JPS6025713B2 - Combined heat pump - Google Patents

Combined heat pump

Info

Publication number
JPS6025713B2
JPS6025713B2 JP51118725A JP11872576A JPS6025713B2 JP S6025713 B2 JPS6025713 B2 JP S6025713B2 JP 51118725 A JP51118725 A JP 51118725A JP 11872576 A JP11872576 A JP 11872576A JP S6025713 B2 JPS6025713 B2 JP S6025713B2
Authority
JP
Japan
Prior art keywords
heat pump
temperature
evaporator
compression
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51118725A
Other languages
Japanese (ja)
Other versions
JPS5343266A (en
Inventor
哲郎 古川
敬介 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP51118725A priority Critical patent/JPS6025713B2/en
Publication of JPS5343266A publication Critical patent/JPS5343266A/en
Publication of JPS6025713B2 publication Critical patent/JPS6025713B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 本発明の圧縮式ヒートポンプと吸収式ヒートポンプとか
らなる複合ヒートポンプに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a composite heat pump comprising a compression heat pump and an absorption heat pump.

‐通常、工場では6000の比較的低温の温排水があり
、この温排水を熱源としてヒートポンプにより130o
o以上の高温度の熱源をとり出せれば非常に都合がよい
。ところで従釆の冷煤を圧縮せしめて熱を発生せしめる
圧縮式ヒートポンプでは、冷煤として最も多く用いられ
ているもののうちで、昇温度が例えば110oo程度以
上になると熱分解をおこしたり、また圧縮機吐出側の圧
力の増大などの問題が生じるような場合がある。
-Normally, factories have relatively low-temperature heated wastewater of 6,000 degrees Celsius, and this heated wastewater is used as a heat source to generate heat at 130o.
It would be very convenient if we could extract a heat source with a temperature higher than 0. By the way, in compression heat pumps that generate heat by compressing cold soot, the cold soot that is most commonly used may cause thermal decomposition if the temperature rise exceeds, for example, about 110 oo, or the compressor may Problems such as an increase in pressure on the discharge side may occur.

したがってこの圧縮式ヒートポンプでは13ぴC以上の
高温度の熱源をとり出すことは困難である。一方、比較
的低温の熱源により蒸発せしめられた袷煤(たとえば水
蒸気)を濃縮溶液(たとえばLIBr−水溶液)に吸収
させて高温度の熱を発生せしめる吸収式ヒートポンプで
は、熱源の温度と冷煤源(たとえば大気)の温度との温
度差が熱源の熱を高温部に移動さ‐せるための駆動力と
なっているから、この温度差に比較して昇温中が大きい
と、昇温は可能であるが熱効率は大中に低下する。第1
図は一種類の熱源を用いた吸収式ヒートポンプの昇温率
と熱効率の関係を示すものであり、この図からわかるよ
うに例えば平均50qoの温排水などの熱源と3000
の冷却水(冷熱源)とを用い、14び0程度の高温水を
得たときの熱効率は0.12程度となり、非常に小さく
なってしまう。本発明はかかる技術的欠点を改善した複
合ヒ‐トポンプを提供するものである。
Therefore, with this compression type heat pump, it is difficult to extract a heat source with a high temperature of 13 picoC or higher. On the other hand, in an absorption heat pump that generates high-temperature heat by absorbing soot (e.g., water vapor) evaporated by a relatively low-temperature heat source into a concentrated solution (e.g., LIBr-aqueous solution), the temperature of the heat source and the cold soot source are The temperature difference between the temperature and the temperature of the air (for example, the atmosphere) is the driving force for moving the heat from the heat source to the high temperature area, so if the temperature is large compared to this temperature difference, the temperature can be increased. However, the thermal efficiency decreases considerably. 1st
The figure shows the relationship between the temperature increase rate and thermal efficiency of an absorption heat pump using one type of heat source.
When high-temperature water of about 14 to 0 is obtained using cooling water (cold heat source) of The present invention provides a composite heat pump that overcomes these technical drawbacks.

以下、本発明の一実施例を第2図に基づき説明する。Hereinafter, one embodiment of the present invention will be described based on FIG. 2.

1は圧縮式ヒートポンプ、2は吸収式ヒートポンプであ
る。
1 is a compression heat pump, and 2 is an absorption heat pump.

