JPH0469437B2 - - Google Patents

Info

Publication number
JPH0469437B2
JPH0469437B2 JP59114962A JP11496284A JPH0469437B2 JP H0469437 B2 JPH0469437 B2 JP H0469437B2 JP 59114962 A JP59114962 A JP 59114962A JP 11496284 A JP11496284 A JP 11496284A JP H0469437 B2 JPH0469437 B2 JP H0469437B2
Authority
JP
Japan
Prior art keywords
electrode
solar cell
metal foil
insulating
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59114962A
Other languages
Japanese (ja)
Other versions
JPS60257579A (en
Inventor
Akihiko Nakano
Hitoshi Matsumoto
Hiroshi Uda
Yasumasa Komatsu
Seiji Ikegami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59114962A priority Critical patent/JPS60257579A/en
Publication of JPS60257579A publication Critical patent/JPS60257579A/en
Publication of JPH0469437B2 publication Critical patent/JPH0469437B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は太陽電池モジユール、特に各電極と外
部リード線との接続部を改良した太陽電池モジユ
ールに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a solar cell module, and particularly to a solar cell module in which the connection between each electrode and an external lead wire is improved.

従来例の構成とその問題点 最近エネルギー供給の一手段として太陽電池が
注目されている。その理由は無限ともいえるクリ
ーンな太陽エネルギーから直接電気エネルギーが
容易に取り出せるからである。しかしながら現在
では上記電気エネルギー製造原価が高いため充分
に普及する段階にまで至つていない。しかし上記
利点を応用した太陽電池モジユールが出始め、次
第に普及する兆が見えている。
Conventional configuration and its problems Recently, solar cells have been attracting attention as a means of energy supply. The reason for this is that electrical energy can be easily extracted directly from the almost infinite amount of clean solar energy. However, due to the high cost of producing the electrical energy, it has not yet reached a stage where it is fully widespread. However, solar cell modules that utilize the above-mentioned advantages have begun to appear, and there are signs that they will gradually become popular.

太陽電池の実用化を計るに当つては、それによ
つて作られる電力の原価を下げるようにすること
は勿論であるが、作られた太陽電池モジユールの
可使寿命をできる限り長くできるようにしなけれ
ばならない。即ち製品の長期にわたる信頼性が高
くなければならず、このため従来から太陽電池モ
ジユールの信頼性、長期寿命の向上に関して努力
が払われているが、未だ充分とはいえない点があ
つた。
In planning to put solar cells into practical use, it is of course important to reduce the cost of the electricity produced by them, but it is also important to ensure that the usable life of the solar cell modules produced is as long as possible. Must be. That is, the long-term reliability of the product must be high, and for this reason, efforts have been made to improve the reliability and long-term life of solar cell modules, but there are still some points that cannot be said to be sufficient.

例えば従来の太陽電池モジユールにおいて信頼
性を低下させる原因となる欠点が幾つか指摘され
ているが、その一つに太陽電池素子から外部へ電
気を取り出すための接続部分の強度不足があげら
れる。
For example, several defects have been pointed out in conventional solar cell modules that cause a decrease in reliability, one of which is the lack of strength of the connection part for extracting electricity from the solar cell element to the outside.

