JPS60257166A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS60257166A
JPS60257166A JP11083084A JP11083084A JPS60257166A JP S60257166 A JPS60257166 A JP S60257166A JP 11083084 A JP11083084 A JP 11083084A JP 11083084 A JP11083084 A JP 11083084A JP S60257166 A JPS60257166 A JP S60257166A
Authority
JP
Japan
Prior art keywords
electrode
cathode
metal plate
gate
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11083084A
Other languages
Japanese (ja)
Inventor
Hitoshi Onuki
仁 大貫
Yasushi Kawabuchi
靖 河渕
Hisashi Ando
寿 安藤
Masateru Suwa
正輝 諏訪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11083084A priority Critical patent/JPS60257166A/en
Publication of JPS60257166A publication Critical patent/JPS60257166A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • H01L29/744Gate-turn-off devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41716Cathode or anode electrodes for thyristors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Thyristors (AREA)

Abstract

PURPOSE:To prevent accidental short-circuiting between gate and cathode electrodes due to deformation in a pressing process by a method wherein cathode and gate electrodes are made of an Al alloy film containing Mg, Li, Cu or the like. CONSTITUTION:After a metal plate 10 is attached by using Al solder to a P-side electrode 8 that is of a four-layer structure of Pe 5, Nb 4, Pb 3, and Ne 2, an SiO2 film is removed from regions for an Ne electrode and Pb electrode. A process follows wherein an Al alloy containing much Mg, Li, Cu or the like is formed into an Ne electrode 6 and Pb electrode electrode 7. Al whereto one of such metals is added has a creep withstanding capability more than ten times larger than that of pure Al. This allows films 6, 7 to remain not deformed even when exposed to pressure exerted by a flat metal plate 9, which results in a GTO free of short-circuiting between the gate and cathode.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は加圧接触型の大容量半導体装置に係り(1) 特にエミッタ領域とベース領域が相互に入り組んだ構造
を有する大容量トランジスタやゲートターン等の半導体
装置に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a pressurized contact type large-capacity semiconductor device (1) In particular, a large-capacity transistor or a gate turn The present invention relates to semiconductor devices such as the above.

〔発明の詳細な 説明の便宜上、以下ではゲート・ターンオフサイリスタ
(GTO)を例にとって本発明を例にとって本発明を説
明する。
[For convenience of detailed explanation of the invention, the present invention will be explained below by taking a gate turn-off thyristor (GTO) as an example.

GTOはアノード電極をプラス・カソード電極をマイナ
スとする方向に電圧を印加し、ゲート電極とカソード電
極間に順バイアスを印加するとターンオンし、ゲート電
極とカソード電極間に逆バイアスを印加するとオン状態
にあるGTOを再びオフ状態に戻すことのできるスイッ
チング素子である。このようにGTOは通常のサイリス
タと異なり、ゲート・カソード間の逆方向特性を良好に
する必要がある。さらに具体的に言えばゲート・カソー
ド間の逆方向もれ電流□を少なくし、かつ逆方向耐圧を
高くする他に、pペース層の横方向の抵抗を小さくする
必要がある。このためにGTOでは通常のサイリスタと
異なり、nエミッタ領域(2) を細いたんざく形となし、pベース領域はnエミッタ領
域を取り囲んだ構造にするのが普通である。
GTO is turned on when a voltage is applied in the direction of positive to the anode electrode and negative to the cathode electrode, and a forward bias is applied between the gate electrode and the cathode electrode, and it is turned on when a reverse bias is applied between the gate electrode and the cathode electrode. This is a switching element that can return a certain GTO to an off state. In this way, unlike a normal thyristor, the GTO needs to have good reverse characteristics between the gate and the cathode. More specifically, in addition to reducing the reverse leakage current □ between the gate and the cathode and increasing the reverse breakdown voltage, it is necessary to reduce the lateral resistance of the p-space layer. For this reason, in a GTO, unlike a normal thyristor, the n emitter region (2) is usually formed into a thin strip shape, and the p base region is structured to surround the n emitter region.

