placed around it. A conductive metal plate is bonded on both the conductive adhesive layer and the insulating adhesive layer, and thus each electrode and the conductive metal plate are electrically connected through the conductive adhesive layer. A solar cell module has been proposed in which the lead wires are connected to the metal plate and firmly bonded via the insulating adhesive layer, and lead wires are soldered onto the metal plate. In this case, the external lead wire is electrically connected to the positive and negative electrodes of the solar cell element with a conductive adhesive and a thin conductive metal plate, and at the same time, the external lead wire is connected with a conductive metal plate and a thin conductive metal plate with an insulating adhesive layer. Since each electrode is firmly connected and the lead wire itself is soldered to a conductive metal plate, it has superior strength compared to the conventional structure in which the lead wire is attached directly to each electrode. Damage, etc. is reduced, the life of the solar cell module is extended, and reliability is improved. Once a module with this structure is completed, it is highly reliable and has a long lifespan as described above, but it is important to keep the insulating adhesive layer at an appropriate thickness and then glue the conductive metal plate. Difficult and sometimes short-circuited. It has the disadvantage that it is difficult to manufacture by kneading and the yield is reduced.

発明の目的 本発明は太陽電池モジュールの外部端子接続部の」二記
のよう々欠点を克服することにある。即ち本発明は太陽
電池モジュールの外部端子接続部の強度を改良し、しか
も製作にあたってエネルギー経済の点で不利を受けず、
また製造しやすい、信頼性の高い太陽電池モジュールを
提供することにある。
OBJECTS OF THE INVENTION The present invention is directed to overcoming the following drawbacks of the external terminal connections of solar cell modules. That is, the present invention improves the strength of the external terminal connection part of a solar cell module, and does not suffer from disadvantages in terms of energy economy in manufacturing.
Another object of the present invention is to provide a highly reliable solar cell module that is easy to manufacture.

発明の構成 本発明は太陽電池素子のプラス電極およびマイナス電極
の近辺に、金属箔たとえば銅箔(はく)をはり合わせた
絶縁樹脂板を、絶縁性接着剤ではり合わせ、上記プラス
電極とマイナス電極を、それぞれ、上記絶縁樹脂板にけ
り合わされた銅箔に導電性接着剤で一旦電気的に接続し
、さらに−に記銅箔にリード線を半田付けることによっ
て最終的に各電極とリード線が電気的に接続されてなる
太陽電池モジュールにある。
Structure of the Invention The present invention involves gluing an insulating resin plate with metal foil, such as copper foil, to the vicinity of the positive and negative electrodes of a solar cell element using an insulating adhesive. The electrodes are electrically connected to the copper foil that has been glued onto the insulating resin plate using a conductive adhesive, and then the lead wires are soldered to the copper foil to finally connect each electrode and the lead wire. are electrically connected to each other in a solar cell module.

一般に太陽電池素子が薄膜形であればある程外部端子と
の接続部の強度およびその製作に問題が多いが本発明に
よれば薄膜形の太陽電池素子にも容易に適用できる。
Generally, the thinner the solar cell element is, the more problems there are in the strength of the connection portion with the external terminal and its manufacture, but the present invention can be easily applied to thin film solar cell elements.

実施例の説明 以下に図面を参照して具体例について説明する。Description of examples Specific examples will be described below with reference to the drawings.

第1図は従来の太陽電池素子の平面図であり、第2図は
本発明による太陽電池素子の平面図である。また第3図
は第2図A−A’でとった本発明によるマイナス極での
、第4図は同プラス極での接続を示すだめの端断面図で
ある。
FIG. 1 is a plan view of a conventional solar cell element, and FIG. 2 is a plan view of a solar cell element according to the present invention. Further, FIG. 3 is an end sectional view showing the connection at the negative pole according to the present invention taken along the line AA' in FIG. 2, and FIG. 4 is an end sectional view showing the connection at the same positive pole.