太陽電池素子で発電した電気はそのプラス極お
よびマイナス極に集められるが、従来は各電極に
直接薄い板状のリード線またはより線のリード線
を銀ペイントで接続していた。かかる接続部は機
械的強度が不足し、使用上問題があり、このため
信頼性を低下させる原因となつていた。かかる従
来の接続部の強度不足を改良する一手段として、
プラス極およびマイナス極のそれぞれを、ガラス
フリツト入り銀電極に一旦接続し、そのガラスフ
リツト入り銀電極に外部端子用の薄い板状のリー
ド線またはより線のリード線を半田付けする方法
が提案された。この場合ガラスフリツト入り銀電
極に外部端子を半田付けができ、このため幾分そ
の接続部の強度は改良され、信頼性が向上し、機
械化処理も可能となつたが、ガラスフリツト入り
銀電極形成工程が加わり、工程費用が増すことに
なるばかりでなく、少なくとも400℃以上の加熱
融着処理が必要とされるため、熱による太陽電池
モジユールへの悪影響とそのためのエネルギーを
必要とし、経済的にも不利となつている。
Electricity generated by a solar cell element is collected at its positive and negative poles, and conventionally, thin plate-shaped lead wires or stranded wire lead wires were connected directly to each electrode using silver paint. Such a connection part lacks mechanical strength and is problematic in use, which causes a decrease in reliability. As a means to improve the lack of strength of such conventional connections,
A method has been proposed in which each of the positive and negative electrodes is once connected to a glass frit-filled silver electrode, and a thin plate-shaped lead wire or stranded lead wire for an external terminal is soldered to the glass frit-filled silver electrode. In this case, external terminals could be soldered to the glass fritted silver electrode, which improved the strength and reliability of the connection to some extent, and made mechanization possible, but the process of forming the glass fritted silver electrode This not only increases the process cost, but also requires heat fusing treatment at a temperature of at least 400°C, which has an adverse effect on the solar cell module due to heat and requires energy, which is economically disadvantageous. It is becoming.

さらにまた、従来の接続部の強度不足を改良す
る別の手段として、太陽電池素子のプラス電極お
よびマイナス電極上の一部に導電性接着剤層を設
け、その周囲に絶縁性接着剤層を設け、上記導電
性接着剤層および絶縁性接着剤層の両層上に導電
性金属板を接着せしめ、かくして上記各電極と上
記導電性金属板とを上記導電性接着剤層を介して
電気的に接続させると共に上記絶縁性接着剤層を
介して強固に接合させ、更に上記金属板にリード
線を半田付けることからなる太陽電池モジユール
が提案された。この場合、外部リード線が、太陽
電池素子のプラス極およびマイナス極に導電性の
接着剤および導電性金属薄板で電気的に接続され
ていると同時に、絶縁性接着剤層で導電性金属板
および各電極が強固に接合せしめられ、しかもリ
ード線自体は導電性金属板に半田付けされている
ので、リード線を直接各電極にとりつけた従来の
構造に比しすぐれた強度を有し、結果として破損
等が少なくなり、太陽電池モジユールとしての寿
命も長くなり信頼性も向上する。この構造のモジ
ユールは一旦完成すると上記のようにモジユール
の信頼性は高く、寿命が長いのであるが、絶縁性
接着剤層を適当な厚さに保つたまま導電性金属板
を接着するのが難しく、時として短絡することが
ある。つまり製造しにくく歩留りが低下する難点
がある。
Furthermore, as another means to improve the lack of strength of conventional connections, a conductive adhesive layer is provided on a portion of the positive and negative electrodes of the solar cell element, and an insulating adhesive layer is provided around it. , a conductive metal plate is bonded on both the conductive adhesive layer and the insulating adhesive layer, and thus each of the electrodes and the conductive metal plate are electrically connected via the conductive adhesive layer. A solar cell module has been proposed in which the metal plates are connected and firmly bonded via the insulating adhesive layer, and lead wires are soldered to the metal plates. In this case, the external lead wire is electrically connected to the positive and negative electrodes of the solar cell element with a conductive adhesive and a thin conductive metal plate, and at the same time, the external lead wire is connected with a conductive metal plate and a thin conductive metal plate with an insulating adhesive layer. Since each electrode is firmly connected, and the lead wire itself is soldered to a conductive metal plate, it has superior strength compared to the conventional structure in which the lead wire is attached directly to each electrode. There will be less damage, the lifespan of the solar cell module will be longer, and the reliability will be improved. Once a module with this structure is completed, it is highly reliable and has a long life as described above, but it is difficult to bond the conductive metal plate while maintaining the insulating adhesive layer at an appropriate thickness. , sometimes short-circuited. In other words, it has the disadvantage that it is difficult to manufacture and the yield is reduced.

