JPS60255919A - Method for preventing nitriding in annealing stainless steel - Google Patents

Method for preventing nitriding in annealing stainless steel

Info

Publication number
JPS60255919A
JPS60255919A JP11063884A JP11063884A JPS60255919A JP S60255919 A JPS60255919 A JP S60255919A JP 11063884 A JP11063884 A JP 11063884A JP 11063884 A JP11063884 A JP 11063884A JP S60255919 A JPS60255919 A JP S60255919A
Authority
JP
Japan
Prior art keywords
stainless steel
dew point
annealing
temp
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11063884A
Other languages
Japanese (ja)
Inventor
Yoshio Hayashi
林 義男
Takayuki Kondo
孝之 近藤
Tatsuhiro Oda
達広 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP11063884A priority Critical patent/JPS60255919A/en
Publication of JPS60255919A publication Critical patent/JPS60255919A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere

Abstract

PURPOSE:To prevent the generation of nitriding on the surface of a stainless steel material by producing a temper color on the surface of steel with the control of the dew point before the temp. is increased to a temp. at which the nitriding reaction occurs when the stainless steel material is annealed in a nitrogen-contg. atmosphere. CONSTITUTION:A stainless steel material in heated in a nitrogen-contg. atmosphere, and steam is blown in to keep the dew point at an appropriate temp. in the range of about 0-50 deg.C when the surface temp. reaches about 300 deg.C. The temp. of the steel material is kept at an appropriate fixed temp. in the range of about 450-600 deg.C for suitable hours to form an oxide film on the surface and to develop a temper color. When the oxide film is formed, the atmospheric gas is immediately dishcarged to the outside of the furnace, and a dry common atmospheric gas is introduced to return the dew point to a specified value. The annealing is then carried out. Consequently, the nitriding is not generated on the stainless steel material, and the specified annealing can be carried out.

Description

【発明の詳細な説明】 本発明は、ステンレス鋼材の焼鈍処理における窒化防止
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for preventing nitridation during annealing treatment of stainless steel materials.

ステンレス鋼材の焼鈍処理は、その処理中の被処理材の
浸炭、脱炭・酸化等の防止のために、AXガス、HNX
ガス、DXガスなどを雰囲気ガスとして行なわれる。そ
の処理温度は、約800℃前後と、一般の鋼材の焼鈍処
理に比し高温である。
During annealing of stainless steel materials, AX gas, HNX, etc. are used to prevent carburization, decarburization, oxidation, etc.
This is carried out using gas, DX gas, etc. as an atmospheric gas. The treatment temperature is around 800°C, which is higher than that for general annealing of steel materials.

しかるに、これらの雰囲気ガスは、いづれも数%以上の
窒素(Nz)ガスを含有している(例えば、AXガスは
N275%とN225%からなる)ため、焼鈍処理中に
、被処理材に窒化が生しる。窒化の生起する温度は鋼種
によっても異なるが、例えば、5US304系ステンレ
ス鋼帯コイルをAXガス雰囲気中で焼鈍処理すると、約
750 ’C前後から窒化が認められ、850℃・4時
間の焼鈍処理後の窒素含有量の増加量は500ppm以
上に達することも少なくない。かかる窒化現象は被処゛
理材の脆化、延性低下、加工性低下環、材質の好ましく
ない変化を招来し、ステンレス鋼材の焼鈍処理の問題点
となっていた。
However, these atmospheric gases all contain several percent or more of nitrogen (Nz) gas (for example, AX gas consists of 75% N2 and 25% N2), so during the annealing process, the material to be treated may be nitrided. is born. The temperature at which nitriding occurs varies depending on the type of steel, but for example, when a 5US304 stainless steel strip coil is annealed in an AX gas atmosphere, nitriding is observed from around 750'C, and after annealing at 850°C for 4 hours. The increase in nitrogen content often reaches 500 ppm or more. Such a nitriding phenomenon causes embrittlement of the treated material, decrease in ductility, decrease in workability, and undesirable changes in material quality, which has been a problem in annealing stainless steel materials.