エミッタ電極の幅は通常500μm以下であり、厚さは
10μm程度であるため、電流容量を増やすとエミッタ
電極の長さ方向の電圧降下が大きくなる。したがって電
流容量を大きくするためには主電流通路がウェハの垂直
方向になるようにエミッタ電極の上に厚い金属板を加圧
接触させる必要がある。ただしGTOの場合、pベース
電極とエミッタ電極とが相互に入り組んだ構造になって
いるため、実際にはエミッタ電極の高さをベース電極よ
りも高くする構造がとられる。第1図に従来のGTOの
構造の一例を示す、1,2,3,4゜5はそれぞれ半導
体ウェハ、nエミッタ領域、pベース領域、nベース領
域、pエミッタ領域である。6はnエミッタ領域の表面
上に形成された低抵抗接触第1主電極、7はベース領域
3の上の制御電極、8はPエミッタ領域5の表面に低抵
抗接触した第2の主電極、9は第1の主電極6に矢印の
方向に圧力をかけたときに接触する第1の金属(3) 板、10は第2の主電極8と固着した第2の金属板であ
る。また11は表面安定化のための絶縁膜(例えば5t
O2)である。
Since the width of the emitter electrode is usually 500 μm or less and the thickness is about 10 μm, increasing the current capacity increases the voltage drop in the length direction of the emitter electrode. Therefore, in order to increase the current capacity, it is necessary to press a thick metal plate into contact with the emitter electrode so that the main current path is perpendicular to the wafer. However, in the case of GTO, since the p-base electrode and the emitter electrode are intertwined with each other, a structure is adopted in which the emitter electrode is actually higher than the base electrode. FIG. 1 shows an example of the structure of a conventional GTO, where 1, 2, 3, and 4.degree. 5 are a semiconductor wafer, an n emitter region, a p base region, an n base region, and a p emitter region, respectively. 6 is a low resistance contact first main electrode formed on the surface of the N emitter region; 7 is a control electrode on the base region 3; 8 is a second main electrode that is in low resistance contact with the surface of the P emitter region 5; 9 is a first metal plate (3) that comes into contact with the first main electrode 6 when pressure is applied in the direction of the arrow; 10 is a second metal plate fixed to the second main electrode 8; 11 is an insulating film for surface stabilization (for example, 5t
O2).

GTOは通常のサイリスタと異なり、ターンオフ時に主
電流の約10%をゲート電極から引き抜くためにゲート
電極の抵抗を十分小さくする必要がある。このためには
制御電極は十分に厚くしなければいけない。また主電流
通路をウェハの垂直方向にするためには、第1の主電極
6(カソード電極)と第1の金属板(9)との接触抵抗
が十分小さくなるように加圧しなければいけない。一方
、カソード電極、ゲート電極はStウェハとオーミック
接触し、かつ良好な導電性から通常AQが使用されてい
る。
Unlike a normal thyristor, the GTO requires a sufficiently low resistance of the gate electrode in order to extract about 10% of the main current from the gate electrode at turn-off. For this purpose, the control electrode must be sufficiently thick. Further, in order to make the main current path perpendicular to the wafer, pressure must be applied so that the contact resistance between the first main electrode 6 (cathode electrode) and the first metal plate (9) is sufficiently small. On the other hand, AQ is usually used for the cathode electrode and gate electrode because it makes ohmic contact with the St wafer and has good conductivity.

加圧する場合の問題点としては以下のものがある。十分
加圧しないと第1の金属板が装置の使用中にずれて、金
属板がカソード電極に片あたりしそれほど加圧しなくと
も、カソード電極がつぶれて横方向に広がり、ゲート電
極との間で短絡を引き起こす。金属板とゲート電極との
短絡も起こり(4) 易い。また金属板とカソード電極との間でスティッキン
グも起り易い状態となる。以上のことはGTOが大電流
を通電するため、例えばφ30IIllIのGTOに3
00A程度流すと、素子は約150℃程度にもなるため
、上述した傾向はより顕著になる。
Problems when applying pressure include the following. If sufficient pressure is not applied, the first metal plate will shift during use of the device, and the metal plate will hit the cathode electrode unevenly.Even if pressure is not applied that much, the cathode electrode will collapse and spread laterally, causing the gap between the metal plate and the gate electrode to collapse. cause short circuit. A short circuit between the metal plate and the gate electrode is also likely to occur (4). Furthermore, sticking is likely to occur between the metal plate and the cathode electrode. The above is because the GTO conducts a large current, so for example, a GTO of φ30III
When a current of about 00 A is applied, the temperature of the element reaches about 150° C., so the above-mentioned tendency becomes more pronounced.