発明の目的 本発明は太陽電池モジユールの外部端子接続部
の上記のような欠点を克服することにある。即ち
本発明は太陽電池モジユールの外部端子接続部の
強度を改良し、しかも製作にあたつてエネルギー
経済の点で不利を受けず、また製造しやすい、信
頼性の高い太陽電池モジユールを提供することに
ある。
OBJECTS OF THE INVENTION The present invention aims to overcome the above-mentioned drawbacks of external terminal connections of solar cell modules. That is, the present invention provides a highly reliable solar cell module that improves the strength of the external terminal connection portion of the solar cell module, is not disadvantageous in terms of energy economy, and is easy to manufacture. It is in.

発明の構成 本発明は、電極の近傍に絶縁性接着剤により金
属箔の側を外にしてはり合わされた金属箔付き絶
縁樹脂板と、上記電極と上記金属箔とを電気的に
接続する導電性接着剤と、上記金属箔に半田付け
されたリード線とからなる、電極とリード線との
接続構造を、プラス電極およびマイナス電極の双
方に備えて太陽電池モジユールを構成する。
Structure of the Invention The present invention provides an insulating resin plate with metal foil that is glued together with an insulating adhesive in the vicinity of an electrode with the metal foil side facing outward, and a conductive resin plate that electrically connects the electrode and the metal foil. A solar cell module is constructed by providing both the positive electrode and the negative electrode with an electrode-to-lead connection structure consisting of an adhesive and a lead wire soldered to the metal foil.

一般に太陽電池素子が薄膜形であればある程外
部端子との接続部の強度およびその製作に問題が
多いが本発明によれば薄膜形の太陽電池素子にも
容易に適用できる。
Generally, the thinner the solar cell element is, the more problems there are in the strength of the connection portion with the external terminal and its manufacture, but the present invention can be easily applied to thin film solar cell elements.

実施例の説明 以下に図面を参照して具体例について説明す
る。
Description of Examples Specific examples will be described below with reference to the drawings.

第1図は従来の太陽電池素子の平面図であり、
第2図は本発明による太陽電池素子の平面図であ
る。また第3図は第2図A−A′でとつた本発明
によるマイナス極での、第4図は同プラス極での
接続を示すための端断面図である。
FIG. 1 is a plan view of a conventional solar cell element.
FIG. 2 is a plan view of the solar cell element according to the present invention. Further, FIG. 3 is an end sectional view showing the connection at the negative pole according to the present invention taken along the line A-A' in FIG. 2, and FIG. 4 is an end sectional view showing the connection at the same positive pole.

太陽電池素子としてCdS/CdTe系のものを使
用した場合について述べると、第1図もしくは第
3図もしくは第4図において太陽電池素子はガラ
ス基板1の上にCdS膜2が形成されており、その
上にCdTe膜7、C膜8がこの順序で形成され、
最後にAg電極(プラス電極)5が形成されてい
る。またCdTe膜7、C膜8、Ag電極5の形成さ
れていないCdS膜2上にはAg−In電極(マイナ
ス電極)6が形成されている。従来の太陽電池素
子では第1図のようにAg電極5およびAg−In電
極6をそのまま利用してここから直接外部端子用
リード線をAgペイント等で接着させて取り出す
か、リード線を取り出す部分だけガラスフリツト
入りAg電極51および61を融着形成させて、
そこからリード線を取り出すとかしていた。かか
る方法では前述した如き欠点を有していた。
Regarding the case where a CdS/CdTe system is used as a solar cell element, in FIG. 1, 3, or 4, the solar cell element has a CdS film 2 formed on a glass substrate 1; A CdTe film 7 and a C film 8 are formed in this order on top.
Finally, an Ag electrode (positive electrode) 5 is formed. Further, an Ag-In electrode (minus electrode) 6 is formed on the CdS film 2 on which the CdTe film 7, the C film 8, and the Ag electrode 5 are not formed. In conventional solar cell elements, as shown in Figure 1, the Ag electrode 5 and the Ag-In electrode 6 are used as they are, and the external terminal lead wires are directly glued with Ag paint or the like and taken out from here, or the lead wires are taken out from the part. Only the glass fritted Ag electrodes 51 and 61 are fused and formed.
I used to take out the lead wire from there. This method has the drawbacks mentioned above.