本発明は上記問題を解決したものであって、窒素ガスが
混在する雰囲気ガス中で行なわれるステンレス鋼材の焼
鈍処理における窒化防止方法を提供する。
The present invention solves the above problems and provides a method for preventing nitridation during annealing of stainless steel materials performed in an atmospheric gas containing nitrogen gas.

本発明の窒化防止方法は、ステンレス鋼材を被処理材と
する焼鈍処理における加熱昇温過程において、被処理材
の表面温度が窒化反応生起温度に到達する前に、その雰
囲気ガスの露点の調節によリ、被処理材表面にテンパー
カラーを生ぜしめるようにしたことに特徴を有する。
The method for preventing nitridation of the present invention is to adjust the dew point of the atmospheric gas before the surface temperature of the material to be treated reaches the nitriding reaction temperature during the heating temperature raising process in annealing the stainless steel material. Another feature is that a temper color is produced on the surface of the material to be treated.

すなわち、本発明の窒化防止方法は、テンパーカラーを
呈するステンレス鋼材表面には窒化が生しないことを利
用したものである。このテンパーカラーは、周知のよう
に一定の酸化力を有する雰囲気ガス中、適当な温度(約
300℃以上)に被処理材を加熱することによりその表
面に生成する極薄の酸化被膜の呈する色である。
That is, the nitridation prevention method of the present invention utilizes the fact that nitridation does not occur on the surface of a stainless steel material exhibiting a temper color. As is well known, temper color is a color that is produced by an extremely thin oxide film that forms on the surface of a treated material by heating it to an appropriate temperature (approximately 300°C or higher) in an atmospheric gas that has a certain oxidizing power. It is.

本発明におけるステンレス鋼材の焼鈍処理は、通常のそ
れと同じように、AXガス、HNXガス、またはDXガ
ス等を炉内雰囲気ガスとして行なわれる。これらの雰囲
気ガスは、被処理材表面の脱炭、スケール(厚い酸化物
層)の発生防止のために、露点約−20〜−50℃の乾
燥状態に調整されているので、このままでは、被処理材
が約300℃以上に加熱されても、その後の窒化防止に
必要な酸化皮膜を生成せしめることはできない。本発明
では、この酸化皮膜を形成するために、被処理材の加熱
昇温過程で、炉内雰囲気の露点の調節が行なわれる。こ
の露点調節は、例えば焼鈍処理炉に水蒸気送給配管を付
設し、該配管を介して炉内に水蒸気を吹込むことにより
行なわれる。露点の調節は、被処理材の加熱昇温途中、
被処理材表面温度が約300℃に到達する頃を見計らっ
て行えばよい。
The annealing treatment of the stainless steel material in the present invention is carried out in the same manner as usual, using AX gas, HNX gas, DX gas, or the like as the furnace atmosphere gas. These atmospheric gases are adjusted to a dry state with a dew point of approximately -20 to -50°C in order to decarburize the surface of the treated material and prevent the formation of scale (thick oxide layer). Even if the treated material is heated to about 300° C. or higher, it is not possible to form an oxide film necessary to prevent subsequent nitridation. In the present invention, in order to form this oxide film, the dew point of the atmosphere in the furnace is adjusted during the heating process of the material to be treated. This dew point adjustment is performed, for example, by attaching a steam supply pipe to the annealing furnace and blowing steam into the furnace through the pipe. The dew point can be adjusted while heating the material to be treated.
The treatment may be carried out at a time when the surface temperature of the material to be treated reaches about 300°C.

また、加熱昇温開始に先立って所定の露点に調節してお
いてもよい。露点調節による酸化皮膜の形成は、被処理
材表面温度が、窒化反応d−起層温度約750℃)に達
する前に完了せねばならないことは言うまでもない。
Further, the dew point may be adjusted to a predetermined value before starting heating and raising the temperature. It goes without saying that the formation of the oxide film by controlling the dew point must be completed before the surface temperature of the material to be treated reaches the nitriding reaction (d-layer formation temperature of about 750° C.).