上記圧縮式ヒートポンプ1は、蒸発器3と圧縮機4と媒
体タンク5とポンプ6とこれら各機器間を連絡する冷媒
循環回路30とからなる。上記吸収式ヒートポンプ2は
蒸発器7と再生器8と吸収器9と凝縮器10の主要部分
からなり、これら圧縮式ヒートポンプ1と吸収式ヒート
ポンプ2とを複合するに際して、圧縮式ヒートポンプー
の冷煤循環回路30のうち、圧縮機4から出た管路31
が吸収式ヒートポンプ2の蒸発器7を媒体タンク5に至
るように構成してある。また21は前記管路31の途中
から取り出して吸収式ヒートポンプ2の再生器8を経て
再び管略31に合流するバイパス路である。ここで、1
4は工場などのように6ぴ0程度の温排水を提供するこ
とが可能な熱源でり、該熱源14と圧縮式ヒートポンプ
1の蒸発器3との間に管路32を設け、該管路32中に
設けたポンプ24を介して熱源14の熱を前記蒸発器3
に供給するようにしてある。
The compression heat pump 1 includes an evaporator 3, a compressor 4, a medium tank 5, a pump 6, and a refrigerant circulation circuit 30 that connects these devices. The absorption heat pump 2 consists of the main parts of an evaporator 7, a regenerator 8, an absorber 9, and a condenser 10. When combining the compression heat pump 1 and the absorption heat pump 2, the cold soot of the compression heat pump A pipe line 31 from the compressor 4 in the circulation circuit 30
The evaporator 7 of the absorption heat pump 2 is connected to the medium tank 5. Further, reference numeral 21 denotes a bypass path which is taken out from the middle of the pipe 31, passes through the regenerator 8 of the absorption heat pump 2, and joins the pipe 31 again. Here, 1
Reference numeral 4 denotes a heat source capable of providing heated waste water of about 600°C, such as in a factory, and a pipe line 32 is provided between the heat source 14 and the evaporator 3 of the compression heat pump 1. Heat from the heat source 14 is transferred to the evaporator 3 through a pump 24 provided in the evaporator 32.
It is designed to be supplied to

一方15は130qC程度以上に昇温された温水を利用
するプラントであり、この際、吸収式ヒートポンプ2の
吸収器9で発生した吸収熱が管路27中の媒体をポンプ
12で循環させることにより取り出され利用されるもの
である。ところで、吸収式ヒートポンプ2の構成は概略
次のようになっている。
On the other hand, 15 is a plant that uses hot water whose temperature has been raised to about 130 qC or more. It is taken out and used. By the way, the structure of the absorption heat pump 2 is roughly as follows.

すなわち、蒸発器7と吸収器9、ならびに再生器8と凝
縮器1川まそれぞれ共通の容器内に納められ、それらの
中間部に気水分離器25および26を有し、蒸発器7の
下方から出る管路16と、凝縮器10の下方から出る管
路19とを管路2川こ合流させ、該管略2川こ設けた冷
媒ポンプ22を介して、蒸発器7で蒸発しなかった冷煤
ならびに凝縮器10で凝縮した冷媒を蒸発器7へ移送で
きる。また、凝縮器10‘こは冷却水を供給する管路2
8が接続され、該管路28中に冷却水循環ポンプ13お
よびクーリングタワー11が設けられている。そして、
吸収器9の下方から出て再生器8に至る管路18と、再
生器8の下方から出て吸収器9に至る管路17と、該管
路17中には吸収液ポンプ23が設けられている。
That is, the evaporator 7 and absorber 9, as well as the regenerator 8 and condenser 1, are housed in a common container, with steam and water separators 25 and 26 located in the middle, and below the evaporator 7. The conduit 16 coming out from the condenser 10 and the conduit 19 coming out from below the condenser 10 are joined together, and the refrigerant pump 22 provided in the two condensers is used to remove the refrigerant that did not evaporate in the evaporator 7. The cold soot and the refrigerant condensed in the condenser 10 can be transferred to the evaporator 7. In addition, the condenser 10' is a conduit 2 that supplies cooling water.
8 is connected, and a cooling water circulation pump 13 and a cooling tower 11 are provided in the pipe line 28. and,
A pipe line 18 exiting from below the absorber 9 and reaching the regenerator 8, a pipe line 17 exiting from below the regenerator 8 and reaching the absorber 9, and an absorption liquid pump 23 is provided in the pipe line 17. ing.