太陽電池素子としてCds/(dTe系のものを使用し
た場合について述べると、第1図もしくは第3図もしく
は第4図において太陽電池素子はガラス基板1の上にC
ds膜2が形成されており、その上にGdTe膜7、C
膜8がこの順序で形成され、最後にAg電極(プラス電
極)5が形成されている。壕だCdTe膜7.C膜8.
Ag電極6の形成されていないCdS膜2上にはAg−
In電極(マイナス電極)6が形成されている。従来の
太陽電池素子では第1図のようにAg電極6およびAg
−In電極6をその11利用してここから直接外部端子
用リード線をAgペイント等で接着させて取り出すか、
リード線を取り出す部分だけガラスフリット入りAg電
極61および61を融着形成させて、そこからリード線
を取り出すとかしていた。
Regarding the case where a Cds/(dTe system is used as a solar cell element, in FIG. 1, FIG. 3, or FIG.
A ds film 2 is formed on which a GdTe film 7 and a C
The film 8 is formed in this order, and finally the Ag electrode (positive electrode) 5 is formed. CdTe film 7. C membrane 8.
Ag-
An In electrode (minus electrode) 6 is formed. In the conventional solar cell element, as shown in Fig. 1, the Ag electrode 6 and the Ag
-Use the In electrode 6 and take it out directly from there by gluing the lead wire for the external terminal with Ag paint etc., or
The glass frit-containing Ag electrodes 61 and 61 were fused and formed only in the portion from which the lead wire was taken out, and the lead wire was taken out from there.

かかる方法では前述した如き欠点を有していた。This method has the drawbacks mentioned above.

本発明は上述した如き従来法の欠点を改良したもので、
第2〜4図を参照して説明する。第2〜4図においては
上述したようにガラス基板1の上にCdS膜2が形成さ
れており、その上にCdTe膜7゜C膜8がこの順序で
形成され、最後にAg電極I (プラス電極)6が形成
されている。またCdTe膜7+C膜8.Ag電極6の
形成されていないCdS膜2上にはAg−In電極(マ
イナス電極)6が形成されている。そしてそのプラス電
極5およびマイナス電極6の近辺に銅箔11をはり合わ
せた絶縁樹脂板12を、絶縁性接着剤13ではり合わせ
である。そしてプラス電極6とマイナス電極6は、それ
ぞれ、上記絶縁樹脂板12にはり合わされた銅箔11に
、導電性接着剤14で電気的に接続されている。外部リ
ード線は図示していないが、上記銅箔11−に半田付け
することにより、強固に銅箔に接続され、最終的にリー
ド線と各電極6゜6とは電気的に接続される。
The present invention improves the drawbacks of the conventional method as described above.
This will be explained with reference to FIGS. 2 to 4. In FIGS. 2 to 4, the CdS film 2 is formed on the glass substrate 1 as described above, the CdTe film 7°C film 8 is formed in this order, and finally the Ag electrode I (positive An electrode) 6 is formed. Also, CdTe film 7+C film 8. An Ag-In electrode (minus electrode) 6 is formed on the CdS film 2 on which the Ag electrode 6 is not formed. Then, an insulating resin plate 12 with a copper foil 11 pasted around the positive electrode 5 and negative electrode 6 is pasted together with an insulating adhesive 13. The positive electrode 6 and the negative electrode 6 are each electrically connected to a copper foil 11 bonded to the insulating resin plate 12 using a conductive adhesive 14. Although the external lead wires are not shown, by soldering them to the copper foil 11-, they are firmly connected to the copper foil, and finally the lead wires and each electrode 6.degree. 6 are electrically connected.

上記銅箔11をはり合わせた絶縁樹脂板12としては、
銅箔つきベークライト板、銅箔っきポリイミドフィルム
、銅箔つきポリアミドフィルム等が使用でき、絶縁性接
着剤13としてはエポキシ樹脂! シリコーン樹脂等が
使用できる。一般的には柔軟性のある、接着力の強い樹
脂が望捷しい。
The insulating resin plate 12 to which the copper foil 11 is laminated is as follows:
Bakelite plate with copper foil, polyimide film with copper foil, polyamide film with copper foil, etc. can be used, and epoxy resin can be used as the insulating adhesive 13! Silicone resin etc. can be used. Generally, flexible resins with strong adhesive strength are desirable.

さらに導電性接着剤14としては公知の通常の銀ペイン
トが使用可能である。
Further, as the conductive adhesive 14, a commonly known silver paint can be used.