加熱昇温途中での酸化皮膜の形成に必要な雰囲気ガスの
6点は、厳密には被処理材の鋼種 化学成分組成、加勢
温度等によって異なるものであるが、約0〜50°Cの
範囲内に調節保持するごとにより好結果を得ることがで
きる。露点を0℃以上とするのは、それより低いと、雰
囲気の酸化力の不足により、確実な窒化防止能を有する
酸化皮II9を形成し難<、一方露点を50゛C以下と
するのは、それをこえると、被処理材表面の脱炭や過度
の酸化による厚いスケールの発生を招くからである。
Strictly speaking, the six points of atmospheric gas necessary for the formation of an oxide film during heating and temperature rise vary depending on the steel type, chemical composition, and applied temperature of the material to be treated, but the range is approximately 0 to 50°C. Better results can be obtained each time the adjustment is kept within the range. Setting the dew point to 0°C or higher is because if it is lower than that, it is difficult to form an oxide skin II9 that has reliable nitridation prevention ability due to the lack of oxidizing power in the atmosphere. On the other hand, setting the dew point to 50°C or lower is This is because, if it exceeds that range, decarburization of the surface of the material to be treated and generation of thick scale due to excessive oxidation will occur.

露点調節による被処理材表面の酸化皮膜の形成は、前記
のように、被処理材表面温度が窒化反応生起温度(約7
50℃)に到達するまでに完了すればよいが、昇温に伴
う被処理材表面の脱炭やスケールの発生を確実に防止す
るために、被処理材表面温度が約650℃に達する前に
酸化皮膜の形成を完了せしめ、その後すみやかにその雰
囲気ガスを通常の乾燥雰囲気ガスに置換することが望ま
れる。
Formation of an oxide film on the surface of the material to be treated by adjusting the dew point is carried out as described above when the surface temperature of the material to be treated reaches the nitriding reaction temperature (approximately 7
50℃), but in order to reliably prevent decarburization and scale formation on the surface of the treated material due to temperature rise, the process should be completed before the surface temperature of the treated material reaches approximately 650℃. It is desirable to complete the formation of the oxide film and then immediately replace the atmospheric gas with a normal dry atmospheric gas.

また、上記のような被処理材表面の脱炭や過度の酸化を
回避しながら所要の酸化皮膜を形成するために、加熱昇
温途中の適当な温度域、例えば450〜600℃の一定
温度で適当時間保持することにより酸化皮膜を完成せし
め、しかるのちその雰囲気ガスを通常の乾燥雰囲気ガス
に置換して露点を常態に戻すとともに加熱昇温を再開す
るのも好ましい方法である。
In addition, in order to form the required oxide film while avoiding decarburization and excessive oxidation on the surface of the treated material as described above, it is necessary to heat the material at an appropriate temperature range during heating, for example at a constant temperature of 450 to 600°C. It is also a preferable method to complete the oxide film by holding for an appropriate time, and then replace the atmospheric gas with a normal dry atmospheric gas to return the dew point to the normal state and restart heating and temperature raising.