上言己構成の作用を説明する。Explain the effect of the above-mentioned self-composition.

工場などの熱源14から排出された6000程度の温排
水により圧縮式ヒートポンプ1蒸発器3内において冷煤
を蒸発させ、この冷煤蒸気を圧縮機4により圧縮して8
000程度の中温度に昇温させる。次に吸収式ヒートポ
ンプ2の蒸発器7内において上記中温度の冷煤蒸気によ
り冷煤である水を蒸発させる。するとその蒸気は気水分
離器25を通過して吸収器9内に入り、この吸収器9内
の濃縮されたLIBr−水溶液に吸収され、その時、高
熱を発生させる。したがって吸収器9内に配管されてい
る管路27内の水が13000程度の高温度に昇温せし
められ、その高温度の温水はプラント15に送られる。
なお吸収器9内において使用済のうすくなったLIBr
−水溶液は、管路18を介して再生器8内に送られ、圧
縮式ヒートポンプ1の圧縮機4により昇温せしめられた
管路21を流れる中温度の袷煤蒸気により加熱濃縮され
て、濃いLIBr−水溶液に再生される。またこの再生
器8内において蒸発させられた水蒸気は気水分離器26
を通過して凝縮器10内に入り、この凝縮器10内にお
いてクーリングタワー1 1より供給された冷却水によ
り冷却されて凝縮し、管路19を介して前記蒸発器7内
に供給される。第3図は圧縮式ヒートポンプーの圧縮機
4としてスクリュー圧縮機を用いた場合の蒸発温度と成
績係数(監護藻)を示し、第4図ま吸収式ヒ−トポンプ
の再生−凝縮器8,10‘こおける再生温度と凝縮温度
との温度差に対する蒸発−吸収器7,9における蒸発温
度と吸収温度の差、すなわち昇温中を示している。
Cold soot is evaporated in the compression type heat pump 1 evaporator 3 using approximately 6,000 warm wastewater discharged from the heat source 14 of a factory, etc., and this cold soot vapor is compressed by the compressor 4.
Raise the temperature to a medium temperature of about 0.000C. Next, in the evaporator 7 of the absorption heat pump 2, water, which is cold soot, is evaporated by the medium-temperature cold soot vapor. The vapor then passes through the steam separator 25 and enters the absorber 9, where it is absorbed by the concentrated LIBr-aqueous solution, generating high heat. Therefore, the water in the pipe line 27 installed in the absorber 9 is heated to a high temperature of about 13,000 ℃, and the high-temperature hot water is sent to the plant 15.
In addition, in the absorber 9, the used and diluted LIBr
- The aqueous solution is sent into the regenerator 8 via the pipe line 18, heated by the compressor 4 of the compression heat pump 1, and heated and concentrated by the medium-temperature soot vapor flowing through the pipe line 21. LIBr-regenerated into aqueous solution. Also, the water vapor evaporated in this regenerator 8 is transferred to a steam separator 26.
The water enters the condenser 10, is cooled and condensed in the condenser 10 by cooling water supplied from the cooling tower 11, and is supplied to the evaporator 7 via a pipe 19. Figure 3 shows the evaporation temperature and coefficient of performance (supervised algae) when a screw compressor is used as the compressor 4 of a compression heat pump, and Figure 4 shows the regeneration condenser 8, 10 of an absorption heat pump. The figure shows the difference between the evaporation temperature and absorption temperature in the evaporator-absorbers 7 and 9, that is, the temperature is rising.