外部リード線は半田付けにより強力に銅箔11につけら
れ、銅箔11をはり合わせた絶縁板12も絶縁性接着剤
13で太陽電池素子に強力に接着されている。しかも銅
箔11と各電極6.6は導電性接着剤で接続されており
、か゛つ、両者の間には熱膨張と収縮による力以外は働
かない。従って全体的に信頼性の高いモジュールが容易
に製作できる。
The external lead wires are strongly attached to the copper foil 11 by soldering, and the insulating plate 12 to which the copper foil 11 is bonded is also strongly bonded to the solar cell element with an insulating adhesive 13. Furthermore, the copper foil 11 and each electrode 6.6 are connected with a conductive adhesive, so that no force other than thermal expansion and contraction acts between them. Therefore, a module with overall high reliability can be easily manufactured.

発明の効果 本発明による太陽電池モジュールは、外部リード線が、
太陽電池素子のプラス極およびマイナス極に導電性の接
着剤、絶縁樹脂板にはり合わされた金属箔、半田で電気
的に接続されていると同時に、金属箔つき絶縁樹脂板は
絶縁性接着剤で太陽電池素子に強固に接着されている。
Effects of the Invention In the solar cell module according to the present invention, the external lead wire is
The positive and negative terminals of the solar cell element are electrically connected with conductive adhesive, metal foil laminated to the insulating resin plate, and solder, and at the same time, the insulating resin plate with metal foil is connected with insulating adhesive It is firmly bonded to the solar cell element.

従ってリード線を直接各電極にとりつけだ従来の構造に
比し、すぐれた強度を有することは言うまでもない。そ
の結果破損等が少くなり、太陽電池モジュール古しての
寿命も長くなり信頼性も向上する。また上に記した太陽
電池素子のプラス電極およびマイナス電極−にの一部に
導電性接着剤層を設け、その周囲に絶縁性接着剤層を設
け、上記導電性接着剤層および絶縁性接着剤層の両層上
に導電性金属を接着せしめ、かくして上記各電極と上記
導電性金属板とを上記導電性接着剤層を介して電気的に
接続させると共に上記絶縁性接着剤層を介して強固に接
合させ、更に上記金属板上にリード線を半田伺けること
からなる太陽電池モジュールの製造時に困難であった絶
縁性接着剤層を適当な厚さに保つことの必要性が全くな
くなり、短絡事故が皆無となり歩留りが向上する。製造
も非常に容易になる。
Therefore, it goes without saying that this structure has superior strength compared to the conventional structure in which lead wires are directly attached to each electrode. As a result, damage and the like are reduced, the lifespan of the solar cell module is extended, and its reliability is improved. In addition, a conductive adhesive layer is provided on a part of the positive electrode and the negative electrode of the solar cell element described above, and an insulating adhesive layer is provided around it, and the conductive adhesive layer and the insulating adhesive layer are provided around the conductive adhesive layer. A conductive metal is bonded on both layers of the layer, and thus each of the electrodes and the conductive metal plate are electrically connected through the conductive adhesive layer, and also firmly established through the insulating adhesive layer. Furthermore, it is no longer necessary to maintain an appropriate thickness of the insulating adhesive layer, which was difficult when manufacturing solar cell modules, which involves soldering lead wires onto the metal plate, thereby eliminating short circuits. There will be no accidents and the yield will improve. Manufacturing is also much easier.

本発明における金属箔をはや合わせた絶縁樹脂板を広く
すれば、たとえ、素子を構成する薄膜の基板への接着力
が微小であっても、総合的には大きな接着力が得られる
。もとより、絶縁板をいかに広くしようと′も、素子と
の短絡の恐れは全く々い0 以上の説明1″106S /CdTe系太陽電池素子に
ついて説明したが、a−8i系太陽電池素子にも本発明
は同様に適用しうろことは明らかであろう。
In the present invention, if the insulating resin plate on which the metal foil is laminated is widened, even if the adhesion force of the thin film constituting the element to the substrate is minute, a large overall adhesion force can be obtained. Of course, no matter how wide the insulating plate is made, there is no risk of short circuit with the element. It will be clear that the invention has similar application.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の太陽電池素子の平面図、第2図は本発明
による太陽電池素子の平面図、第3図は第2図A−A’
でとった本発明によるマイナス極での接続を示すだめの
断面図、第4図は同プラス極での接続を示すだめの断面
図である。 1・・・・・・ガラス基板、2・・・・Gas膜、6・
・・・・・Ag電極(プラス電極)、6・・・kg−I
n電極(マイナス電極)、7・・・・・CdTa膜、8
・・・・C膜、11・・・・・・銅箔(はく)、12・
・・・・・絶縁樹脂板、13・・・・・・絶縁性接着剤
、14・・・・・導電性接着剤。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名・、
11 第1図 2 .3−
Fig. 1 is a plan view of a conventional solar cell element, Fig. 2 is a plan view of a solar cell element according to the present invention, and Fig. 3 is a plan view of a solar cell element according to the present invention.
FIG. 4 is a cross-sectional view of a reservoir according to the present invention showing a connection using a negative pole, and FIG. 4 is a cross-sectional view of the reservoir showing a connection using a positive pole. 1...Glass substrate, 2...Gas film, 6...
...Ag electrode (positive electrode), 6...kg-I
n electrode (negative electrode), 7...CdTa film, 8
...C film, 11...Copper foil, 12.
... Insulating resin plate, 13 ... Insulating adhesive, 14 ... Conductive adhesive. Name of agent: Patent attorney Toshio Nakao and one other person.
11 Figure 1 2. 3-