第1図に、焼鈍処理における被処理材の加りハ昇温パタ
ーンと露点調節の例を示す。図中、曲線(イ)は被処理
材温度、(ロ)は雰囲気ガスの露点を示す。被処理材の
加熱開始後、被処理材表面温度が約300°Cに達する
頃を見計って水蒸気を吹込み、露点を0〜50℃の適当
な値に保持する。また、被処理材温度は、約450〜6
00′cの適当な一定温度に適当時間保持されることに
より、表面の酸化皮膜が形成される。酸化皮膜の形成を
みたのら、直ちにその雰囲気ガスをか外に排出するとと
もに、乾燥せる通常の雰囲気ガスを炉内に導入すること
により、所定の6点(例えは、−25°C)にもと1゜
それと同時に、被処理材の加熱昇温を再開し、所定の焼
鈍温度(例えば、800〜850’C)に到達せしめた
のち、同温度に所定時間保持する。被処理材は、表面が
酸化皮膜で被覆されているので、窒素ガスが含まれる雰
囲気ガス中で高温に加軌されても、窒化が生しることな
く、所定の焼鈍処理を完了することができる。
FIG. 1 shows an example of the heating pattern and dew point adjustment of the material to be treated during annealing. In the figure, curve (a) shows the temperature of the material to be treated, and curve (b) shows the dew point of the atmospheric gas. After the heating of the material to be treated is started, water vapor is blown in when the surface temperature of the material to be treated reaches approximately 300°C to maintain the dew point at an appropriate value of 0 to 50°C. In addition, the temperature of the material to be treated is approximately 450 to 6
By maintaining the temperature at a constant temperature of 00'c for a suitable period of time, an oxide film is formed on the surface. As soon as the formation of an oxide film is observed, the atmospheric gas is immediately discharged to the outside, and normal atmospheric gas for drying is introduced into the furnace to maintain the temperature at six predetermined points (for example, -25°C). At the same time, the heating of the material to be treated is restarted to reach a predetermined annealing temperature (for example, 800 to 850'C), and then maintained at the same temperature for a predetermined time. Since the surface of the material to be treated is coated with an oxide film, the specified annealing treatment can be completed without nitriding even when heated to high temperatures in an atmospheric gas containing nitrogen gas. can.

次に、本発明による窒化防止効果について封体的に説明
する。
Next, the nitriding prevention effect according to the present invention will be explained in detail.

13Cr系ステンレス鋼帯(Sl13403相当材)の
オープンコイルを、ハ、チvl錬炉中、AXガス(75
%H2+25%Nz、露点 25°C)を雰囲気ガスと
して焼鈍処理する。供試調帯の窒素含有量(し−ドル値
)は約50ppmである。被処理材の加熱昇温および雰
囲気ガスの露点調節を第2図に示すパターンに従って行
う。まず、炉内に鋼帯コイル(オープンコイル)を装入
し、AXガスを導入するとともに、水蒸気を吹込み、露
点を+20℃に設定する。銅帯コイ、ルの加熱を開始し
、温度550℃に達したら、一旦昇温を停正し、同温度
に1時間保持する。これにより銅帯コイル表面、に酸化
皮膜が形成され、青色のテンパーカラーが生しる。
An open coil of 13Cr stainless steel strip (equivalent to Sl13403) was heated with AX gas (75
%H2+25%Nz, dew point 25°C) as the atmospheric gas. The nitrogen content (lower value) of the test zone is about 50 ppm. The heating of the material to be treated and the adjustment of the dew point of the atmospheric gas are carried out according to the pattern shown in FIG. First, a steel strip coil (open coil) is placed in a furnace, AX gas is introduced, water vapor is blown into the furnace, and the dew point is set at +20°C. Heating of the copper band coil was started, and when the temperature reached 550°C, the heating was stopped once and the temperature was maintained at the same temperature for 1 hour. As a result, an oxide film is formed on the surface of the copper band coil, producing a blue tempered color.

ついで、その雰囲気ガスを排除し、新たなAXガスを導
入して露点を一25℃に保持する一方、銅帯コイルを加
熱昇温し、所定温度(T)に所定時間保持して焼鈍を完
了する。焼鈍処理温度(T)は、820℃、850℃お
よび870’Cの3通りとし、保持時間は4〜5時間に
設定した。
Next, the atmospheric gas is removed and new AX gas is introduced to maintain the dew point at -25°C, while the copper band coil is heated to raise its temperature and held at a predetermined temperature (T) for a predetermined time to complete annealing. do. The annealing treatment temperature (T) was 820°C, 850°C, and 870'C, and the holding time was set to 4 to 5 hours.