例えば60ooの温排水と30℃の冷却水とを用い、1
300Cの高温水を得る場合、上記実施例の構成では、
まず圧縮式ヒートポンプ1により80COまで昇温させ
ると、その成績係数は第3図より7.窃陸度となる。次
に吸収式ヒートポンプ2で8000のものを13000
まで昇温させると、昇温率は熱ら翁。=・だからその熱
効率は第1図より0.5となる。したがって複合ヒート
ポンプ全体での成績係数は3.筑陸度となる。またこの
時の熱効靴巻号Xo.5:o‐雌度となる。これに対し
圧縮式ヒートポンプのみで6ぴ0のものを13000ま
で昇温させたとすると、第3図より成績係数は2期室度
となる。また吸収式ヒートポンプのみで6000のもの
を130oCまで昇温させたとすると、昇温率は嶺。砦
C三蓋礎C=23となり、熱効率が0.23陸度となる
。以上述べた本発明の複合ヒートポンプによれば、圧縮
式ヒートポンプと吸収式ヒートポンプとからなり、まず
圧縮式ヒートポンプにより低温部の昇温を昇温後の温度
が110o○をうわまわらないようにおこなわしめ、次
に吸収式ヒートポンプにより高温部の昇温をおこなうも
のであり、低温部では圧縮式ヒートポンプの技術的特性
が生かされ、成績係数が得られる。
For example, using 60oo warm waste water and 30℃ cooling water, 1
When obtaining high temperature water of 300C, in the configuration of the above embodiment,
First, when the temperature is raised to 80CO using the compression heat pump 1, the coefficient of performance is 7. The degree of land theft. Next, with absorption heat pump 2, the 8,000 yen becomes 13,000 yen.
When the temperature is raised to =・So the thermal efficiency is 0.5 from Figure 1. Therefore, the coefficient of performance of the entire composite heat pump is 3. It becomes Chikurikdo. Also at this time, the heat effect shoe roll issue Xo. 5: o-femininity. On the other hand, if a compression heat pump is used to raise the temperature of a 6-piston heat pump to 13,000, the coefficient of performance will be the second room temperature, as shown in Figure 3. Also, if we were to raise the temperature of a 6,000°C to 130oC using only an absorption heat pump, the rate of temperature rise would be within the range. Fortress C Three Lid Foundations C = 23, and the thermal efficiency is 0.23 land degrees. According to the composite heat pump of the present invention described above, it is composed of a compression heat pump and an absorption heat pump, and first, the compression heat pump raises the temperature of the low temperature part so that the temperature after heating does not exceed 110o○. Next, an absorption heat pump is used to raise the temperature of the high temperature section, and in the low temperature section, the technical characteristics of the compression heat pump are utilized to obtain a coefficient of performance.

また高温部では昇温率が小さくて済む吸収式ヒートポン
プの特性として高い熱効率が得られる。したがって複合
ヒートポンプ全体として比較的少ない機械的動力で高い
熱効率が得られるものである。
In addition, absorption heat pumps can achieve high thermal efficiency by requiring only a small rate of temperature rise in high-temperature areas. Therefore, the composite heat pump as a whole can achieve high thermal efficiency with relatively little mechanical power.