本発明は上述した如き従来方の欠点を改良した
もので、第2〜4図を参照して説明する。第2〜
4図においては上述したようにガラス基板1の上
にCdS膜2が形成されており、その上にCdTe膜
7、C膜8がこの順序で形成され、最後にAg電
極(プラス電極)5が形成されている。また
CdTe膜7、C膜8、Ag電極5の形成されていな
いCdS膜2上にはAg−In電極(マイナス電極)
6が形成されている。そしてそのプラス電極5お
よびマイナス電極6の近辺に銅箔11をはり合わ
せた絶縁樹脂板12を、絶縁性接着剤13ではり
合わせてある。そしてプラス電極5とマイナス電
極6は、それぞれ、上記絶縁樹脂板12にはり合
わされた銅箔11に、導電性接着剤14で電気的
に接続されている。外部リード線は図示していな
いが、上記銅箔11に半田付けすることにより、
強固に銅箔に接続され、最終的にリード線と各電
極5,6とは電気的に接続される。
The present invention improves the drawbacks of the conventional method as described above, and will be explained with reference to FIGS. 2 to 4. 2nd~
In Figure 4, as mentioned above, the CdS film 2 is formed on the glass substrate 1, on which the CdTe film 7 and C film 8 are formed in this order, and finally the Ag electrode (positive electrode) 5 is formed. It is formed. Also
An Ag-In electrode (minus electrode) is placed on the CdS film 2 on which the CdTe film 7, C film 8, and Ag electrode 5 are not formed.
6 is formed. An insulating resin plate 12 on which a copper foil 11 is pasted is bonded to the vicinity of the positive electrode 5 and negative electrode 6 using an insulating adhesive 13. The positive electrode 5 and the negative electrode 6 are each electrically connected to a copper foil 11 bonded to the insulating resin plate 12 using a conductive adhesive 14. Although the external lead wire is not shown, by soldering it to the copper foil 11,
It is firmly connected to the copper foil, and finally the lead wire and each electrode 5, 6 are electrically connected.

上記銅箔11をはり合わせた絶縁樹脂板12と
しては、銅箔つきベークライト板、銅箔つきポリ
イミドフイルム、銅箔つきポリアミドフイルム等
が使用でき、絶縁性接着剤13としてはエポキシ
樹脂、シリコーン樹脂等が使用できる。一般的に
は柔軟性のある、接着力の強い樹脂が望ましい。
さらに導電性接着剤14としては公知の通常の銀
ペイントが使用可能である。
As the insulating resin plate 12 on which the copper foil 11 is pasted, a Bakelite plate with copper foil, a polyimide film with copper foil, a polyamide film with copper foil, etc. can be used, and as the insulating adhesive 13, epoxy resin, silicone resin, etc. can be used. can be used. Generally, a flexible resin with strong adhesive strength is desirable.
Further, as the conductive adhesive 14, a commonly known silver paint can be used.

外部リード線は半田付けにより強力に銅箔11
につけられ、銅箔11をはり合わせた絶縁板12
も絶縁性接着剤13で太陽電池素子に強力に接着
されている。しかも銅箔11と各電極5,6は導
電性接着剤で接続されており、かつ、両者の間に
は熱膨張と収縮による力以外は働かない。従つて
全体的に信頼性の高いモジユールが容易に製作で
きる。
The external lead wire is strongly soldered with copper foil 11.
An insulating plate 12 with copper foil 11 attached to it
is also strongly adhered to the solar cell element with an insulating adhesive 13. Furthermore, the copper foil 11 and each electrode 5, 6 are connected with a conductive adhesive, and no force other than thermal expansion and contraction acts between them. Therefore, a module with high overall reliability can be easily manufactured.