Claims (1)

【特許請求の範囲】[Claims] 金属箔付き絶縁樹脂板を太陽電池素子のプラス電極およ
びマイナス電極の近辺に金属箔を外側にして絶縁性接着
剤ではシ合わせ、上記プラス電極とマイナス電極を、そ
れぞれ、上記金属箔付き絶縁板の金属箔に導電性接着剤
で一旦電気的に接続し、さらに、上記金属箔にリード線
を半田付けることによって最終的に各電極とリード線が
電気的に接続されてなる太陽電池モジュール。
Insulating resin plates with metal foil are placed near the positive and negative electrodes of the solar cell element with the metal foils on the outside using an insulating adhesive. A solar cell module in which each electrode and the lead wire are finally electrically connected by first electrically connecting the metal foil with a conductive adhesive and then soldering the lead wire to the metal foil.
JP59114962A 1984-06-04 1984-06-04 Module of solar cell Granted JPS60257579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59114962A JPS60257579A (en) 1984-06-04 1984-06-04 Module of solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59114962A JPS60257579A (en) 1984-06-04 1984-06-04 Module of solar cell

Publications (2)

Publication Number Publication Date
JPS60257579A true JPS60257579A (en) 1985-12-19
JPH0469437B2 JPH0469437B2 (en) 1992-11-06

Family

ID=14650943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59114962A Granted JPS60257579A (en) 1984-06-04 1984-06-04 Module of solar cell

Country Status (1)

Country Link
JP (1) JPS60257579A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002013278A3 (en) * 2000-08-08 2002-04-18 Astrium Gmbh Discharge-resistant outer-space solar generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002013278A3 (en) * 2000-08-08 2002-04-18 Astrium Gmbh Discharge-resistant outer-space solar generator

Also Published As

Publication number Publication date
JPH0469437B2 (en) 1992-11-06

Similar Documents

Publication Publication Date Title
JP5380810B2 (en) Solar cell module
JP3323573B2 (en) Solar cell module and method of manufacturing the same
JP3448924B2 (en) Method for manufacturing thin-film solar cell module
JP2000068542A (en) Laminated thin film solar battery module
JPH02181475A (en) Solar battery cell and manufacture thereof
JPH04152679A (en) Integrated photovoltaic device
JPWO2008152865A1 (en) Thin film solar cell and manufacturing method thereof
JPH07202241A (en) Solar battery, mounting method and manufacture thereof
CN115241310A (en) Method for reinforcing electrical connection of battery pieces in photovoltaic module
JP2933003B2 (en) Mounting structure of solar cell element
JP2010182935A (en) Method of manufacturing thin film solar cell
JPS60257579A (en) Module of solar cell
JPH034576A (en) Laminated type piezoelectric element
US3579811A (en) Method of making passive electronic components including laminating terminals
JP2003133570A (en) Method of manufacturing solar battery module
JP3024367B2 (en) Method of manufacturing solar cell device
JP2002094087A (en) Solar cell module
JP2000004034A (en) Connecting method for bus bar in solar battery module
US20110297219A1 (en) Method and materials for the fabrication of current collecting structures for photovoltaic devices
JPS6362913B2 (en)
JP2002353487A (en) Solar cell module and manufacturing method therefor
JP2017134960A (en) Laminate type power storage device, and method for manufacturing laminate type power storage device
JPH05114392A (en) Mounting structure of flat type power supply element on circuit board and mounting method thereof
JP3619099B2 (en) Solar cell module
JPH07287081A (en) Connection structure for solar cell