他方、比較例として、同種鋼帯コイルの焼鈍処理を、第
3図に示す従来の一般的加熱昇温パターンに従って、酸
化皮膜形成のための露点綱部を施すことなく行った。雰
囲気ガスは上記と同しAXガス(露点−25℃)であり
、焼鈍処理温度および保持時間は上記と同じ3通りの条
件に設定した。
On the other hand, as a comparative example, a similar steel strip coil was annealed according to the conventional general heating temperature increase pattern shown in FIG. 3 without applying a dew point rope for forming an oxide film. The atmospheric gas was the same AX gas (dew point -25°C) as above, and the annealing temperature and holding time were set to the same three conditions as above.

上記各供試鋼帯の焼鈍処理後の窒素含を量の変化を第4
図に示す。従来法による比較例の銅帯コイル(図中、Δ
印で示す)は、850℃以上の焼鈍処理で窒化による窒
素含有量の増加が認められ、870℃で窒素増量は約1
100ppにも達している。これに対し、本発明により
処理された鋼帯コイル(図中、O印で示す)は、温度8
70℃の高温処理においても、窒素の増量は数ppm以
下と極くわずかであり、窒化はほぼ完全に防止されてい
ることがわかる。
Changes in nitrogen content after annealing of each of the above test steel strips are shown in the fourth table.
As shown in the figure. Copper strip coil of comparative example using conventional method (in the figure, Δ
), an increase in nitrogen content due to nitriding was observed during annealing at 850°C or higher, and at 870°C, the nitrogen content increased by approximately 1.
It has reached 100pp. On the other hand, the steel strip coil treated according to the present invention (indicated by O in the figure) has a temperature of 8
It can be seen that even in the high temperature treatment at 70° C., the increase in nitrogen content is extremely small, a few ppm or less, and nitridation is almost completely prevented.

以上のように、本発明方法によれば、窒素ガスを含む雰
囲気ガス中でのステンレス鋼帯の窒化と、それに伴う材
質の劣化を実質的に完全に防止することができる。また
、窒素ガスを含まない雰囲気ガスが使用される焼鈍処理
においても、実炉の完全なシールは実際上困難で、大気
浸入により被処理材の窒化が生じることも少くない。こ
のような場合にも、本発明方法を適用して露点調節を行
い、酸化皮膜を形成せしめることにより窒化の問題を解
消することができる。
As described above, according to the method of the present invention, nitridation of the stainless steel strip in an atmospheric gas containing nitrogen gas and the accompanying deterioration of the material can be substantially completely prevented. Furthermore, even in annealing treatment in which an atmospheric gas that does not contain nitrogen gas is used, it is actually difficult to completely seal the actual furnace, and the material to be treated is often nitrided due to atmospheric infiltration. Even in such cases, the problem of nitridation can be solved by applying the method of the present invention to control the dew point and form an oxide film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明方法の実施における加熱昇
温と露点調節パターンの例を示す図、第3図は従来法で
の加熱昇温と露点調節パターンを示す図、第4図は焼鈍
温度と窒化による窒素増量の関係を例示するグラフであ
る。 代理人 弁理士 宮崎新へ部 晴間→ 畦間 → 第3図 艷純蟇度(C)
FIGS. 1 and 2 are diagrams showing examples of heating temperature increase and dew point adjustment patterns in the implementation of the method of the present invention, FIG. 3 is a diagram showing heating temperature increase and dew point adjustment patterns in the conventional method, and FIG. It is a graph illustrating the relationship between annealing temperature and nitrogen increase due to nitriding. Agent: Patent attorney Arata Miyazaki, Haruma → Unema → Figure 3: Jun Kado (C)

Claims (1)