発明の効果 本発明による太陽電池モジユールは、外部リー
ド線が、太陽電池素子のプラス極およびマイナス
極に導電性の接着剤、絶縁樹脂板にはり合わされ
た金属箔、半田で電気的に接続されていると同時
に、金属箔つき絶縁樹脂板は絶縁性接着剤で太陽
電池素子に強固に接着されている。従つてリード
線を直接各電極にとりつけた従来の構造に比し、
すぐれた強度を有することは言うまでもない。そ
の結果破損等が少くなり、太陽電池モジユールと
しての寿命も長くなり信頼性も向上する。また上
に記した太陽電池素子のプラス電極およびマイナ
ス電極上の一部に導電性接着剤層を設け、その周
囲に絶縁性接着剤層を設け、上記導電性接着剤層
および絶縁性接着剤層の両層上に導電性金属を接
着せしめ、かくして上記各電極と上記導電性金属
板とを上記導電性接着剤層を介して電気的に接続
させると共に上記絶縁性接着剤層を介して強固に
接合させ、更に上記金属板上にリード線を半田付
けることからなる太陽電池モジユールの製造時に
困難であつた絶縁性接着剤層を適当な厚さに保つ
ことの必要性が全くなくなり、短絡事故が皆無と
なり歩留りが向上する。製造も非常に容易にな
る。
Effects of the Invention In the solar cell module according to the present invention, the external lead wire is electrically connected to the positive and negative electrodes of the solar cell element using a conductive adhesive, metal foil laminated to an insulating resin plate, or solder. At the same time, the insulating resin plate with metal foil is firmly adhered to the solar cell element with an insulating adhesive. Therefore, compared to the conventional structure in which lead wires are attached directly to each electrode,
Needless to say, it has excellent strength. As a result, damage and the like are reduced, the life of the solar cell module is extended, and reliability is improved. Further, a conductive adhesive layer is provided on a part of the positive electrode and the negative electrode of the solar cell element described above, and an insulating adhesive layer is provided around it, and the conductive adhesive layer and the insulating adhesive layer are provided around the conductive adhesive layer. A conductive metal is bonded on both layers of the conductive metal plate, thereby electrically connecting each of the electrodes and the conductive metal plate through the conductive adhesive layer and firmly connecting the electrodes with the conductive metal plate through the insulating adhesive layer. There is no longer any need to maintain an appropriate thickness of the insulating adhesive layer, which was difficult during the manufacture of solar cell modules, which involves bonding and further soldering lead wires onto the metal plates, thereby eliminating short-circuit accidents. There is no such thing, and the yield improves. Manufacturing is also much easier.

本発明における金属箔をはり合わせた絶縁樹脂
板を広くすれば、たとえ、素子を構成する薄膜の
基板への接着力が微小であつても、総合的には大
きな接着力が得られる。もとより、絶縁板をいか
に広くしようとも、素子との短絡の恐れは全くな
い。
In the present invention, if the insulating resin plate to which the metal foil is bonded is widened, even if the adhesive strength of the thin film constituting the element to the substrate is minute, a large adhesive strength can be obtained overall. Of course, no matter how wide the insulating plate is made, there is no fear of short circuit with the element.

以上の説明はCdS/CdTe系太陽電池素子につ
いて説明したが、a−Si系太陽電池素子にも本発
明は同様に適用しうることは明らかであろう。
Although the above description has been made regarding a CdS/CdTe solar cell element, it is clear that the present invention can be similarly applied to an a-Si solar cell element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の太陽電池素子の平面図、第2図
は本発明による太陽電池素子の平面図、第3図は
第2図A−A′でとつた本発明によるマイナス極
での接続を示すための断面図、第4図は同プラス
極での接続を示すための断面図である。 1……ガラス基板、2……CdS膜、5……Ag
電極(プラス電極)、6……Ag−In電極(マイナ
ス電極)、7……CdTe膜、8……C膜、11…
…銅箔(はく)、12……絶縁樹脂板、13……
絶縁性接着剤、14……導電性接着剤。
Fig. 1 is a plan view of a conventional solar cell element, Fig. 2 is a plan view of a solar cell element according to the present invention, and Fig. 3 shows the connection at the negative pole according to the present invention taken from Fig. 2 A-A'. FIG. 4 is a sectional view showing the connection at the positive electrode. 1...Glass substrate, 2...CdS film, 5...Ag
Electrode (positive electrode), 6...Ag-In electrode (negative electrode), 7...CdTe film, 8...C film, 11...
...Copper foil, 12...Insulating resin plate, 13...
Insulating adhesive, 14... Conductive adhesive.