(発明の目的〕 本発明の目的は平らな金属板をエミッタ上の主電極上に
接触抵抗を小さくした状態で配置でき。
(Object of the Invention) An object of the present invention is to arrange a flat metal plate on the main electrode on the emitter with reduced contact resistance.

かつゲート、カソード間の短絡事故のない大電流をオン
・オフできる大電流半導体装置を提供するにある。
Another object of the present invention is to provide a large current semiconductor device that can turn on and off a large current without causing short-circuit accidents between the gate and the cathode.

〔発明の概要〕[Summary of the invention]

本発明は上記目的を達成するためになされたものであり
、カソード及びゲート電極を従来の純AQでなく、AM
中に多く固溶する元素、例えばMg、Li、Cu等を添
加したAQ合金膜にすることに特徴がある。
The present invention was made to achieve the above object, and the cathode and gate electrodes are made of AM instead of the conventional pure AQ.
The feature is that the AQ alloy film is made of an AQ alloy film to which a large amount of elements such as Mg, Li, Cu, etc. are added as a solid solution.

上配元索が添加されたAQ合金膜は純AQに比べ、クリ
ープ強度が10倍以上高いため、加圧しく5) ても膜が変形することはなく、ゲートカソード間の短絡
事故及び金属板とのスティッキングを防止できる。
Since the creep strength of the AQ alloy film to which the upper conductor has been added is more than 10 times higher than that of pure AQ, the film will not deform even if pressure is applied5), and there will be no risk of short circuits between the gate cathode or the metal plate. Sticking can be prevented.

〔発明の実施例〕[Embodiments of the invention]

拡散によりnエミッタ、Pベースを作ったSlの第2の
主電極と第2の金属板とを740℃に加熱してAQろう
で接着した後、反対側の主面上のエミッタ電極とベース
電極を形成すべき部分のS1配化膜を除去した。次に9
9.99%以上のAQ。
After heating the second main electrode of Sl with an n emitter and a P base formed by diffusion and the second metal plate to 740°C and bonding them with AQ solder, the emitter electrode and base electrode on the opposite main surface are bonded. The S1 arrangement film was removed in the portion where it was to be formed. Next 9
AQ of 9.99% or more.

AQ−5wt%Mg、AM−2%Ti、AQ−4%Cu
、An−2%Li及びAjil−2%siのダーゲット
を用いスパッタによって上記膜を10μmデポした後、
ホトエツチングによりエミッタ電極とベース電極を作製
した。これらの膜を2通りの方法で評価した。1つはビ
ッカース硬度を測定する方法、もう1つはパッケージン
グ後、200kg/cdで加圧しつつ、RT〜120℃
の温度範囲に加熱冷却をIOK〜程度繰り返した後、耐
圧測定及び膜の変形量をめる方法である。
AQ-5wt%Mg, AM-2%Ti, AQ-4%Cu
After depositing the above film to a thickness of 10 μm by sputtering using targets of An-2% Li and Ajil-2% Si,
An emitter electrode and a base electrode were fabricated by photoetching. These membranes were evaluated in two ways. One method is to measure Vickers hardness, and the other method is to measure the Vickers hardness after packaging, while applying pressure at 200 kg/cd, at RT to 120°C.
This method involves repeating heating and cooling to a temperature range of IOK or more, and then measuring the withstand pressure and calculating the amount of deformation of the film.