【特許請求の範囲】[Claims] (1)窒素ガスが含まれる雰囲気ガス中でのステンレス
鋼材の焼鈍処理において、加熱昇温途中の窒化反応生起
温度到達前に、雰囲気ガスの露点調節により該鋼材表面
にテンパーカラーを生しさせることを特徴とするステン
レス鋼の焼鈍処理にお番ノる窒化防止方法。
(1) In annealing a stainless steel material in an atmospheric gas containing nitrogen gas, a temper color is produced on the surface of the steel material by adjusting the dew point of the atmospheric gas before the nitriding reaction temperature is reached during heating. A nitriding prevention method suitable for annealing stainless steel.
JP11063884A 1984-05-30 1984-05-30 Method for preventing nitriding in annealing stainless steel Pending JPS60255919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11063884A JPS60255919A (en) 1984-05-30 1984-05-30 Method for preventing nitriding in annealing stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11063884A JPS60255919A (en) 1984-05-30 1984-05-30 Method for preventing nitriding in annealing stainless steel

Publications (1)

Publication Number Publication Date
JPS60255919A true JPS60255919A (en) 1985-12-17

Family

ID=14540794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11063884A Pending JPS60255919A (en) 1984-05-30 1984-05-30 Method for preventing nitriding in annealing stainless steel

Country Status (1)

Country Link
JP (1) JPS60255919A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01316417A (en) * 1988-06-16 1989-12-21 Ngk Spark Plug Co Ltd Device for controlling dew point in atmospheric furnace
WO2018075779A1 (en) * 2016-10-19 2018-04-26 Ak Steel Properties, Inc. Surface modification of stainless steels

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01316417A (en) * 1988-06-16 1989-12-21 Ngk Spark Plug Co Ltd Device for controlling dew point in atmospheric furnace
WO2018075779A1 (en) * 2016-10-19 2018-04-26 Ak Steel Properties, Inc. Surface modification of stainless steels
JP2019535891A (en) * 2016-10-19 2019-12-12 エーケー スティール プロパティ−ズ、インク. Stainless steel surface modification

Similar Documents

Publication Publication Date Title
US5631199A (en) Furnace for manufacturing a semiconductor device, and a method of forming a gate oxide film by utilizing the same
US3941623A (en) Method for producing a grain-oriented electrical steel sheet using separators comprising metal nitrides
JPS60255919A (en) Method for preventing nitriding in annealing stainless steel
US3188246A (en) Method of manufacturing drawing steel
US3130095A (en) Production of oriented silicon-iron sheets by secondary recrystallization
JPS6360269A (en) Heat-treatment of metallic titanium
US1804176A (en) Process of surface-hardening steel
JPS5582729A (en) Heat treating method for steel material
JP2002294335A (en) Annealing method for bell-type annealing furnace with suppressed decarburizing reaction
JPH1129824A (en) Manufacture of grain oriented silicon steel sheet with excellent glass film
JPS5816033A (en) Heat treatment for wire rod
JPH0853712A (en) Control of distribution of dew point in continuous decarburize-annealing furnace
JPH08260059A (en) Continuous annealing furnace excellent in atmosphere control ability
JP3679176B2 (en) Manufacturing method of deep drawing bluing cold rolled steel strip
JPS60221522A (en) Method for finish-annealing grain-oriented silicon steel sheet
JP2781524B2 (en) Method for manufacturing grain-oriented electrical steel sheet with extremely excellent glass coating and magnetic properties
RU2095433C1 (en) Method of producing anisotropic electrical steel
JPS58123831A (en) Manufacture of austenitic stainless steel with superior surface luster
JPS55152182A (en) Steam treatment of iron based product
JPS63130715A (en) Decarburized annealing method for steel sheet for shadow mask
JPH09176826A (en) Continuous production of high silicon steel sheet excellent in surface property and good in workability
JPH0353530A (en) Manufacture of semiconductor device
JPS5980713A (en) Heat treatment of steel product accompanied by no decarburization
SU1527317A1 (en) Method of high-temperature carburizing of steel articles
SU945244A1 (en) Method for nitriding