Claims (1)

【特許請求の範囲】 1 電極の近傍に絶縁性接着剤により金属箔の側
を外にしてはり合わされた金属箔付き絶縁樹脂板
と、 上記電極と上記金属箔とを電気的に接続する導
電性接着剤と、上記金属箔に半田付けされたリー
ド線とからなる、電極とリード線との接続構造
を、プラス電極およびマイナス電極の双方に備え
たことを特徴とする太陽電池モジユール。
[Scope of Claims] 1. An insulating resin plate with metal foil attached to the vicinity of the electrode with an insulating adhesive with the metal foil side facing outward, and a conductive plate that electrically connects the electrode and the metal foil. A solar cell module characterized in that both a positive electrode and a negative electrode are provided with an electrode-to-lead connection structure consisting of an adhesive and a lead wire soldered to the metal foil.
JP59114962A 1984-06-04 1984-06-04 Module of solar cell Granted JPS60257579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59114962A JPS60257579A (en) 1984-06-04 1984-06-04 Module of solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59114962A JPS60257579A (en) 1984-06-04 1984-06-04 Module of solar cell

Publications (2)

Publication Number Publication Date
JPS60257579A JPS60257579A (en) 1985-12-19
JPH0469437B2 true JPH0469437B2 (en) 1992-11-06

Family

ID=14650943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59114962A Granted JPS60257579A (en) 1984-06-04 1984-06-04 Module of solar cell

Country Status (1)

Country Link
JP (1) JPS60257579A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10054776A1 (en) * 2000-08-08 2002-02-28 Astrium Gmbh Solar generator used for spacecraft comprises several solar cells mounted on a support and covered with sealing layers on the side facing away from the support material

Also Published As

Publication number Publication date
JPS60257579A (en) 1985-12-19

Similar Documents

Publication Publication Date Title
US5248345A (en) Integrated photovoltaic device
JP5380810B2 (en) Solar cell module
JP3448924B2 (en) Method for manufacturing thin-film solar cell module
JP3323573B2 (en) Solar cell module and method of manufacturing the same
JP4024161B2 (en) Manufacturing method of solar cell module
US5017243A (en) Solar cell and a production method therefor
JP2000068542A (en) Laminated thin film solar battery module
JPH07202241A (en) Solar battery, mounting method and manufacture thereof
JP2009302327A (en) Connection structure of wiring member, solar-battery module comprising the same, and its manufacturing method
CN115241310A (en) Method for reinforcing electrical connection of battery pieces in photovoltaic module
JP2933003B2 (en) Mounting structure of solar cell element
KR101011025B1 (en) Apparatus and method for manufacturing solar cell mini module
JPH0469437B2 (en)
JP2003133570A (en) Method of manufacturing solar battery module
JPS6362913B2 (en)
US20110297219A1 (en) Method and materials for the fabrication of current collecting structures for photovoltaic devices
JP3024367B2 (en) Method of manufacturing solar cell device
JP2002094087A (en) Solar cell module
JPH034576A (en) Laminated type piezoelectric element
JP2002353487A (en) Solar cell module and manufacturing method therefor
CN209675313U (en) Back contacts solar module
JP3619099B2 (en) Solar cell module
JP2707782B2 (en) Multilayer piezoelectric element
JP2017134960A (en) Laminate type power storage device, and method for manufacturing laminate type power storage device
JPS6230507B2 (en)