表1に硬さを測定した結果を示す。AQ、AQ(6) −2%S1膜に比べて本発明のAM−2%T−i 。Table 1 shows the results of hardness measurements. AQ, AQ(6) AM-2% Ti of the present invention compared to -2% S1 membrane.

AQ−4%Mg、AQ−2%Ti、A11l−4%Cu
合金膜は2倍以上の硬さを示すことがわかる。
AQ-4%Mg, AQ-2%Ti, A111-4%Cu
It can be seen that the alloy film exhibits more than twice the hardness.

表 I AQ合金膜の硬さ 1但しAnを1として規準化している またパッケージした後、ヒートサイクル試験を行った結
果、AQ膜を用いた場合には2000〜で、AM−2%
Si膜の場合には6000〜で耐圧が劣化した。一方、
Afl−2%I、i、Afi−4%M g vAQ−2
%Tl、AQ−4%Cu合金膜の場合には全て1000
0〜をクリアしたが、特にへΩ−4%Mg合金膜では2
0000〜をクリアし十分な信頼性を有することがわか
った。
Table I Hardness of AQ alloy film 1 However, it is standardized with An as 1. After packaging, the heat cycle test results show that when AQ film is used, the hardness is 2000~ and AM-2%.
In the case of the Si film, the withstand voltage deteriorated at 6000 or higher. on the other hand,
Afl-2%I,i, Afi-4%M g vAQ-2
%Tl, all 1000 in case of AQ-4%Cu alloy film
0 to 2, but especially for the Ω-4% Mg alloy film.
0000~ and was found to have sufficient reliability.

(7) 第2図はヒートサイクル試験後における、膜の変形量を
測定した結果を示す。AQ−2%Li。
(7) Figure 2 shows the results of measuring the amount of deformation of the membrane after the heat cycle test. AQ-2%Li.

AQ−4%Mg、AQ−2%Ti、AQ−4%Cu合金
膜ではAQ、AQ−2%Si膜に比べ変形量が少ないこ
とがわかる。
It can be seen that the amount of deformation is smaller in the AQ-4%Mg, AQ-2%Ti, and AQ-4%Cu alloy films than in the AQ and AQ-2%Si films.

〔発明の効果〕〔Effect of the invention〕

本発明によればベース電極の小さい、平らなカソード電
極金属板を加圧接触してもゲート、カソード間の短絡の
ないGTOが得られる。
According to the present invention, a GTO without short circuit between the gate and the cathode can be obtained even when a flat cathode electrode metal plate with a small base electrode is brought into contact with pressure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は加圧接触型GTOの概略図、第2図はカソード
膜の変形量を示す図である。 1・・・S1ウエハ、2・・・nエミッタ、3・・・p
ベース。 4・・・nベース、5・・・pエミッタ、6・・・エミ
ッタ電極、7・・・ベース電極、8・・・第2の主電極
、9・・・第1の金属板、10・・・第2の金属板、1
1・・・絶縁板。 代理人 弁理士 高橋明夫 (8) 寮 (国 瞭2圀 薫 )・−7,y、(ao(’/aツ ノ。
FIG. 1 is a schematic diagram of a pressurized contact type GTO, and FIG. 2 is a diagram showing the amount of deformation of the cathode film. 1...S1 wafer, 2...n emitter, 3...p
base. 4... N base, 5... P emitter, 6... Emitter electrode, 7... Base electrode, 8... Second main electrode, 9... First metal plate, 10... ...Second metal plate, 1
1...Insulating board. Agent Patent Attorney Akio Takahashi (8) Dormitory (Kokuro 2 Kuni Kaoru)・-7,y, (ao('/atsuno.