【図面の簡単な説明】 第1図は一種類の熱源を用いた吸収式ヒートポンプの昇
温率と熱効率の関係を示すグラフ、第2図は本発明の一
実施例を示す概略図、第3図はスクリュー圧縮機を用い
た場合の蒸発温度と成績係数の関係を示すグラフ、第4
図は吸収式ヒートポンプにおける再生温度と凝縮温度と
の温度差に対する昇温中の関係を示すグラフである。 1・・・・・・圧縮式ヒートポンプ、2・・・・・・吸
収式ヒートポンプ、3・・・・・・蒸発器、4…・・・
圧縮機、5・・・・・・媒体タンク、6・・・…ポンプ
、7・・・・・・蒸発器、8・・・・・・再生器、9・
・・・・・吸収器、10・・・・・・凝縮器、11・・
・・・・クーリングタワー、14・・・・・・熱源、1
5・・・・・・プラント、21・・・・・・バイパス路
、30・・・・・・循環回路、31,32・・・・・・
管路。 第〆図 図 N 船 第3図 第4図
[Brief Description of the Drawings] Fig. 1 is a graph showing the relationship between the temperature increase rate and thermal efficiency of an absorption heat pump using one type of heat source, Fig. 2 is a schematic diagram showing an embodiment of the present invention, and Fig. 3 is a graph showing the relationship between the temperature increase rate and thermal efficiency of an absorption heat pump using one type of heat source. The figure is a graph showing the relationship between evaporation temperature and coefficient of performance when using a screw compressor.
The figure is a graph showing the relationship during temperature rise with respect to the temperature difference between the regeneration temperature and the condensation temperature in an absorption heat pump. 1... Compression heat pump, 2... Absorption heat pump, 3... Evaporator, 4...
Compressor, 5...Medium tank, 6...Pump, 7...Evaporator, 8...Regenerator, 9.
...Absorber, 10...Condenser, 11...
... Cooling tower, 14 ... Heat source, 1
5...Plant, 21...Bypass path, 30...Circulation circuit, 31, 32...
conduit. Figure N Ship Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1 蒸発器3と、圧縮機と、媒体タンクと、冷媒循環回
路とからなる圧縮式ヒートポンプと、蒸発器7と、吸収
器と、再生器と、凝縮器とからなる吸収式ヒートポンプ
とを複合させるに際して、圧縮式ヒートポンプを低温側
に、吸収式ヒートポンプを高温側にそれぞれ設け、圧縮
式ヒートポンプの前記冷媒循環回路のうち、圧縮機から
出た管路が吸収式ヒートポンプの蒸発器7を経て媒体タ
ンクに至るように構成するとともに、熱源と圧縮式ヒー
トポンプの蒸発器3との間に該蒸発器3に熱源の熱を供
給する管路を設けたことを特徴とする複合ヒートポンプ
1 Combining a compression heat pump consisting of an evaporator 3, a compressor, a medium tank, and a refrigerant circulation circuit, and an absorption heat pump consisting of an evaporator 7, an absorber, a regenerator, and a condenser. At this time, a compression heat pump is provided on the low temperature side and an absorption heat pump is provided on the high temperature side, and in the refrigerant circulation circuit of the compression heat pump, the pipe line exiting from the compressor passes through the evaporator 7 of the absorption heat pump and is connected to the medium tank. What is claimed is: 1. A composite heat pump characterized in that a conduit for supplying heat from the heat source to the evaporator 3 is provided between the heat source and the evaporator 3 of the compression heat pump.
JP51118725A 1976-10-01 1976-10-01 Combined heat pump Expired JPS6025713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51118725A JPS6025713B2 (en) 1976-10-01 1976-10-01 Combined heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51118725A JPS6025713B2 (en) 1976-10-01 1976-10-01 Combined heat pump

Publications (2)

Publication Number Publication Date
JPS5343266A JPS5343266A (en) 1978-04-19
JPS6025713B2 true JPS6025713B2 (en) 1985-06-19

Family

ID=14743526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51118725A Expired JPS6025713B2 (en) 1976-10-01 1976-10-01 Combined heat pump

Country Status (1)

Country Link
JP (1) JPS6025713B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56121965A (en) * 1980-02-28 1981-09-25 Sanyo Electric Co Absorption chilled or warm water device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5054947A (en) * 1973-09-06 1975-05-14

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5054947A (en) * 1973-09-06 1975-05-14

Also Published As

Publication number Publication date
JPS5343266A (en) 1978-04-19

Similar Documents

Publication Publication Date Title
US4209364A (en) Process of water recovery and removal
JPH02306067A (en) Absorption type freezing
JPS59107160A (en) Method of operating two mode type heat pump and two mode type heat pump for operating said method
JP3103225B2 (en) Absorption heat pump using low-temperature heat source
CN206875719U (en) Low-temperature air source heat pump preparing high-temp hot water facility
JPS6025713B2 (en) Combined heat pump
JPS5986846A (en) Hot water supply device of heat pump type
JP3290464B2 (en) Combined refrigeration equipment
JPS6045328B2 (en) heating device
JPS6025714B2 (en) Combined heat pump
US4014183A (en) Absorption refrigerator of natural circulation type
JPS6222059B2 (en)
JPH05272837A (en) Compression absorption composite heat pump
JPH0754211B2 (en) Co-generation system using absorption heat pump cycle
CN112402995B (en) Air source multi-effect vacuum evaporation system applied to cutting fluid concentration
JP3103224B2 (en) Absorption heat pump using low-temperature heat source
JPS58213157A (en) Water heater utilizing solar-heat
JPS58160774A (en) Hot-water supply device
CN116265836A (en) Solution heat accumulating type cold and hot water system and refrigerating and heating method thereof
JPS6355620B2 (en)
SU857658A1 (en) Combined solar unit
JPS5913666B2 (en) heat pump system
JPS6024901B2 (en) Waste heat heating and cooling equipment
JPS627978Y2 (en)
Harisha et al. Design of Solar Based Vapour Absorption System