Claims (1)

【特許請求の範囲】 1、内部に少なくとも1つのpn接合を有する半導体ウ
ェハの一方の主面におけるエミッタ上に形成された良導
電性からなる制御電極及び他方の主面に形成された良導
電性金属から成る第2の主電極を有し、該エミッタ上に
形成された主電極上に良導電性金属板を配置し、これら
の間の電気的接触抵抗を小さくした状態で動作せしめる
半導体装置において、該エミッタ上に形成された主電極
はA4合金からなり、その中に添加される元素はAQ中
に広い固溶限を有することを特徴とする半導体装置。 2、特許請求の範囲第1項において、AQ中の元素はM
 g * T l + L i e Cuであることを
特徴とする半導体装置。
[Claims] 1. A control electrode having good conductivity formed on an emitter on one main surface of a semiconductor wafer having at least one pn junction therein, and a control electrode having good conductivity formed on the other main surface. In a semiconductor device that has a second main electrode made of metal, a highly conductive metal plate is placed on the main electrode formed on the emitter, and is operated with a reduced electrical contact resistance between them. . A semiconductor device, wherein the main electrode formed on the emitter is made of an A4 alloy, and the element added thereto has a wide solid solubility limit in AQ. 2. In claim 1, the element in AQ is M
A semiconductor device characterized in that g * T l + Li e Cu.
JP11083084A 1984-06-01 1984-06-01 Semiconductor device Pending JPS60257166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11083084A JPS60257166A (en) 1984-06-01 1984-06-01 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11083084A JPS60257166A (en) 1984-06-01 1984-06-01 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS60257166A true JPS60257166A (en) 1985-12-18

Family

ID=14545737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11083084A Pending JPS60257166A (en) 1984-06-01 1984-06-01 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS60257166A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01303910A (en) * 1988-06-01 1989-12-07 Hitachi Ltd Solid-state electronic element, its manufacture and device utilizing the element
JPH02274008A (en) * 1989-04-17 1990-11-08 Hitachi Ltd Solid-state electronic equipment, its manufacture, and device utilizing it
US6624519B1 (en) * 1997-04-24 2003-09-23 Micron Technology, Inc. Aluminum based alloy bridge structure and method of forming same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5773945A (en) * 1980-10-27 1982-05-08 Hitachi Ltd Semiconductor device
JPS57170566A (en) * 1981-04-15 1982-10-20 Toshiba Corp Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5773945A (en) * 1980-10-27 1982-05-08 Hitachi Ltd Semiconductor device
JPS57170566A (en) * 1981-04-15 1982-10-20 Toshiba Corp Semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01303910A (en) * 1988-06-01 1989-12-07 Hitachi Ltd Solid-state electronic element, its manufacture and device utilizing the element
JPH02274008A (en) * 1989-04-17 1990-11-08 Hitachi Ltd Solid-state electronic equipment, its manufacture, and device utilizing it
US6624519B1 (en) * 1997-04-24 2003-09-23 Micron Technology, Inc. Aluminum based alloy bridge structure and method of forming same

Similar Documents

Publication Publication Date Title
US8013441B2 (en) Power semiconductor device in lead frame employing connecting element with conductive film
US3633076A (en) Three layer metallic contact strip at a semiconductor structural component
JPH0582991B2 (en)
US4161740A (en) High frequency power transistor having reduced interconnection inductance and thermal resistance
JPH0648733B2 (en) Cryogenic semiconductor device
JPS60257166A (en) Semiconductor device
EP0146928B1 (en) Power semiconductor device with mesa type structure
US5115300A (en) High-power semiconductor device
US2629767A (en) Semiconductor amplifier or oscillator device
US3325702A (en) High temperature electrical contacts for silicon devices
JPH0322706B2 (en)
US3114865A (en) Semiconductor and unitary connector structure comprising alternately stacked base andemitter leads
JP2582724Y2 (en) Insulated gate type semiconductor device
JPS5871653A (en) Pressure contact type semiconductor device
JPS611053A (en) Semiconductor device
JPS60186058A (en) Semiconductor switching device
JPS6329408B2 (en)
US4953003A (en) Power semiconductor device
JPS5844600Y2 (en) semiconductor element
US3250964A (en) Semiconductor diode device and method of making it
JPS604260A (en) Semiconductor device
JPS60119777A (en) Gate turn-off thyristor
JPS6022368A (en) Semiconductor device
JPS5984468A (en) Semiconductor device
JPS5936822B2 (en) Pressure contact type semiconductor device